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CONJUGACY OF P-CONFIGURATIONS AND NONLINEAR
SOLUTIONS TO A CERTAIN CONDITIONAL CAUCHY
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Communicated by T. Riedel

Abstract. We study the connection between conjugations of a special kind
of dynamical systems, called P-configurations, and solutions to homogeneous
Cauchy type functional equations. We find that any two regular P-configurations
are conjugate by a homeomorphism, but cannot be conjugate by a diffeomor-
phism. This leads us to the following conclusion (answering an open question
posed by Paneah): there exist continuous nonlinear solutions to the functional
equation:

f(t) = f

(
t + 1

2

)
+ f

(
t− 1

2

)
, t ∈ [−1, 1].

1. Introduction

A homogeneous Cauchy type functional equation is an equation of the form:

f(t) = f(δ1(t)) + f(δ2(t)) , t ∈ [−1, 1], (1.1)

where f in an unknown function and δ1, δ2 are two increasing maps on I that
satisfy δ1(t) + δ2(t) = t and certain additional conditions that will be detailed
below. Two maps satisfying these conditions are said to form a P-configuration in
[−1, 1] (see Definition 2.1). The solvability of this and of the accompanying non-
homogeneous problem and its generalizations has been studied first by Paneah
(see, e.g., [7], [8], [9]) and later by the author of this paper [11]. It is clear that
the function f(z) = cz is always a solution to (1.1) and the interesting question is
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if and when there exist additional solutions. If the P-configuration happens to be
regular (and in many other, much more general cases that we shall not discuss)
then the only C1 solutions to (1.1) are linear:

Theorem 1.1. (Paneah, [9, Theorem 2])1 . Assume that δ1 and δ2 form a
P-configuration in I, and that δ′1(t), δ

′
2(t) > 0 for all t ∈ [−1, 1]. If f ∈ C1 is a

solution to (1.1) then there is some c ∈ R such that

f(z) = cz , z ∈ [−1, 1].

It has been an open question whether the above theorem is true without the
assumption f ∈ C1. Even for the following simple looking equation:

f(t) = f

(
t + 1

2

)
+ f

(
t− 1

2

)
, t ∈ [−1, 1], (1.2)

it was not known whether there exist continuous solutions which are not linear.
One of the causes for interest in this question was the desire to know whether the
C1 condition in this theorem is an artifact of the proof, or a true feature of the
problem.

Another motive for studying the equations (1.1) and (1.2) comes from the the-
ory of conditional Cauchy equations, or more generally, the theory of redundancy
or overdeterminedness (see [12] and the references therein). (This topic has been
studied by many noted researchers in functional equation such as Dhombres and
Ger [2], Forti [3], Jarczyk [4], Kuzma [5], Matkowski [6], Paneah [9], Sablik [10],
Zdun [13] and others. See also Chapters 6 and 16 of the book by Aczél and
Dhombres [1]). It is an easy exercise to see that the only continuous functions
f : [−1, 1] → R that satisfy the Cauchy Functional Equation

f(x + y) = f(x) + f(y) , (x, y) ∈ K, (1.3)

where K = {(x, y) : |x| + |y| ≤ 1}, are linear functions. A less trivial result is
that the only continuous solutions of the following equation:

f(x + y) = f(x) + f(y) , (x, y) ∈ ∂K, (1.4)

are also linear functions, where ∂K is the boundary of K in R2 [11, Section
3.1]. This shows that equation (1.3) contains much more information than one
really needs in order to determine f . Equation (1.4) should be considered as the
restriction of the functional equation (1.3) to ∂K. In fact, if Γ denotes the curve
∂K\{(x, x+1) : x ∈ (−1, 0)}, then it is true that the restriction of (1.3) to Γ does
not admit any continuous solutions other than the linear ones. It is natural to
ask: What happens if we take a smaller subset of ∂K? Does the set of continuous
solutions remain the same? Note that (1.2) is nothing but (1.3) restricted to one
of the sides of the square ∂K.

In Section 3 below we solve the above mentioned open problem, by showing
that there exist nonlinear continuous solutions to every functional equation of the
form (1.1), and in particular to (1.2). This is achieved by an analysis of certain
dynamical systems called P-configurations. In Section 2 we prove that every two

1We stress that [9, Theorem 2] actually treats a much more difficult case where the derivatives
δ′
1 and δ′

2 might also vanish sometimes.
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regular P-configurations are isomorphic. The isomorphism between two regular
P-configurations is continuous but not continuously differentiable, as we show
in Section 4. In Section 5 we show that although there is only “one” regular
P-configuration, the next simplest class of P-configurations has infinitely many
isomorphism classes.

