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Abstract. Multiscale stochastic homogenization is studied for quasilinear hy-
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1. Introduction and preliminaries

In this paper we consider the homogenization problem for the following initial-
boundary value problem:

∂2uω
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= f in Q,

uω
ε (x, 0) = u0(x) in Ω,
∂uω

ε

∂t
(x, 0) = u1(x) in Ω,

uω
ε (x, t) = 0 in ∂Ω× (0, T ),

(1.1)

where Ω is an open bounded set in Rn, T is a positive real number and Q =
Ω× (0, T ). For each fixed ωi ∈ Xi, i = 1, 2, 3, the realization (1.1) is an initial-
boundary value problem. Following the framework in [15] and [16], see also
[7] we associate three probability spaces (Xk,Fk, µk), k = 1, 2, 3. Each Fk is a
complete σ-algebra and each µk is the associated countably additive non-negative
probability measure on Fk normalized by µk(Xk) = 1. For every x ∈ Rn we
associate the dynamical system

Tk(x) : Xk → Xk.

For the random fields

a (x, ω1, ω2, t, ξ) and G (ω3, t, η)

we can then, for fixed ω1, ω2 and ω3, consider the realization

a (T1(x)ω1, T2(x)ω2, t, ξ) and G (T3(x)ω3, t, η)

and the “speeded up” realizations
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and G
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)
respectively. With this construction which will be precisely defined below the
random field becomes stationary due to the invariance properties of the associated
probability measure and therefore the Birkhoff ergodic theorem applies and we
can define the limit of the speeded up realization in terms of the expectation (the
mean value) over the probability space. We also assume that ε1 and ε2 are two
well separated functions (scales) of ε > 0 which converge to zero as ε tends to
zero. Well separatedness means

lim
ε→0

ε2

ε1

= 0.

Further we assume that the map a = a(ω1, ω2, t, ξ) satisfies certain coercivity and
growth conditions in ξ and is measurable in (ω1, ω2, t). We assume that the map
G = G(ω3, t, η) = ρ(ω3, t)|η|γsgn(η), 0 < γ ≤ 1. Under the structure conditions
(to be precisely defined below) it follows that for given data f ∈ L2(Q), u0 ∈
W 1,p

0 (Ω) and u1 ∈ L2(Ω) there exists a unique solution uω
ε ∈ Lp(0, T ;W 1,p

0 (Ω))

to (1.1) with time derivative ∂uω
ε

∂t
∈ L2(Q) and

∂2uω
ε

∂t2
∈ Lq(0, T ;W−1,q(Ω)) for
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every fixed ε > 0 and almost all (ω1, ω2) ∈ X1 ×X2, where p and q are the dual
exponents.

The multiscale stochastic homogenization problem for (1.1) consists in studying
the asymptotic behavior of the solutions uω

ε as ε tends to zero.
Periodic homogenization problems with more than one oscillating scale was first

introduced in [2] for linear elliptic problems. Recently stochastic homogenization
for the monotone hyperbolic case with a linear damping has been studied in [16].
For related recent results on deterministic homogenization beyond the periodic
setting of hyperbolic problems we refer to [9] and [10]. In those papers the concept
of algebra with mean value, denoted homogenizaton algebra, and non-periodic
multiscale convergence, denoted Sigma convergence, are the main tools.

In this work we will introduce the reader to the general framework of G-
convergence, which can be thought of as a non-periodic “homogenization” or
stabilization of sequences of operator equations. Here we show that the general
theory also applies to the situation of multiple scales and e.g. multiscale sto-
chastic homogenization. The result of Theorem 10.3 is that the sequence {uε}
of solutions to (1.1) converges weakly in Lp(0, T ;W 1,p

