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J-SKEW-SYMMETRIC OPERATORS

SERGEY M. ZAGORODNYUK1

Communicated by L. P. Castro

Abstract. In this paper we study a possibility of a decomposition of a bounded
operator in a Hilbert space H as a product of a J-unitary and a J-self-adjoint
operators, where J is a conjugation (an antilinear involution). This decompo-
sition shows an inner structure of a bounded operator in a Hilbert space. Some
decompositions of J-unitary and unitary operators which generalize decompo-
sitions in the finite-dimensional case are also obtained. Matrix representations
for J-symmetric and J-skew-symmetric operators are studied. Simple basic
properties of J-symmetric, J-skew-symmetric and J-isometric operators are
obtained.

1. Introduction and preliminaries

Complex symmetric, skew-symmetric and orthogonal matrices are classical ob-
jects of the finite-dimensional linear analysis [4]. In particular, the normal forms
are known for them, see [4, Chapter XI]. Certainly, they have more complicated
structures as for Hermitian matrices. However, in a certain sense complex sym-
metric matrices are more universal. Namely, an arbitrary square complex matrix
is similar to a symmetric matrix [4, Chapter XI, p.321]. A generalization of com-
plex symmetric, skew-symmetric and orthogonal matrices leads to the well-known
J-symmetric, J-skew-symmetric and J-isometric operators.
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A general definition of a J-symmetric operator was given by I.M. Glazman
in his paper [10]. A study of these operators had been continued in papers of
N.A. Zhyhar and A. Galindo (see References in the monograph [11]). Later, an in-
vestigation of these operators had been performed by A.D. Makarova, L.A. Kame-
rina, V.P. Li, T.B. Kalinina, A.N. Kochubey, B.G. Mironov (a series of papers by
these authors appeared in 70-th, 80-th of the 20-th century in Ulyanovskiy sbornik
”Funkcionalniy analiz”), L.M. Rayh, E.R. Tsekanovskii, Sh. Asadi, I.E. Lutsenko,
I. Knowles, D. Race, U.V. Riss and others (see, e.g. [3], [13], [14], [18], [20], [22],
[23], [25], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36]). Most of these
papers were devoted to the questions of extensions of J-symmetric operators to
J-self-adjoint operators and to a description of all such extensions. At the present
time, J-self-adjoint operators are studied by S.R. Garcia, M. Putinar, E. Prodan
(see, e.g., [5], [6], [7], [9] and References therein). In particular, a refined polar
decomposition of a J-symmetric operator was established in [7]. In [5] some ba-
sic spectral properties of bounded J-symmetric operators were obtained. Among
other results, a formula for computing the norm of a compact J-symmetric oper-
ator was given in [9].

A definition of a bounded J-skew-symmetric operator was given by Sh. Asadi
and I.E. Lutsenko in their paper [3]. A general definition appeared in the paper of
T.B. Kalinina [15]. She continued to study these operators in her papers [16], [17].
J-symmetric and J-skew-symmetric operators appeared in the book [12] in a
study of Volterra operators context, as well.

J-Isometric, quasi-unitary operators and a notion of a quasi-unitary equiva-
lence were introduced in papers of L.A. Kamerina [19],[21]. Another definition of
a J-isometric operator (the operator in this definition should be densely defined)
and a definition of a J-unitary operator (which is different from our definition
below) were given by U.V. Riss in [33].

Consider a separable Hilbert space H. Recall that a conjugation (involution)
is an operator J which is defined on the whole space H and satisfies the following
conditions [2],[37]

J2 = E, (Jx, Jy) = (x, y), x, y ∈ H,

where E is the identity operator in H, and (·, ·) is the inner product in H. For
each conjugation there exists an orthonormal basis F = {fk}k∈Z+ in H such that

Jx =
∞∑

k=0

xkfk, x =
∞∑

k=0

xkfk ∈ H. (1.1)

This basis is not uniquely determined. It is determined up to a unitary trans-
formation which commutes with J (recall that a transformation which commutes
with J is called J-real). F will be called a corresponding basis to the involution
J . Define the following bilinear functional (J-form):

[x, y]J := (x, Jy), x, y ∈ H.

A linear operator A in H is said to be J-symmetric, if

[Ax, y]J = [x, Ay]J , x, y ∈ D(A), (1.2)
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and is said to be J-skew-symmetric if

[Ax, y]J = −[x, Ay]J , x, y ∈ D(A). (1.3)

If

[Ax, Ay]J = [x, y]J , x, y ∈ D(A), (1.4)

then the operator A is said to be J-isometric.
Let the domain of A be dense in H. The operator A is said to be J-self-adjoint

if

A = JA∗J,

and is said to be J-skew-self-adjoint if

A = −JA∗J.

If

A−1 = JA∗J,

then A we shall call J-unitary. Notice that the operator AT = JA∗J is called
transposed [2] (in some papers it was called J-adjoint but we shall use the latter

word for the operator Ã = JAJ).
For non-densely defined operators, one can also introduce a notion of J-symmetric

and J-skew-symmetric linear relations, see, e.g., [31].
Let A be a linear bounded operator in H. In this case, conditions (1.2),(1.3),

(1.4) mean that the matrix of the operator in an arbitrary basis F , which is cor-
responding to J , will be symmetric, skew-symmetric or orthogonal, respectively.
This remark and some properties of the J-form allow to obtain some simple
properties of eigenvalues and eigenvectors of such matrices.