2. Conjugacy of regular P-configurations

We begin by giving the definition of a special kind of dynamical systems called
P-configurations. This notion was introduced by Paneah as a tool in solving
several problems in functional equations, integral geometry and PDE (see [8]).
The type of dynamics considered by Paneah was governed by guiding sets, and
general dynamical systems governed by guiding sets, called guided dynamical
systems, were studied in [11].

Definition 2.1. Let I = [a, b] be a fixed closed interval in R, c ∈ (a, b), and let
δ1, δ2 : I → I be two C1 maps satisfying the following conditions:

δ′1(t) + δ′2(t) = 1 , t ∈ I ; (2.1)

δ′i(t) ≥ 0 , t ∈ I, i = 1, 2 ; (2.2)

δ2(a) = a, δ2(b) = δ1(a) = c, δ1(b) = b . (2.3)

If all these assumptions hold, then the maps δ1 and δ2 are said to form a P-
configuration in I. We introduce the guiding sets

Λ1 = {t ∈ I|δ′1(t) = 0}
and

Λ2 = {t ∈ I|δ′2(t) = 0}.
The sets Λ1, Λ2 are called guiding sets. We shall also refer to the triple (I, δ, Λ)
as the P-configuration, δ and Λ being shorthand for (δ1, δ2) and (Λ1, Λ2). If
Λ1 = Λ2 = ∅ then we say that the P-configuration is regular, and we denote it
simply by (I, δ).

Remarks 2.2. (1) It is clear that there is no essential loss if one assumes that
I = [−1, 1] and c = 0, and we will assume it from now on. Equations
(2.1) and (2.3) then take the form

δ1(t) + δ2(t) = t , t ∈ I , (2.4)

δ2(−1) = −1, δ2(1) = δ1(−1) = 0, δ1(1) = 1 . (2.5)

(2) In applications to analysis, the maps δ1, δ2 are often assumed to be twice
continuously differentiable. We shall not need this assumption in this
note.

Definition 2.3. Two P-configurations (I, δ, Λ) and (I, σ, Ω) are said to be conju-
gate (or isomorphic) if there is a homeomorphism h : I → I such that h(Λi) = Ωi

and
h(δi(t)) = σi(h(t)) , i = 1, 2 , t ∈ I.

The map h is called a conjugation (or isomorphism).
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Note that for regular P-configurations the notion of conjugacy is the same as
the usual notion of conjugacy (or isomorphism) of dynamical systems.

Proposition 2.4. Any two regular P-configurations are conjugate: if (I, δ1, δ2)
and (I, σ1, σ2) are two regular P-configurations, then there exists a unique home-
omorphism h : I → I such that

h(−1) = −1 , h(0) = 0 , h(1) = 1 (2.6)

and

h(δi(t)) = σi(h(t)) , i = 1, 2 , t ∈ I. (2.7)

Proof. We may assume that σ1(t) = t+1
2

and σ2(t) = t−1
2

, as conjugacy is an
equivalence relation. Note that (2.6) is a necessary condition for (2.7) to hold
(take t = −1, i = 2, then t = 1, i = 1, and then t = 1, i = 2).

The maps δ1, δ2 are invertible on their range, and so we may define two functions
on I as follows:

f(z) =

{
δ−1
2 (z), z ∈ [−1, 0]

δ−1
1 (z), z ∈ (0, 1]

and

χ(z) =

{
−1, z ∈ [−1, 0]

1, z ∈ (0, 1] .

f should be thought of as an inverse of both δ1, δ2. We define

C = {g ∈ C([−1, 1]) : g(−1) = −1, g(0) = 0, g(1) = 1, g is nondecreasing}
endowed with the usual sup-norm metric. Define a mapping T : C → C by

(Tg)(z) =
g(f(z)) + χ(z)

2
.

Note that Tg is in C, and in particular it is a continuous function. One verifies
directly that h satisfies (2.7) if and only if Th = h. Indeed, on each interval
[−1, 0] and (0, 1], this is seen by the applying change of variables z = δ2(t) or
z = δ1(t). But T is clearly a strict contraction, hence by Banach’s Fixed Point
Theorem, there is a unique h ∈ C that satisfies (2.7).