0 (Ω)) to the solution u in
Lp(0, T ;W 1,p

0 (Ω)) to a homogenized problem of the form

∂2u

∂t2
− div (b (t,Du))−∆(u′) +G(t, u′) = f in Q,

u(x, 0) = u0(x) in Ω,
∂u

∂t
(x, 0) = u1(x) in Ω,

u(x, t) = 0 in ∂Ω× (0, T ),

where b and G depend on t but is no longer oscillating in space with ε. It is also
seen from the framework that the result easily extends to any number of well sep-
arated scales. A typical situation where periodic and random scales occur is the
modeling of porous media. A meso-scale can be modeled as a periodic distribu-
tion of solid parts whereas a sub-scale on a finer level can be modeled by a certain
random distribution. The homogenization problem for random fields in the linear
elliptic case is studied in [8]. The extension to monotone operators in the random
setting is studied in [12] and has been further studied in a series of papers by
Efendiev and Pankov, see [7] and the references therein. They consider single
spatial and temporal scales. For homogenization problem for random fields of
monotone parabolic problems we refer to [15]. A prototype application of results
in this paper is damped elastic wave propagation in heterogeneous media of e.g.
Voigth type. We will use the general framework of G-convergence for monotone
parabolic operators developed in [14] to prove a stochastic homogenization result
for (1.1) (Theorem 10.3). The result will rely on a number of well-known results
for elliptic and parabolic G-convergence. For the benefit of the reader we review
these results with references to the original proofs. This makes the present work
more self-contained. The paper is organized as follows: In Section 2 we recall
the basic terminology of G-convergence of parabolic operators, in Section 3 we
introduce some basic facts about monotone operators in reflexive Banach Spaces.
In Section 4 we state a theorem for existence and uniqueness of weak solution to
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a quasilinear hyperbolic problem. Sections 5, 6 and 7 review some basic results
for elliptic and parabolic G-convergence that will be needed in the proof of con-
vergence of hyperbolic problems which is presented in Section 8. Section 9 is a
preparation on multiscale stochastic operators where the framework is based on
a dynamical systems setup and in Section 10 we prove a homogenization result
for the nonlinearly damped quasilinear hyperbolic problem (1.1).

2. General setting - G-convergence

Let us say that we are interested in the asymptotic behaviour (as h→∞) for
a sequence of parabolic initial-boundary value problems of the form

u′h − div(ah(x, t,Duh)) = f in Q,
uh(0) = u0 in Ω,

uh ∈ Lp(0, T ;W 1,p
0 (Ω)),

where Ω is an open bounded set in Rn, T is a positive real number, Q = Ω×(0, T )
and 2 ≤ p <∞. The maps ah are assumed to be monotone and to satisfy certain
boundedness and coercivness assumptions uniformly in h. We will see that the
general theory yields a subsequence still denoted by {ah} and a map a with the
same qualitative properties as the maps {ah} such that, as h→∞,

uh → u weakly in Lp(0, T ;W 1,p
0 (Ω))

and
ah(x, t,Duh) → a(x, t,Du) weakly in Lq(0, T ;Lq(Ω; Rn)),

respectively, where 1/p + 1/q = 1 and where u is the solution of the following
initial-boundary value problem:

u′ − div(a(x, t,Du)) = f in Q
u(0) = u0 in Ω,

u ∈ Lp(0, T ;W 1,p
0 (Ω)),

where the map a only depends on the subsequence {ah}. This yieldsG-convergence
of quasilinear parabolic operators. For a complete treatment of G-convergence of
monotone parabolic operators we refer to [14].

3. Some notations

Let us introduce some function spaces related to the differential equations
studied in this paper. For a nice introduction to partial differential operators in
Banach spaces we refer to the monograph [1] by Barbu. Let V be a reflexive real
Banach space with dual V ′ and let H be a real Hilbert space. We introduce the
evolution triple

V ⊆ H ⊆ V ′,

with dense embeddings. Further, for positive real-valued T and for 2 ≤ p <∞, let
us introduce the spaces V = Lp(0, T ;V ), H = L2(0, T ;H) and V ′ = Lq(0, T ;V ′),
where 1/p+ 1/q = 1. Then we can consider the corresponding evolution triple

V ⊆ H ⊆ V ′
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also with dense embeddings where the duality pairing 〈·, ·〉V between V and V ′ is
given by

〈f, u〉V =

∫ T

0

〈f(t), u(t)〉V dt, for u ∈ V , f ∈ V ′.