In this paper we shall obtain a J-polar decomposition for bounded operators
(under some conditions). This decomposition is analogous to the polar decompo-
sition of a bounded operator and to the J-polar decomposition in J-spaces [24].
Also, we obtain some other decompositions which are analogous to decomposi-
tions for finite-dimensional matrices in [4]. A possibility of the matrix represen-
tation for J-symmetric and J-skew-symmetric operators and its properties are
studied.
Notations. As usual, we denote by R, C, N, Z, Z+, R2 the sets of real numbers,
complex numbers, positive integers, non-negative integers and the real plane,
respectively. Everywhere in this paper, all Hilbert spaces are assumed to be
separable, (·, ·) and ‖ · ‖ denote the scalar product and the norm in a Hilbert
space, respectively.

For a set M in a Hilbert space H, by M we mean the closure of M in the
norm ‖ · ‖. For {xk}k∈Z+ , xk ∈ H, we write Lin{xk}k∈Z+ := {y ∈ H : y =∑n

j=0 αjxj, αj ∈ C, n ∈ Z+}; span{xk}k∈Z+ := Lin{xk}k∈Z+ .
The identity operator in a Hilbert space H is denoted by E. For an arbitrary

linear operator A in H, the operators A∗, A, A−1 mean its adjoint operator, its
closure and its inverse (if they exist). By D(A) and R(A) we mean the domain and
the range of the operator A, and by Ker A we mean the kernel of the operator
A. By σ(A), ρ(A) we denote the spectrum of A and the resolvent set of A,
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respectively. We denote by Rλ(A) the resolvent function of A, λ ∈ ρ(A). Also,
we denote ∆A(λ) = (A−λE)D(A). The norm of a bounded operator A is denoted
by ‖A‖.

By l2 we denote the space of complex sequences x = (x0, x1, x2, ...)
T , xk ∈ C,

k ∈ Z+, with a finite norm ‖x‖ = (
∑∞

k=0 |xk|2)
1
2 (the superscript T stands for the

transposition).

2. Some basic properties of J-symmetric, J-skew-symmetric and
J-orthogonal operators.

In this section we shall study some basic properties of J-symmetric, J-skew-
symmetric and J-orthogonal operators. Some of this properties will be used in
the next section, while the others could probably be useful in the future investi-
gations. The most of this properties have their analogs in the theory of Hermitian
operators. So, our aim was to develop some basic tools for the study of operators
related to an antilinear involution.

2.1. Properties of eigenvalues and eigenvectors. Properties of the J-
adjoint operator. Let J be a conjugation in a Hilbert space H. Vectors x and
y are said to be J-orthogonal, if [x, y]J = 0. The following proposition is true (for
statement (i) of this Proposition see. Theorem 2 in the paper [25, p.86]).

Proposition 2.1. Let A be a J-symmetric operator in a Hilbert space H. The
following statements are true:
(i) Eigenvectors of the operator A which correspond to different eigenvalues are
J-orthogonal;
(ii) If vectors x and Jx, x ∈ D(A), are eigenvectors of the operator A, then they
correspond to the same eigenvalue.

Proof. In fact, we can write

λx[x, y]J = [Ax, y]J = [x, Ay]J = λy[x, y]J ,

and therefore

(λx − λy)[x, y]J = 0. (2.1)

Suppose that x, x := Jx ∈ D(A) are eigenvectors of the operator A, which
correspond to eigenvalues λx and λx, respectively. Write (2.1) with y = x, λy =
λx:

(λx − λx)[x, x]J = 0.

Since [x, x]J = ‖x‖2 > 0, we get λx = λx. �

Define the following set:

HJ ;0 := {x ∈ H : [x, x]J = 0}.
The following two propositions are obtained in a similar way.

Proposition 2.2. If A is a J-skew-symmetric operator in a Hilbert space H,
then the followings are true:
(i) Eigenvectors of the operator A, which correspond to non-zero eigenvalues,
belong to the set HJ ;0;
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(ii) If λx, λy are eigenvalues of the operator A such that λx 6= −λy, then the
corresponding eigenvectors are J-orthogonal;
(iii) Suppose that x, x := Jx ∈ D(A) are eigenvectors of the operator A, corre-
sponding to the eigenvalues λx and λx, respectively. Then λx = −λx.

Proposition 2.3. Let A be a J-isometric operator in a Hilbert space H. Then
the following statements are true:
(i) Eigenvectors of the operator A, which correspond to different from ±1 eigen-
values belong to the set HJ ;0;
(ii) If λx, λy are eigenvalues of the operator A such that λx 6= 1

λy
, then the corre-

sponding eigenvectors are J-orthogonal;
(iii) Suppose that x, x := Jx ∈ D(A) are eigenvectors of the operator A, corre-
sponding to the eigenvalues λx and λx, respectively. Then λx = 1

λx
.

It is interesting to notice that in the finite-dimensional case the point 0 for a
skew-symmetric matrix and points ±1 for an orthogonal matrix are distinguished
in a special manner in the spectrum, as well.

Consider a finite-dimensional Hilbert space Hn with dimension n, n ∈ Z+. In
this case the conjugation J , the J-form, and J-orthogonality are defined similarly.
Thus, the latter statements hold true for complex symmetric, skew-symmetric and
orthogonal matrices.

Example 2.4. Consider a complex numerical matrix A =

(
1 i
i 0

)
. Its eigen-

values are λ1 = 1
2

+
√

3
2

i, λ2 = 1
2
−

√
3

2
i, and the corresponding normalized eigen-

vectors are f1 = 1
2
√

2

( √
3− i
2

)
, f2 = 1

2
√

2

(
−
√

3− i
2

)
. Vectors f1, f2 are not

orthogonal. However, they are J-orthogonal.