It remains to show that h is a homeomorphism. I being a closed interval and h
being continuous, it suffices to show that h is injective and surjective, the latter
of which follows immediately from h(−1) = −1, h(1) = 1. Assume that h is not
injective. We will arrive at a contradiction and thereby finish the proof. Being
nondecreasing, h must be constant on some interval J0 ⊆ I. Using (2.7), one
sees that h must be constant on each of the intervals δ−1

1 (J0) and δ−1
2 (J0). In

fact, unless 0 ∈ J0, only one of δ−1
1 (J0) and δ−1

2 (J0) is not empty. In any case,
choose a nondegenerate interval from the two and denote it by J1. Continuing
this way, we iteratively construct a sequence of intervals J0, J1, J2, . . . on which h
must be constant, by defining Jn+1 to be a nondegenerate interval, either δ−1

1 (Jn)
or δ−1

2 (Jn).
Assume first that 0 is never contained in any Jn. One easily sees that the

length of Jn+1 is at least ρ−1 times the length of Jn, where ρ is the maximum
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of supt∈I{δ′1(t)} and supt∈I{δ′2(t)}. But ρ < 1, whence the length of Jn must
eventually be larger than 1, so eventually 0 ∈ Jn, a contradiction.

So there is some n such that 0 ∈ Jn. Without loss of generality, n = 0
and J1 := δ−1

2 (J0) is a nondegenerate interval containing 1, and all the Jn’s for
n > 1 can be chosen to be δ−1

1 (Jn−1) and will therefore also contain 1. But
then as long as 0 /∈ Jn, Jn+1 must be longer than Jn by a factor of ρ−1 as
above. Thus eventually we must have 0, 1 ∈ Jn, and h is constant on Jn. But
h(0) = 0, h(1) = 1, so this is impossible. �

Examining the above proof one sees that no use has been made of condition
(2.4). We are lead to making the following definition.

Definition 2.5. Let δ1, δ2 ∈ C1(I) satisfy (2.2) and (2.3). Define Λ1 = {t ∈
I|δ′1(t) = 0} and Λ2 = {t ∈ I|δ′2(t) = 0}. The (guided) dynamical system (I, δ, Λ)
is said to be a quasi P-configuration. If Λ1 = Λ2 = ∅ then (I, δ, Λ) is called a
regular quasi P-configuration.

Combining the proof of Proposition 2.4 with its conclusion, we conclude:

Proposition 2.6. Let (I, δ1, δ2) and (I, σ1, σ2) be two regular quasi P-configurations.
Assume that for all t ∈ I, σ′

1(t), σ
′
2(t) < 1. Then there exists a unique continuous

map h : I → I such that

h(−1) = −1 , h(0) = 0 , h(1) = 1

and
h(δi(t)) = σi(h(t)) , i = 1, 2 , t ∈ I.

If in addition δ′1(t), δ
′
2(t) < 1 for all t ∈ I, then h is a homeomorphism, and (I, δ)

and (I, σ) are conjugate.

It remains an open question whether every two regular quasi P-configurations
are conjugate or not.

3. Existence of nonlinear solutions to homogeneous Cauchy type
functional equations

Using our observations from the previous section we can now resolve the open
problem mentioned in the introduction.

Theorem 3.1. Let (I, δ) be a regular P-configuration. Then equation (1.1) has
a nonlinear solution.

Proof. Let (I, σ1, σ2) be another regular P-configuration with σ1 6= δ1. By Propo-
sition 2.4, there exists a homeomorphism h : I → I such that

h(δi(t)) = σi(h(t)) , i = 1, 2 , t ∈ I.

Adding these two equations we obtain

h(δ1(t)) + h(δ2(t)) = σ1(h(t)) + σ2(h(t)) = h(t) , t ∈ I,

thus, h solves (1.1). Now h(1) = 1, so if it were linear it would have to be the
identity function on I. However, h is not the identity function, because that
would have implied δ1(t) = h(δ1(t)) = σ1(h(t)) = σ1(t), contrary to the fact that
σ1 6= δ1. �
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The above proof shows that every conjugation of two P-configurations is a
solution of (1.1). There is also a partial converse to this. We record these facts
in the following theorem.

Theorem 3.2. If (I, δ1, δ2) and (I, σ1, σ2) are two regular P-configurations, and
f : I → I is a continuous function such that

f(δi(t)) = σi(f(t)) , i = 1, 2 , t ∈ I, (3.1)

then f satisfies (1.1). Conversely, if (I, δ1, δ2) is a given regular P-configuration
and f is a strictly increasing continuous solution of (1.1) that fixes the points
−1, 0 and 1, then there exists a dynamical system (I, σ1, σ2), where σ1, σ2 are
strictly increasing maps that satisfy (2.4) and (2.5), such that f is a conjugation
of (I, δ1, δ2) and (I, σ1, σ2).