We define the spaces W and W0 as

W = {v ∈ V : v′ ∈ V ′} and W0 = {v ∈ W : v(0) ∈ H}.

Here v′ denotes the time derivative of v, where this derivative is taken in distri-
butional sense. Equipped with the graph norm

‖v‖W0 = ‖v‖V + ‖v′‖V ′

W0 becomes a real reflexive Banach space. Moreover, since the embedding W0 →
C(0, T ;H) is continuous, every function in W0, with possible modification on a
set of measure zero, can be considered as a continuous function with values in H.
We also define the space Z0 as

Z0 = {v ∈ V : v′ ∈ H, v′′ ∈ V ′, v(0) ∈ V, v′(0) ∈ H}.

Here v′′ denotes the second time derivative of v, where this derivative is taken in
distributional sense. Equipped with the graph norm

‖v‖Z0 = ‖v‖V + ‖v′‖H + ‖v′′‖V ′

Z0 becomes a real reflexive Banach space. Let us define the operator d
dt

: V → V ′
given by

d

dt
u = u′ for u ∈ D(

d

dt
) = W0

and the operator d2

dt2
: V → V ′ given by

d2

dt2
u = u′′ for u ∈ D(

d2

dt2
) = Z0.

We will denote by Ω a bounded open set in Rn and, if nothing else is said, V =
W 1,p

0 (Ω) with norm ‖u‖p
V =

∫
Ω
|Du|p dx, H = L2(Ω) and V ′ = W−1,q(Ω). Then

the evolution triples considered above are well-defined with dense embeddings.
We also define the spaces

U = Lp(Ω; Rn) and U ′ = Lq(Ω; Rn)

and the spaces

U = Lp(0,T;U) and U ′ = Lq(0, T ;U ′).

Further, we define the pairing 〈·, ·〉U between U ′ and U as

〈u, v〉U =

∫ T

0

∫
Ω

(u, v) dxdt, for u ∈ U ′ and v ∈ U ,

where (·, ·) denotes the scalar product in Rn. By | · | we understand the usual
Euclidean norm in Rn. Moreover, by {h} we understand a sequence in N tending
to +∞. We denote by ρ : R+ → R+ the modulus of continuity, i.e. an increasing
function which is continuous and vanishes at the origin.
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Definition 3.1. Given 0 < β ≤ 1, 2 ≤ p < ∞ and three positive real constants
c0, c1 and c2, we define the class S = S(c0, c1, c2, β) of maps

a : Q× Rn → Rn,

satisfying

(i) |a(x, t, 0)| ≤ c0 a.e in Q.
(ii) a(·, ·, ξ) is Lebesgue measurable for every ξ ∈ Rn.
(iii) |(a(x, t, ξ1)− a(x, t, ξ2)| ≤ c1(1 + |ξ1|+ |ξ2|)p−1−β|ξ1− ξ2|β, a.e. in Q for all

ξ1, ξ2 ∈ Rn.
(iv) (a(x, t, ξ1) − a(x, t, ξ2), ξ1 − ξ2) ≥ c2|ξ1 − ξ2|p, a.e. in Q for all ξ1, ξ2 ∈

Rn, ξ1 6= ξ2.

4. Existence of weak solution

Let us consider the hyperbolic initial-boundary value problem
u′′ − div(a(x, t,Du))−∆(u′) +G(x, t, u′) = f in Q,
u(x, 0) = u0(x) in Ω,
u′(x, 0) = u1(x) in Ω,
u(x, t) = 0 in ∂Ω× (0, T ),

(4.1)

where Ω is an open bounded set in Rn, T is a positive real number and 2 ≤ p <∞.
We assume that a ∈ S and that G : Q× Rn → Rn is given by

G(y, s, η) = θ(y, s)|η|γsgn(η),

where θ ∈ L∞(Q) is strictly positive a.e. in Q. In order to obtain the existence
and uniqueness for (4.1) we will have to add some hypotheses on a. Following [3]
we assume that there are three positive real functions σ, ψ1 and ψ2 such that ψ1

and ψ2 are continuous and ψ1(s) → +∞ as s→ +∞ and

ψ1(|v|x) ≤ σ(v) ≤ ψ2(|v|x)
for v ∈ V . We now let

Av = div(a(x, t,Du))

and assume that

〈Au(t), u′(t)〉 ≥ d

dt
σ(u(t)).