Let A be an arbitrary bounded linear operator and J be a conjugation in a
Hilbert space H. As it easily follows from the properties of the involution, the
norm of A can be calculated in the following way:

‖A‖ = sup
x,y∈H: ‖x‖=‖y‖=1

|[Ax, y]J |. (2.2)

The following result can be found in [8, Theorem 1] but we present another proof
of it.

Proposition 2.5. If A is a bounded J-symmetric operator in a Hilbert space H,
then its norm can be calculated as

‖A‖ = sup
x∈H: ‖x‖=1

|[Ax, x]J |. (2.3)

Proof. Set C := supx∈H: ‖x‖=1 |[Ax, x]J |. For arbitrary elements x, y ∈ H : x 6=
±y we can write

[A(x + y), x + y]J − [A(x− y), x− y]J = 4[Ax, y]J ;

and

|[Ax, y]J | ≤
1

4
(|[A(x + y), x + y]J |+ |[A(x− y), x− y]J |)
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=
1

4

(∣∣∣∣[A(
x + y

‖x + y‖
),

x + y

‖x + y‖

]
J

∣∣∣∣ ‖x + y‖2

+

∣∣∣∣[A(
x− y

‖x− y‖
),

x− y

‖x− y‖

]
J

∣∣∣∣ ‖x− y‖2

)
≤ 1

4
C(‖x + y‖2 + ‖x− y‖2) =

1

2
C(‖x‖2 + ‖y‖2). (2.4)

Thus, by using (2.2) and (2.4) we get

‖A‖ = sup
x,y∈H: ‖x‖=‖y‖=1

|[Ax, y]J | ≤ C.

On the other hand, we can write

C = sup
x,y∈H: ‖x‖=1

|[Ax, x]J | ≤ sup
x,y∈H: ‖x‖=‖y‖=1

|[Ax, y]J | = ‖A‖.

Therefore C = ‖A‖. �

For a J-skew-symmetric operator A the norm can not be calculated by the for-
mula (2.3). Moreover, the following characteristic property of a J-skew-symmetric
operator is true.

Proposition 2.6. A linear operator A in a Hilbert space H is J-skew-symmetric
if and only if the following equality holds

[Ax, x]J = 0, for all x ∈ D(A). (2.5)

Proof. We first notice that the properties of the involution imply that [x, y]J =
[y, x]J , x, y ∈ H. Let us check the necessity. From relation (1.3) it follows that

[Ax, x]J = −[x, Ax]J = −[Ax, x]J ,

and therefore (2.5) holds true.
Let us check the sufficiency. By using (2.5) we write

0 = [A(x + y), x + y]J = [Ax, x]J + [Ax, y]J + [Ay, x]J + [Ay, y]J

= [Ax, y]J + [Ay, x]J , x, y ∈ D(A).

From this relation we obtain that [Ax, y]J = −[Ay, x]J = −[x, Ay]J . �

Let J be a conjugation in a Hilbert space H and A be an arbitrary linear

operator in H. The following operator: Ã := (̃A)J := JAJ , we shall call J-

adjoint to the operator A. We first notice that
˜̃
A = A.

Lemma 2.7. For a linear operator A in a Hilbert space H equalities D(A) =

H and D(Ã) = H are equivalent. Equalities R(A) = H and R(Ã) = H are
equivalent, as well.

Let us formulate some properties of the J-adjoint operator as propositions.

Proposition 2.8. Let A be a linear operator in a Hilbert space H with a dense
domain and J be a conjugation in H. Then

Ã∗ = (Ã)∗.
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Proof. Choose an arbitrary element g ∈ D((Ã)∗). On the one hand, we have

(Ãx, g) = (x, (Ã)∗g) = (JJx, JJ(Ã)∗g) = (Jx, J(Ã)∗g)

= (J(Ã)∗g, Jx), x ∈ D(Ã).

On the other hand, we can write

(Ãx, g) = (JAJx, JJg) = (AJx, Jg) = (Jg,AJx), x ∈ D(Ã).

Comparing the right hand sides we obtain that

(AJx, Jg) = (Jx, J(Ã)∗g),

and therefore Jg ∈ D(A∗), A∗Jg = J(Ã)∗g. Multiplying by J both sides of the

latter equality we get Ã∗g = (Ã)∗g. Therefore

(Ã)∗ ⊆ Ã∗. (2.6)

To obtain the inverse inclusion, one should write the inclusion (2.6) with the

operator Ã, and then to calculate the J-adjoint operators for the both sides (the
inclusion remains true). �

Proposition 2.9. Let A be a linear operator in a Hilbert space H and J be a

conjugation in H. Suppose that operators A and Ã admit closures. Then the
following equality is true

Ã = Ã.

Proof. Choose an arbitrary element g ∈ D(Ã). Then there exists a sequence

xn ∈ D(Ã), n ∈ Z+, such that xn → x, Ãxn = JAJxn → Ãx as n → ∞. By
continuity of the operator J we obtain that

Jxn → Jx, AJxn → JÃx.