We cannot say that (I, σ1, σ2) is a P-configuration because the maps are not
necessarily differentiable.

Proof. We have to prove the converse direction. Define

σi = f ◦ δi ◦ f−1.

Obviously, f is a conjugation of (I, δ1, δ2) and (I, σ1, σ2). The σi’s are strictly
increasing and satisfy (2.5). To see (2.4), use (1.1) to compute

σ1(t) + σ2(t) = f(δ1(f
−1(t))) + f(δ2(f

−1(t))) = f(f−1(t)) = t.

�

We conclude this section with another application to functional equations.

Theorem 3.3. Let (I, δ) be a quasi regular P-configuration. Then the functional
equation

f(t) = f(δ1(t)) + f(δ2(t)) , t ∈ I,

has a nontrivial solution.

Proof. The proof is the same as the proof of Theorem 3.1, except that one uses
Proposition 2.6 instead of 2.4. �

4. Nonexistence of a continuously differentiable conjugacy
between regular P-configurations

By Proposition 2.4 every two regular P-configurations are conjugate, i.e., there
is a homeomorphism h : I → I that intertwines the maps. However, P-configurations
are smooth entities, the maps being assumed to be C1, and sometimes smoother.
Therefore, it is natural to ask whether the (unique) conjugating map h is as
smooth as the maps in the P-configurations, or is it at least continuously differ-
entiable. It is remarkable that this never happens, unless the two P-configurations
are identical.

Proposition 4.1. Let (I, δ1, δ2) and (I, σ1, σ2) be two distinct (i.e., σ1 6= δ1)
regular P-configurations. Then the conjugating map h given by Proposition 2.4 is
not continuously differentiable.
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Proof. We have already observed in the proof of Theorem 3.1 that h is a nonlinear
solution to the homogeneous Cauchy type functional equation (1.1). However, by
Theorem 1.1 discussed above, the only C1 solutions of (1.1) are linear. Thus, h
cannot be C1. �

5. On the diversity of non-regular P-configurations

By Proposition 2.4, all regular P-configurations are “the same”. An evident
necessary condition for two not-necessarily-regular P-configurations to be conju-
gate is that the guiding sets (the Λ’s) be homeomorphic, as well as their com-
plements. As the set of all possible pairs (Λ1, Λ2) is the set of all pairs of closed
and disjoint sets in the interval, we see that the set of conjugacy classes of P-
configurations is quite rich.

But the distinction between genuinely different kinds of P-configurations starts
much before that: we will see soon that there are infinitely many P-configurations
(I, δ, Λ) with Λ2 = ∅ and Λ1 a singleton which are pairwise not isomorphic.
Indeed, let (I, δ, Λ) and (I, σ, Ω) be two P-configurations with Λ1 = {λ}, Ω1 =
{ω}, and the other guiding sets empty. With Proposition 2.4 in mind, we expect
there to be at most one conjugation h between these two systems, when considered
without their guiding sets. Following this heuristic, we expect there to be no
freedom left for adjusting h in such a manner that h(λ) = ω. The following
proposition makes this heuristic precise.

Proposition 5.1. There are infinitely many non-isomorphic P-configurations
(I, δ, Λ) with Λ2 = ∅ and Λ1 consisting of a single point.

Proof. For every n ∈ N, denote Jn := [1 − 1/2n, 1 − 1/2n+1]. Fix two integers
n 6= k. Let δ1(t) = t+1

2
for all t ∈ I, except for t ∈ Jn. In Jn we let δ1 be a smooth

perturbation of t+1
2

such that its derivative in this segment is never equal to 1
and is equal 0 at precisely one point λ. δ2(t) is defined to be t− δ1(t). We then
have Λ2 = ∅ and Λ1 = {λ} ⊂ int(Jn).

We define σ1 in the same manner with the difference that σ1(t) is different from
t+1
2

only in Jk, and there its derivative is never 1 and is 0 at precisely one point
ω. As before we have Ω2 = ∅ and Ω1 = {ω} ⊂ int(Jk).

Now assume that h is an isomorphism of the dynamical systems (I, δ) and
(I, σ). We shall show that it cannot be an isomorphism of P-configurations (that
is, it cannot be an isomorphism of guided dynamical systems). We already know
that h(0) = 0. Putting t = 0 in

h(δ1(t)) = σ1(h(t)),

we have h(1/2) = h(δ1(0)) = σ1(h(0)) = σ1(0) = 1/2. Induction yields

h(1− 1/2m) = 1− 1/2m , m ∈ N.

It follows that h maps Jm to Jm, and thus cannot map λ to ω. �
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