We have the following existence and uniqueness result.

Theorem 4.1. Consider the hyperbolic initial-boundary value problem (4.1) above.
There exists a unique weak solution u ∈ V to (4.1) for every f ∈ H, u0 ∈ V and
u1 ∈ H.

Proof. We refer to [3] or [11] for a full proof. �

Remark 4.2. By the results of Theorem 4.1 the definition of the function space Z0

makes sense and we can now write the hyperbolic initial-boundary value problem
(4.1) as {

u′′ − div(a(x, t,Du))−∆(u′) +G(x, t, u′) = f in Q,
u ∈ Z0.
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5. Parabolic G-convergence

Let {ah} ⊂ S and define A : V → V ′ via

Au = −div(a(x, t,Du(x, t)))

and consider the sequence of parabolic problems{
u′h +Ahuh = f in Q,
uh ∈ W0.

(5.1)

We define ”parabolic” G-convergence in the following way:

Definition 5.1. The sequence {ah} is said to G-converge to a if, for every f ∈ V ′,
the sequence {uh} of solutions to (5.1) satisfies

uh ⇀ u weakly in W0

and
ah(·, ·, Duh) ⇀ a(·, ·, Du) weakly in U ′,

respectively, where u is the unique solution of the problem{
u′ +Au = f in Q,
u ∈ W0.

Proposition 5.2. Assume that ah ∈ S. Then there exists a unique solution
uh ∈ W0 to (5.1) for every f ∈ V ′ and for every h ∈ N.

The following G-compactness result is proved in [14].

Theorem 5.3. Assume that {ah} ⊂ S. Then, there exists a subsequence still
denoted by {ah} and a map a such that {ah} G-converges to a ∈ S.

6. Elliptic G-convergence

For a complete treatment of a large class of (possibly multivalued) elliptic
operators we refer to [4] and [5]. We consider the following sequence of Dirichlet
boundary value problems{

−div(ah(x,Duh)) = fh in Ω,
uh ∈ V.

(6.1)

Definition 6.1. The sequence {ah} is said to G-converge, in the elliptic sense,
to a if, for every f ∈ V ′, the sequence {uh} of solutions to (6.1) satisfy

uh ⇀ u weakly in V
and
ah(·, Duh) ⇀ a(·, Du) weakly in U ′,

respectively, where u is the unique solution to the problem{
−div(a(x,Du)) = f in Ω
u ∈ V.

The following elliptic G-compactness result holds true:
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Theorem 6.2. Suppose that the sequence {ah} belongs to SE. Then there exists
a subsequence, still denoted by {h}, such that, for every f ∈ V′, the sequence
{ah} G-converges to a map a ∈ SE.

Proof. See [5]. �

Here SE denotes the subclass of the class S of maps which does not depend on
t.

7. Parameter-dependent elliptic G-convergence

We begin by stating a compactness result with respect to elliptic G-convergence
for parameter dependent elliptic problems:

Theorem 7.1. Suppose that the sequence {ah} belongs to S. Suppose, in addi-
tion, that

|ah(x, t, ξ)− ah(x, s, ξ)| ≤ ρ(t− s)(1 + |ξ|p−1)

for every ξ ∈ Rn and for every t ∈ (0, T ) a.e. in Ω, then, there exists a subse-
quence still denoted by {h}, such that {ah(·, t, ·)} G-converges in the elliptic sense
to a map a(·, t, ·) for every t ∈ (0, T ).

Proof. See [14]. �

We also recall an important comparison result which plays a crucial role in the
homogenization of hyperbolic problems in Section 10.

Theorem 7.2. Suppose that

|ah(x, t, ξ)− ah(x, s, ξ)| ≤ ρ(t− s)(1 + |ξ|p−1)

for all ξ ∈ Rn a.e. in Ω. Suppose that {ah} G-converges to a in the parabolic
sense and that {ah(·, t, ·)} G-converges to b(·, t, ·) in the elliptic sense for every
t ∈ (0, T ), then a = b.