Consequently, we have Jx ∈ D(A) and AJx = JÃx. Therefore x ∈ D(Ã) and

Ãx = Ãx. We conclude that

Ã ⊆ Ã. (2.7)

In order to obtain the inverse inclusion, we write the inclusion (2.7) for the

operator Ã, and then calculate the J-adjoint operators for the both sides. �

Proposition 2.10. Let A be a linear invertible operator in a Hilbert space H and

J be a conjugation in H. Then the operator Ã is also invertible and the following
equality is true

Ã−1 = (Ã)−1. (2.8)

Proof. Since Ã−1Ã = E|D( eA), and D(Ã−1) = JD(A−1) = JR(A) = R(Ã), the

operator Ã is invertible and relation (2.8) is true. �
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Notice that the property of a J-symmetric operator (1.2) by virtue of the J-
adjoint operator can be written as follows:

(Ax, y) = (x, Ãy), x ∈ D(A), y ∈ D(Ã). (2.9)

Properties of a J-skew-symmetric operator (1.3) and of a J-isometric opera-
tor(1.4) can be written as

(Ax, y) = −(x, Ãy), x ∈ D(A), y ∈ D(Ã), (2.10)

and

(Ax, Ãy) = (x, y), x ∈ D(A), y ∈ D(Ã), (2.11)

respectively.
Now we shall assume that the operator A is densely defined. In this case, from

condition (2.11) it follows that the operator A is invertible. In fact, the equality

Ax = 0 implies the equality (x, y) = 0 on a dense set D(Ã). Thus, a densely
defined J-isometric operator is always invertible.

In the case of a densely defined operator A, conditions (2.9), (2.10), (2.11) are
equivalent to the following conditions

A ⊆ (Ã)∗,

A ⊆ −(Ã)∗,

and

A−1 ⊆ (Ã)∗,

respectively. From these relations it follows that densely defined J-symmetric
and J-skew-symmetric operators admit the closures. Relations (1.2),(1.3) imply
that their closures are J-symmetric or J-skew-symmetric operators, respectively.
For a densely defined J-isometric operator one can only say that its inverse oper-
ator admits the closure. However, from relation (1.4) it follows that the inverse
operator to a J-isometric operator is J-isometric, as well. Consequently, if the
range of the original J-isometric operator is dense then it admits the closure. In
this case, relation (1.4) implies that this closure will be J-isometric.

Proposition 2.11. Let A be a linear operator in a Hilbert space H and J be
a conjugation in H. If the operator A is J-symmetric, J-skew-symmetric or

J-isometric, then the same is true for the operator Ã = JAJ , as well.

Proof. The statement about a J-symmetric (J-skew-symmetric, J-isometric) op-
erator follows from relation (2.9) (respectively (2.10), (2.11)), if we take into

account that A =
˜̃
A. �

For an element x ∈ H and a set M ⊆ H we write x ⊥J M , if x ⊥J y, for all
y ∈ M . For a set M ⊆ H we denote M⊥

J = {x ∈ H : x ⊥J y, y ∈ M}.
It is known that the residual spectrum of a J-self-adjoint operator is empty. It

follows from the theorem below.
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Theorem 2.12. ([25, Theorem 4, p.87]) Let A be a J-self-adjoint operator in a
Hilbert space H. A complex number λ is an eigenvalue of A if and only if

∆A(λ) 6= H.

In this case, (∆A(λ))⊥J will be the eigen subspace which corresponds to λ.

We shall obtain analogous results for J-skew-symmetric and J-isometric oper-
ators.

Theorem 2.13. Let A be a J-skew-self-adjoint operator in a Hilbert space H. A
complex value λ is an eigenvalue of A if and only if

∆A(−λ) 6= H. (2.12)

In this case, (∆A(−λ))⊥J will be the eigen subspace which corresponds to λ.

Proof. Necessity. Let x be an arbitrary eigenvector of the operator A which
corresponds to an eigenvalue λ. Since A is skew-symmetric, we can write for an
arbitrary y ∈ D(A)

0 = [(A− λE)x, y]J = −[x, (A + λE)y]J .

Therefore x ⊥J ∆A(−λ) and by continuity of [·, ·]J we get

x ⊥J ∆A(−λ). (2.13)

Since [x, Jx] = ‖x‖2 > 0, then Jx /∈ ∆A(−λ) and therefore ∆A(λ) 6= H.
Sufficiency. Suppose that equality (2.12) is true. Then there exists 0 6= y ∈ H
such that

(z, y) = 0, z ∈ ∆A(−λ). (2.14)

Therefore ((A+λE)x, y) = 0, and from this relation we get (Ax, y) = (x, (−λ)y),
x ∈ D(A). Thus, we have y ∈ D(A∗) and

A∗y = −λy.

Since A is J-skew-self-adjoint, we have A∗ = −Ã, and we obtain

Ãy = λy.

From this relation it follows that Jy 6= 0 is an eigenvector of the operator A with
the eigenvalue λ.

Let us show that the following set

V (λ) := (∆A(−λ))⊥J \{0},
is a set of all eigenvectors of the operator A, corresponding to an eigenvalue λ.
Denote the latter set by S(λ). By (2.13), the inclusion S(λ) ⊆ V (λ) is true. On
the other hand, if x ∈ V (λ), then for y := Jx relation (2.14) is true. Repeating
the arguments which follow after this formula we conclude that x is an eigenvector
of the operator A which corresponds to λ. Thus, the inverse inclusion is true, as
well.

Finally, since A = (Ã)∗, then A is closed. Therefore (∆A(−λ))⊥J is the eigen
subspace of the operator A, which corresponds to λ. �
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Corollary 2.14. The point 0 can not belong to the residual spectrum of a J-
skew-self-adjoint operator.

In an analogous manner, the following result for J-unitary operators is estab-
lished.

Theorem 2.15. Let A be a J-unitary operator in a Hilbert space H. A complex
number λ is an eigenvalue of A if and only if

∆A

(
1

λ

)
6= H.

In this case, (∆A( 1
λ
))⊥J is the eigen subspace which corresponds to λ.

Corollary 2.16. Points ±1 can not belong to the residual spectrum of a J-unitary
operator.

From relations (2.9),(2.10) we see that a J-symmetric (J-skew-symmetric) op-
erator defined on the whole H is a bounded J-self-adjoint (respectively J-skew-
self-adjoint) operator. The following statements are also true.

Proposition 2.17. ([25, Theorem 1, p.85-86], [15, Theorem 3, p.69]) Let A
be a linear densely defined operator in a Hilbert space H which is J-symmetric
(J-skew-symmetric). Suppose that R(A) = H. Then the operator A is a J-self-
adjoint (respectively a J-skew-self-adjoint) operator.

Proposition 2.18. Let A be a linear densely defined operator in a Hilbert space
H which is J-symmetric (J-skew-symmetric). Suppose that R(A) = H. Then
the operator A is invertible and the operator A−1 is a J-symmetric (respectively
a J-skew-symmetric) operator, as well.

Proof. In view of analogous considerations, we shall only prove this Proposition
for the case of a J-skew-symmetric operator A. Notice that Ker A∗ = H	R(A) =
{0}. Thus, the operator A∗ is invertible. Since A is J-skew-symmetric, the inclu-

sion Ã ⊆ −A∗ is true and therefore Ã is invertible, as well. By Proposition 2.10

we conclude that the operator A has the inverse. From the inclusion Ã ⊆ −A∗ it
follows that

(Ã)−1 ⊆ −(A∗)−1. (2.15)

Notice that D(A−1) = R(A) = H. Thus, we can state that (A∗)−1 = (A−1)∗. Us-
ing this equality and Proposition 2.10, by (2.15) we obtain the following inclusion

Ã−1 ⊆ −(A−1)∗.

This means that the operator A−1 is J-skew-symmetric. �

Proposition 2.19. Let A be a J-self-adjoint (J-skew-self-adjoint) operator in a

Hilbert space H. Suppose that R(A) = H. Then the operator A is invertible and
the operator A−1 is a J-self-adjoint (respectively a J-skew-self-adjoint) operator,
as well.
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Proof. In view of analogous considerations, we shall give the proof only for the
case of a J-self-adjoint operator A. By Proposition 2.18 the operator A is invert-

ible. By Proposition 2.10 the operator Ã is invertible, as well. From Lemma 2.7

it follows that R(Ã) = H and D(Ã) = H. Thus, we have D((Ã)−1) = H.

Consequently, the following equality is true ((Ã)∗)−1 = ((Ã)−1)∗. Since the oper-

ator A is J-self-adjoint, the last equality can be written as A−1 = ((Ã)−1)∗. By

Proposition 2.10 we obtain A−1 = (Ã−1)∗. This shows that the operator A−1 is
J-self-adjoint. �

2.2. Matrix representations of J-symmetric and J-skew-symmetric op-
erators. We shall study matrix representations of J-symmetric and J-skew-
symmetric operators. We shall obtain properties which are analogous to the
properties of symmetric operators. Let J be a conjugation in a Hilbert space H
and F = {fk}k∈Z+ be an orthonormal basis in H which corresponds to J . Let
A be a linear operator in H which is J-symmetric (J-skew-symmetric) and such
that F ⊂ D(A).

Define the matrix of the operator A in the basis F : AM := (ai,j)i,j∈Z+ , ai,j =
(Afj, fi). It is not hard to check that this matrix is complex symmetric (skew-
symmetric) in the case of a J-symmetric (respectively a J-skew-symmetric) oper-
ator A. Notice that the columns of this matrix are square summable, i.e. belong
to l2.

In the case when the set D(A) ∩ D(A∗) is dense in H an arbitrary linear
operator A in a Hilbert space H can be represented by the matrix multiplication
[37]. In particular, it is true for symmetric operators. As far as we know, such
a possibility for other classes of operators was not established. This property is
true for J-symmetric and J-skew-symmetric operators.

Theorem 2.20. Let J be a conjugation in a Hilbert space H and F = {fk}k∈Z+

be an orthonormal basis in H which corresponds to J . Let A be a linear operator
in H which is J-symmetric (J-skew-symmetric) and such that F ⊂ D(A). Let
AM = (ai,j)i,j∈Z+ be the matrix of the operator A in the basis F . Then

Ag =
∞∑
i=0

yifi, yi =
∞∑

k=0

ai,kgk, g =
∞∑

k=0

gkfk ∈ D(A).

Proof. Let us prove the statement of the Theorem for a J-skew-symmetric oper-
ator. For the case of a J-symmetric operator the proof is similar. Choose an ar-
bitrary element g =

∑∞
k=0 gkfk ∈ D(A). Since the matrix AM is skew-symmetric,

by (1.3) we get

yi = (Ag, Jfi) = −(Afi, Jg) = −(
∞∑

k=0

(Afi, fk)fk,
∞∑
l=0

glfl)

= −
∞∑

k=0

(Afi, fk)gk = −
∞∑

k=0

ak,igk =
∞∑

k=0

ai,kgk.

�
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Let us study how strong the matrix AM of the operator A (which was consid-
ered above) determines this operator. Since J-symmetric and J-skew-symmetric
operators admit J-symmetric (respectively J-skew-symmetric) closures, we shall
suppose that the operator A is closed. By the matrix multiplication, the matrix
AM defines the operator T on L := LinF . It is easy to check that this operator
is J-symmetric (J-skew-symmetric) in the case of a J-symmetric (respectively a
J-skew-symmetric) operator A. This operator admits the closure T which is also
a J-symmetric (J-skew-symmetric) operator. If A = T , then the basis F is called
a basis of the matrix representation of the operator A.

Theorem 2.21. Let an arbitrary complex semi-infinite symmetric matrix (skew-
symmetric matrix) M = (mi,j)i,j∈Z+ with columns in l2 be given. Then there
exist a Hilbert space H, a conjugation J in H, a J-symmetric (respectively a J-
skew-symmetric) operator in H and a corresponding orthonormal basis F in H,
F ⊂ D(A), such that the matrix M is the matrix of the operator A in the basis
F and F is a basis of the matrix representation for A.