Proof. See [14]. �

8. Convergence of hyperbolic problems

We begin by stating a general compensated compactness theorem for quasilin-
ear monotone hyperbolic problems.

Theorem 8.1. Let {uh} and {vh} be two sequences in V, such, that, {u′′h} and
{v′′h} belong to V ′, satisfying

uh ⇀ u and vh ⇀ v in V ,

u′′h ⇀ u′′ and v′′h ⇀ v′′ in V ′,
∆u′h ⇀ ∆u′ and ∆v′h ⇀ ∆v′ in V ′,

ah(·, ·, Duh) ⇀ A∗ and bh(·, ·, Dvh) ⇀ B∗, in U ′.
If, in addition,

u′′h − div(ah(·, ·, Duh)−∆u′h and v′′h − div(bh(·, ·, Dvh))−∆v′h
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are compact in V ′, then for arbitrary ϕ ∈ C∞0 (Q), as h→∞,∫ T

0

∫
Ω

(ah(x, t,Duh)− bh(x, t,Dvh), Duh −Dvh)ϕdxdt

→
∫ T

0

∫
Ω

(A∗ −B∗, Du−Dv)ϕdxdt.

Proof. For the proof we refer to [16].

We also recall the following compactness result recently proved in [16].

Theorem 8.2. Let us consider a sequence of parameter dependent hyperbolic
problems {

u′′h − div(ah(x, t,Duh))−∆u′h = f in Q,
uh ∈ Z0,

where ah(x, t, ξ) = αh(x, t)|ξ|p−2ξ has the same properties as the map a in (4.1).
For every f ∈ H, u0 ∈ V and u1 ∈ H there exist subsequences {uh} and
{ah(x, t,Duh)} such that

uh ⇀ u in Z0,

ah(·, ·, Duh) ⇀ a(·, ·, Du) in U ′,
where u is the unique weak solution to the limit problem{

u′′ − div(a(x, t,Du))−∆u′ = f in Q,
u ∈ Z0.

We now extend our result to the damped nonlinear wave equation with non-
linear damping.

Theorem 8.3. Let us consider a sequence of parameter dependent damped hy-
perbolic problems{

u′′h − div(ah(x, t,Duh))−∆(u′h) +Gh(x, t, u
′
h) = f in Q,

uh ∈ Z0,

where ah and Gh are defined as above. For every f ∈ H, u0 ∈ V and u1 ∈ H
there exist subsequences {uh}, {ah(x, t,Duh)} and {Gh(x, t, u

′
h)} such that

uh ⇀ u in Z0

ah(x, t,Duh) ⇀ a(x, t,Du) in U ′,
and

Gh(x, t, u
′
h) ⇀ G(x, t, u′) in U ′,

where u is the unique weak solution to the limit problem{
u′′ − div(a(x, t,Du))−∆(u′) +G(x, t, u′) = f in Q,
u ∈ Z0.
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Proof. We first observe that by the existence Theorem 4.1 there exists a unique
solution uh ∈ Z0 for every h ∈ N.

We write the equation as{
u′′h − div(ah(x, t,Duh))−∆(u′h) = f −Gh(x, t, u

′
h) in Q,

uh ∈ Z0.
(8.1)

By Theorem 8.2 and the definition of G-convergence a passage to the limit in
(8.1) yields {

u′′ − div(a(x, t,Du))−∆(u′) = f −N in Q,
u ∈ Z0.

We are done if we can prove that N = G(x, t, u′). By the a priori estimates on
the sequence {u′h} an application of the Aubin-Lions lemma yields

u′h → u′ in H.
Up to a subsequence hj we then have u′hj

(x, t) → u′(x, t) a.e. in Q. Therefore,

by the Egoroff theorem, there exists a Lebesgue measurable set Qµ ⊂ Q with |Q\
Qµ| < µ such that u′hj

→ u′ uniformly in Qµ. Now let χQµ be the characteristic

function of Qµ. By the uniform convergence of the sequence {u′hj
} a limit passage

in ∫
Q

χQµGh(x, t, u
′
h)ψ dx

letting hj →∞, yields ∫
Q

χQµG(x, t, u′)ψ dx,

for any bounded and continuous function ψ on Ω. A passage to the limit (µ→ 0),
using that |Q \Qµ| → 0, yields the limit∫

Q

G(x, t, u′)ψ dx.