Proof. For an arbitrary complex semi-infinite symmetric (skew-symmetric) ma-
trix M with columns in l2 we choose an arbitrary Hilbert space H and an arbitrary
orthonormal basis F in H. Then we define a conjugation in H by formula (1.1).
Using the above procedure we construct the operator T . This is the required
operator. �

If F is a basis of the matrix representation for a closed J-symmetric (J-skew-
symmetric) operator A then F is a basis of the matrix representation for the

J-adjoint operator Ã = JAJ , as well. In fact, by Proposition 2.11 the operator Ã
is J-symmetric (respectively J-skew-symmetric). By continuity of the operator

J it follows that Ã is closed. If we choose an arbitrary element x ∈ D(Ã)
then Jx ∈ D(A) and there exists a sequence x̂n ∈ L := Lin{fk}k∈Z+ , n ∈ Z+:
x̂n → Jx, Ax̂n → AJx, n → ∞. Then we have Jx̂n ∈ L, Jx̂n → x, JAx̂n =

ÃJx̂n → JAJx = Ãx, n →∞.

Theorem 2.22. Let J be a conjugation in a Hilbert space H and F = {fk}k∈Z+ be
a corresponding orthonormal basis in H. Suppose that A is a closed J-symmetric
(J-skew-symmetric) operator in H, F ⊂ D(A), and F is a basis of the matrix
representation for the operator A. Let ai,j = (Afj, fi), i, j ∈ Z+. Define an
operator B in the following way:

Bg =
∞∑
i=0

yifi, yi =
∞∑

k=0

ai,kgk, g =
∞∑

k=0

gkfk ∈ DB, (2.16)

on a set DB = {g =
∑∞

k=0 gkfk ∈ H :
∑∞

i=0 |
∑∞

k=0 ai,kgk|2 < ∞}.
Then A ⊆ AT = B (respectively A ⊆ −AT = B).

Without conditions that A is closed and F is a basis of the matrix representation
for A, one can only state that A ⊆ AT ⊆ B (respectively A ⊆ −AT ⊆ B).

Proof. The proof will be given for the case of a J-skew-self-adjoint operator A.
The case of a J-symmetric operator is considered similarly. We first show that
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−AT = −(Ã)∗ ⊆ B. Choose an arbitrary g ∈ D(−(Ã)∗) and set −(Ã)∗g = g∗.
Let g =

∑∞
k=0 gkfk, g∗ =

∑∞
i=0 ŷifi. We can write

ŷi = (g∗, fi) = (−(Ã)∗g, fi) = −(g, Ãfi) = −(
∞∑

k=0

gkfk,
∞∑

j=0

(Ãfi, fj)fj)

= −
∞∑

k=0

gk(Ãfi, fk) = −
∞∑

k=0

ak,igk =
∞∑

k=0

ai,kgk, i ∈ Z+.

Therefore
∑∞

i=0 |
∑∞

k=0 ai,kgk|2 < ∞ and, hence, we get g ∈ DB. Also we have

−(Ã)∗g = g∗ = Bg. Thus, we obtain an inclusion −(Ã)∗ ⊆ B. We have not used
that A is closed and that F is a basis of the matrix representation for A. The

inclusion A ⊆ −(Ã)∗ is obvious.

Let us prove the inclusion B ⊆ −AT . As it was shown above, the operator Ã

is closed and F is a basis of the matrix representation for Ã, as well. Choose
an arbitrary g ∈ DB, g =

∑∞
k=0 gkfk. Since the matrix of the operator A is

skew-symmetric, we can write

(Ãfi, g) = (
∞∑

j=0

(Ãfi, fj)fj,
∞∑

k=0

gkfk) =
∞∑

k=0

(Ãfi, fk)gk

=
∞∑

k=0

ak,igk = −
∞∑

k=0

ai,kgk = −
∞∑

k=0

ai,kgk = −yi, i ∈ Z+;

(Bg, fi) = yi, i ∈ Z+.

Therefore
−(Ãfi, g) = (Bg, fi) = (fi, Bg),

and
−(Ãf, g) = (f, Bg), f ∈ Lin{fk}k∈Z+ =: L.

For an arbitrary f ∈ D(Ã) there exists a sequence {fk}k∈Z+ , fk ∈ L: fk →
f, Ãfk → Ãf , as k →∞. Passing to the limit as k →∞ in the equality

−(Ãfk, g) = (fk, Bg)

and using the continuity of the scalar product we obtain

−(Ãf, g) = (f, Bg), f ∈ D(Ã).

Thus, we have g ∈ D((Ã)∗) and (Ã)∗g = −Bg. Therefore we get an inclusion

B ⊆ −(Ã)∗. �

Let J be a conjugation in a Hilbert space H and F = {fk}k∈Z+ be a correspond-
ing orthonormal basis in H. Let A be a closed J-symmetric (J-skew-symmetric)
operator in H and F ⊂ D(A). Set ai,j = (Afj, fi), i, j ∈ Z+, and define an op-
erator B by formula (2.16). Is the operator B J-symmetric (J-skew-symmetric)?

We first notice that the domain of an operator B̃ = JBJ is a set

D(B̃) = {h =
∞∑

k=0

hkfk ∈ H :
∞∑
i=0

|
∞∑

k=0

ai,khk|2 < ∞}.
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If h =
∑∞

k=0 hkfk ∈ D(B̃), then

B̃h =
∞∑
i=0

(
∞∑

k=0

ai,khk)fi.

Choose arbitrary elements g =
∑∞

k=0 gkfk ∈ DB and h =
∑∞

k=0 hkfk ∈ D(B̃).
Using relations (2.9),(2.10) it is easy to check that the operator B is J-symmetric

(J-skew-symmetric), if the following equalities are true (for all g ∈ DB, h ∈ D(B̃))
∞∑
i=0

∞∑
k=0

ai,kgkhi =
∞∑

k=0

∞∑
i=0

ai,kgkhi.

In the latter case, the last theorem can be applied with the operator B to obtain
that the operator B is J-self-adjoint (J-skew-self-adjoint).

When does there exist a basis of the matrix representation for a closed J-
symmetric (J-skew-symmetric) operator? For an arbitrary closed operator there
exists an orthonormal basis such that the operator is the closure of its values on
the linear span of this basis. The proof for symmetric operators can be found
in [2]. It remains valid in the general case, as well. The difficulty for the case of
J-symmetric (J-skew-symmetric) operators is that this new basis can be a basis
which does not correspond to the conjugation J. So, the above question remains
open.

3. A J-polar decomposition of bounded operators.

We shall extend to the case of J-symmetric, J-skew-symmetric and J-isometric
operators a series of properties of finite-dimensional complex symmetric, skew-
symmetric and orthogonal matrices (see [4]). We shall follow the main ideas of the
proofs in the finite-dimensional case with some necessary changes. We start with
the following lemma which generalizes [4, Chapter XI, Lemma 1]. In this lemma
(and in the lemma which follows below) we shall use spectral representations of
commuting self-adjoint operators and their spectral measures instead of using of
the canonical quasi-diagonal form of commuting normal matrices which was used
in the finite-dimensional case.

Lemma 3.1. Let A be a bounded self-adjoint and J-isometric operator in a
Hilbert space H. Then the operator A admits the following representation:

A = IeiK , (3.1)

where I is a bounded self-adjoint J-real involutory (I2 = E) operator in H, and
K is a commuting with I bounded skew-self-adjoint J-real operator in H.

If A ≥ 0 then one can choose I = E.

Proof. Since the operator A is J-isometric and bounded, from (1.4) we obtain

A∗JA = J , and A∗Ã = E. Since A is self-adjoint, then

AÃ = E. (3.2)

For the operator A we can write

A = S + iT,
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where S = 1
2
(A + Ã), T = 1

2i
(A − Ã). Thus, the operators S and T are J-real,

the operator S is self-adjoint and J-self-adjoint, and the operator T is skew-

self-adjoint and J-skew-self-adjoint. Since Ã = S − iT , from relation (3.2) we
get

E = AÃ = (S + iT )(S − iT ) = S2 + T 2 + i(TS − ST ).

From this relation it follows that operators T and S commute and

S2 + T 2 = E. (3.3)

Since operators S and iT are commuting bounded self-adjoint operators, they
admit spectral representations

S =

∫
L

λdEλ, iT =

∫
L

zdFz,

where Eλ, Fz are commuting resolutions of unity of the operators, and L = (l1, l2],
l1, l2 ∈ R, is a finite interval of the real line which contains the spectra of the
operators S and T . From equality (3.3), by using spectral resolutions we get∫

L

∫
L

(λ2 − z2 − 1)dEλdFz = 0,

where the integral means a limit in the norm of H of the corresponding Riemann-
Stieltjes type sums (in the plane).

A point (λ0, z0) ∈ R2 we call a point of increase for the measure dEλdFz, if for
an arbitrary number ε > 0, there exists an element x ∈ H such that

(Eλ0+ε − Eλ0−ε)(Fz0+ε − Fz0−ε)x 6= 0,

or, equivalently,

((Eλ0+ε − Eλ0−ε)(Fz0+ε − Fz0−ε)x, x) > 0. (3.4)

For a point of increase (λ0, z0) ∈ R2 of the measure dEλdFz

λ2
0 − z2

0 − 1 = 0.

In fact, if the latter equality is not true for a point of increase u0 = (λ0, z0) ∈ R2,
then |λ2 − z2 − 1| ≥ a, a > 0, in a neighborhood

U = U(λ0, z0; ε) = {(λ, z) ∈ R2 : λ0−ε < λ ≤ λ0+ε, z0−ε < z ≤ z0+ε}, ε > 0,

of the point u0. For this number ε, there exists an element x ∈ H such that (3.4)
is true. But

0 =

∥∥∥∥∫
L

∫
L

(λ2 − z2 − 1)dEλdFzx

∥∥∥∥2

=

∫
L

∫
L

|λ2 − z2 − 1|2(dEλdFzx, x)

≥
∫ ∫

U

|λ2− z2− 1|2(dEλdFzx, x) ≥ a2((Eλ0+ε−Eλ0−ε)(Ez0+ε−Ez0−ε)x, x) > 0.

If two continuous functions ϕ(λ, z) and ϕ̃(λ, z) on L2 = {(λ, z) ∈ R2 : λ, z ∈ L}
coincide in the points of increase of the measure dEλdFz, then∫

L

∫
L

ϕ(λ, z)dEλdFz =

∫
L

∫
L

ϕ̃(λ, z)dEλdFz.
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In fact,∥∥∥∥∫
L

∫
L

(ϕ(λ, z)− ϕ̃(λ, z))dEλdFzx

∥∥∥∥2

=

∫
L

∫
L

|ϕ(λ, z)− ϕ̃(λ, z)|2(dEλdFzx, x),

and it remains to notice that (dEλdFzx, x) is a positive measure on L2, and the
function under the integral is equal to zero in all points of increase of this measure.