�

9. A dynamical systems approach to stochastic multiscale
analysis

For a nice exposition of the framework below we refer to the monograph [8].
Let (X,F , µ) denote a probability space, where F is a complete σ-algebra and µ
is a probability measure. For each x ∈ Rn the dynamical system

T (x) : X → X

is such that both T (x) and T (x)−1 are measurable. Moreover it is assumed that
the following (measure preserving) properties are satisfied:

• T (0)ω = ω for each ω ∈ X.

• T (x+ y) = T (x)T (y) for x, y ∈ Rn.
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• µ(T (x)−1F ) = µ(F ), for each x ∈ Rn and F ∈ F .

• The set {(x, ω) ∈ Rn × X : T (x)ω ∈ F} is a dx × dµ(ω) measurable
subset of Rn×X for each F ∈ F where dx denotes the Lebesgue measure.

• For any measurable function f(ω) defined on X, the function f(T (x)ω)
defined on Rn × X is also measurable where Rn is endowed with the
Lebesgue measure.

The dynamical system is said to be ergodic if every invariant function f , (i.e
functions f which satisfies f(T (x)ω) = f(ω)) is constant almost everywhere in
X.

Example 9.1. (periodic case) As a special case we recover the periodic functions
by letting

Ω = {ω ∈ Rn : 0 ≤ ωk ≤ 1, k = 1, . . . , n} and T (x) : Ω → Ω

given by

T (x)ω = x+ ω(mod1).

For a random field f(x, ω) the “periodic” realization is given by f(x+ ω).

Definition 9.2. We say that a vector field f ∈ [Lp
loc(Rn)]n is a potential field if

there exists a function g ∈ W 1,p
0 (Rn) such that f = Dg.

Definition 9.3. We say that a random vector field f ∈ [Lp(X)]n is a potential
field if almost all its realizations are potential fields. We denote this field by Lp

pot.

Definition 9.4. We define the space of vector fields with mean value zero.

Vpot(X) = {f ∈ [Lp(X)]n :

∫
X

f(ω) dµ(ω) = 0}.

We observe that by the Fubini theorem it follows that if f ∈ Lp(X) then almost
all realizations f(T (x)ω) ∈ Lp

loc(Rn).

Definition 9.5. Let f ∈ L1
loc(Rn). The number M(f) is called the mean value

of f if

lim
ε→0

∫
K

f(x/ε) dx = |K|M(f)

for any Lebesgue measurable bounded set K ∈ Rn. Alternatively the mean can
be expressed in terms of weak convergence. If the family {f(·/ε)} is in Lp(Ω),
p ≥ 1 then M(f) is called the mean value of f if

{f(·/ε)}⇀M(f) in Lp(Ω).

We can now formulate

Theorem 9.6. (Birkhoff Ergodic Theorem) Let f ∈ Lp(X), p ≥ 1. Then for
almost all ω ∈ X the realization f(T (x)ω) possesses a mean value M(f(T (x)ω)).
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Moreover, as a function of ω ∈ X, this mean value M(f(T (x)ω)) is invariant
and ∫

X

f(ω) dµ(ω) =

∫
X

M(f(T (x)ω)) dµ(ω).

If the system T (x) is ergodic then∫
X

f(ω) dµ(ω) = M(f(T (x)ω)).

Proof. We refer to [6]. �

Now let {(Ωk,Fk, µk)}M
k=1 denote a family of probability spaces, where each Fk

is a complete σ-algebra and each µk is the associated probability measure. For
every x ∈ Rn we also associate the dynamical system

Tk(x) : Ωk → Ωk.

We also associate
T = (T1, . . . , TM)

as a dynamical system on the product space Ω1 × . . .×ΩM . We can now state a
multidimensional extension of the Birkhoff ergodic theorem (see [6]).

Theorem 9.7. Let f ∈ Lp(Ω1 × . . . × ΩM) and let p ≥ 1. Then for almost
all ωk ∈ Ωk the realization f(T1(x)ω1, . . . , TM(x)ωM) possesses a mean value
M(f(T1(x)ω1, . . . , TM(x)ωM)). Moreover, as a function of ωk ∈ Ωk, this mean
value M(f(T1(x)ω1, . . . , TM(x)ωM)) is invariant and

〈f〉 ≡
∫

Ω1

· · ·
∫

ΩM

f(ω1, . . . , ωM) dµ1(ω1) . . . dµM(ωM) =∫
Ω1

· · ·
∫

ΩM

M(f(T1(x)ω1, . . . , TM(x)ωM)) dµ1(ω1) . . . dµM(ωM).

If in addition the system T is ergodic on Ω1 × . . .× ΩM then

〈f〉 = M(f(T1(x)ω1, . . . , TM(x)ωM)).

Proof. We refer to [6]. �

10. An application to homogenization

The idea now is to first study the homogenization problem for the corresponding
elliptic problem and then use the comparison results from above. We begin by
setting the appropriate structure conditions:

Definition 10.1. Let (Xk,Fk, µk), k = 1, 2, be two probability spaces. Given
0 < β ≤ 1, 2 ≤ p < ∞ and three positive real constants c0, c1 and c2, we define
the class Sω = Sω(c0, c1, c2, β) of maps

a : X1 ×X2 × (0, T )× Rn → Rn,

satisfying

(i) |a(ω1, ω2, t, 0)| ≤ c0 a.e in X1 ×X2 × (0, T ).
(ii) a(·, ·, ξ) is Lebesgue measurable for every ξ ∈ Rn.



112 G. NGUETSENG, H. NNANG, N. SVANSTEDT

(iii) |(a(ω1, ω2, t, ξ1)− a(ω1, ω2, t, ξ2)| ≤ c1(1 + |ξ1|+ |ξ2|)p−1−β|ξ1 − ξ2|β, a.e. in
X1 ×X2 × (0, T ) for all ξ1, ξ2 ∈ Rn.

(iv) (a(ω1, ω2, t, ξ1)−a(ω1, ω2, t, ξ2), ξ1−ξ2) ≥ c2|ξ1−ξ2|p, a.e. inX1×X2×(0, T )
for all ξ1, ξ2 ∈ Rn, ξ1 6= ξ2.

Let us define the operator Aω
ε : V → U ′ as

Aω
ε (x, t, ξ) = a(T1(

x

ε1
)ω1, T2(

x

ε2
)ω2, t, ξ).

With some abuse of notation we will say that Aω
ε belongs to Sω if the correspond-

ing map a does.

Theorem 10.2. Consider the sequence of parameter dependent elliptic boundary
value problems {

−div(Aω
ε (x, t,Duω

ε )) = fε in Ω

uω
ε (·, t) ∈ W 1,p

0 (Ω), t ∈ [0, T ].

where it is assumed that fε → f strongly in V ′. Assume that Aω
ε ∈ Sω and that

|Aω
ε (x, t, ξ)− Aω

ε (x, s, ξ)| ≤ ρ(t− s)(1 + |ξ|p−1)

Also assume that the underlying dynamical systems T1(x) and T2(x) are ergodic,
that the system T(x) = (T1(x), T2(x)) is ergodic on X1×X2 and that the realiza-
tions T1(x)ω1 and T2(x)ω2 are measurable. Then

uω
ε (·, t) ⇀ u in W 1,p

0 (Ω)

and
Aω

ε (·, t, Duω
ε ) ⇀ b(t,Du) in [Lq(Ω)]n

where u is the solution to the homogenized problem{
−div(b(t,Du)) = f in Ω,

u(·, t) ∈ W 1,p
0 (Ω), t ∈ [0, T ].

The operator b is defined as

b(t, ξ) =

∫
X1

b1(ω1, t, ξ + zξ
1(ω1, t)) dµ1(ω1) = (10.1)∫

X1

∫
X2

a(ω1, ω2, t), ξ + zξ
1 + zξ

2) dµ2(ω2)dµ1(ω1),

where zξ
1(ω1, t) ∈ Vpot(X1) is the solution to the ε1-scale local problem

〈b1(ω1, t, ξ + zξ
1(ω1, t),Φ1(ω1)〉 = 0

for all Φ1(ω1) ∈ Vpot(X1), t ∈ [0, T ]. The operator b1 is defined as

b1(ω1, t, ξ) =

∫
X2

a(ω1, ω2, t, ξ + zξ
2(ω1, ω2, t)) dµ2(ω2) =∫

X2

a(ω1, ω2, t), ξ + zξ
2) dµ2(ω2),

where zξ
2(ω1, ω2, t) ∈ Vpot(X2) is the solution to the ε2-scale local problem

〈a(ω1, ω2, t, ξ + zξ
2(ω1, ω2, t),Φ2(ω2)〉 = 0
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for all Φ2(ω2) ∈ Vpot(X2) a.e. ω1 ∈ X1, t ∈ [0, T ].

Proof. For a proof we refer to [15]. �

Let us now also define the operator Gω
ε : V → V ′ given by

Gω
ε (x, t, η) = ρ(T3(

x

ε3
)ω3, t)|η|γsgn(η).

where T3(x) is assumed to be ergodic on the probability space X3 with respect to
the measure µ3. We close the present study by presenting a reiterated stochastic
homogenization result for quasilinear hyperbolic problems:

Theorem 10.3. Consider the hyperbolic problem{
(uω

ε )′′ − div (Aω
ε (x, t,Duω

ε ))−∆((u′)ω
ε ) +Gω

ε (x, t, (u′)ω
ε ) = f in Q,

uω
ε ∈ Z0,

(10.2)

Assume the same hypotheses as in Theorem 10.2 with the addition that the product
system T̂(x) = (T1(x), T2(x), T3(x)) is ergodic on X1×X2×X3. Then, as ε→ 0,
the sequence of solutions

uω
ε ⇀ u in Z0,

Aω
ε (x, t,Duω

ε ) ⇀ b(t,Du) in U ′,

Gω
ε (x, t, (u′)ω

ε ) ⇀ G(t, u′) in U ′,
where u is the unique solution to the homogenized problem{

u′′ − div(b(t,Du))−∆(u′) +G(t, u′) = f in Q,
u ∈ Z0,

where the homogenized map b is defined as in (10.1) and where

G(t, u′) = 〈ρ(t)〉|u′|γsgn(u′),

where 〈ρ(t)〉 is the expectation with respect to µ3 of the realization ρ(T3(
x
ε3

), t) of
the process ρ.

Proof. For fixed ω, the realization (10.2) possess a solution uω
ε ∈ Z0 for every

ε > 0. By the general G-convergence Theorem 8.3 there exists a limit problem
corresponding to (10.2) with the same qualitative behaviour. The identification
of the terms in the limit problem is performed as follows. From Theorem 10.2
we obtain the explicit homogenized limit for the auxiliary elliptic problem. By
the comparison Theorem 7.2 we obtain the explicit homogenized limit for the
auxiliary parabolic problem. By the hyperbolic G-convergence Theorem 8.2 we
obtain the explicit limit for the hyperbolic problem without the non-linear damp-
ing term. Using again Theorem 8.3 we finally conclude by the Birkhoff ergodic
theorem that the nonlinear damping term

Gω
ε (x, t, (u′)ω

ε ) ⇀ G(t, u′) = 〈ρ(t)〉|u′|γsgn(u′) in U ′,
where 〈ρ(t)〉 is the expectation with respect to µ3 of the realization ρ(T3(

x
ε3

), t)
of the process ρ. �
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Remark 10.4. Theorem 10.3 remains valid also for random stationary oscillatory
forcing or initial data. See [14] for details in the general G-convergence setting.

Remark 10.5. Theorem 10.3 remains valid also for non-homogeneous boundary
data. This means that we can impose random oscillatory boundary data. See
[14] for the general G-convergence setting.

Remark 10.6. The result of Theorem 10.3 can easily be extended to any number
of well separated scales.
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