Consider a set Γ ⊂ R2, which consists of points (λ, z) ∈ R2, such that

λ2 − z2 − 1 = 0. (3.5)

From (3.5) it follows that for all points of the set Γ |λ| =
√

1 + z2 (where we
mean the arithmetic value of the root). Hence, for all points of Γ

λ = sgn(λ)
√

1 + z2, (3.6)

where

sgn(λ) =

{
1, λ > 0,
−1, λ ≤ 0

. (3.7)

By the identity z = sh arcsh z, the equality (3.6) can be rewritten in the following
form

λ = sgn(λ)

√
ch2(arcsh z) = sgn(λ) ch(arcsh z),

in view of positivity of the hyperbolic cosine function. By this representation we
can write

A = S + iT =

∫
L

∫
L

(λ + z)dEλdFz =

∫
L

∫
L

(sgn(λ) ch(arcsh z) + z)dEλdFz

=

∫
L

∫
L+

earcsh zdEλdFz +

∫
L

∫
L−

(−e− arcsh z)dEλdFz, (3.8)

where L+ = (0,∞) ∩ L, L− = (−∞, 0] ∩ L.
Define the following operator

V =

∫
L

∫
L

sgn(λ) arcsh zdEλdFz =

∫
L

sgn(λ)dEλ

∫
L

arcsh zdFz. (3.9)

The operator V is bounded self-adjoint and J-imaginary (by this we mean JV =
−V J). In fact, since the operator S is J-real, then its resolution of unity Eλ

commutes with J (see [37]). Therefore the operator

I :=

∫
L

sgn(λ)dEλ, (3.10)

is a bounded J-real self-adjoint involutory operator. On the other hand, since
arcsh x, x ∈ R, is an odd function, we can approximate it uniformly on [−L, L]
by its Fejér trigonometric sums with the sine functions. Each sine function in
the Fejér sums we can approximate by a part of its power expansion. Thus,
elementary calculations show that for arbitrary ε > 0 there exists a polynomial

pε(x) =
nε∑

k=0

aε,kx
2k+1, aε,k ∈ R, nε ∈ Z+,
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such that

| arcsh x− pε(x)| < ε, ∀x ∈ [−L, L].

Consider operators

An = p 1
n
(iT ) =

∫
L

p 1
n
(z)dFz = i

nε∑
k=0

(−1)kaε,kT
2k+1, n ∈ N.

Since T is J-real, the operators An are J-imaginary. For arbitrary x ∈ H we have

‖Anx− arcsh(iT )x‖2 =

∫
L

|p 1
n
(z)− arcsh(z)|2d(Fzx, x) ≤ ‖x‖2

n2
.

Therefore

Anx → arcsh(iT )x, ∀x ∈ H.

Consequently, we can write

−Anx = JAnJx → J arcsh(iT )Jx, ∀x ∈ H,

and

−Anx → − arcsh(iT )x, ∀x ∈ H.

So, the operator arcsh(iT ) is J-imaginary.
From relations (3.8),(3.9),(3.10) we conclude that

A = IeV .

Set K = −iV , and we obtain the required representation (3.1).
If the operator A is positive then

I = Ae−V = (e−
V
2 )∗Ae−

V
2 ,

is positive, as well. Therefore I is a positive square root of E. By the uniqueness
of such a root we conclude that I = E. �

By virtue of Lemma 3.1 we can prove a generalization of [4, Chapter XI, The-
orem 1].

Theorem 3.2. Let A be a bounded J-unitary operator in a Hilbert space H. The
operator A admits the following representation:

A = ReiK , (3.11)

where R is a J-real unitary operator in H, and K is a bounded J-real skew-self-
adjoint operator in H.

Proof. Suppose that representation (3.11) is true. Then

A∗A = eiKR∗ReiK = e2iK .

Now we shall drop the assumption of existence of representation (3.11) and notice
that the operator G := A∗A is positive self-adjoint and J-unitary. In fact, since
the operator A is bounded by assumption and J-unitary, then A∗ is also bounded
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and J-unitary. The product of bounded J-unitary operators is a bounded J-
unitary operator. This is verified directly. By Lemma 3.1 we find a bounded
J-real skew-self-adjoint operator K such that

G = e2iK . (3.12)

Set

R = Ae−iK . (3.13)

By (3.12) we can write

R∗R = e−iKA∗Ae−iK = E.

Hence, the operator R is unitary. We can write

Je−iKJ = J(cos(iK)− i sin(iK))J = cos(iK) + i sin(iK),

since the operator iK is J-real and its resolution of unity commutes with J .
Consequently, we have

Je−iKJ = eiK = (e−iK)−1, (3.14)

and the operator e−iK is J-unitary. By (3.13),(3.14) and using that the operator
A is J-unitary we conclude that

R−1 = eiKA−1 = Je−iKJJA∗J = J(Ae−iK)∗J = (̃R∗).

Therefore the operator R is J-unitary. Then R−1 = R∗ = JR∗J , and therefore
R∗ is a J-real operator. Using the matrix representations of the operators R∗

and R in an arbitrary corresponding basis we conclude that the operator R is
J-real. �

The following lemma generalizes [4, Chapter XI, Lemma 2].

Lemma 3.3. Let A be a J-self-adjoint and unitary operator in a Hilbert space
H. The operator A admits the following representation:

A = eiS, (3.15)

where S is a bounded J-real self-adjoint operator in H.

Proof. For the J-self-adjoint operator A A∗ = Ã, and we can write

A = S + iT,

where S = 1
2
(A + Ã) = 1

2
(A + A∗), T = 1

2i
(A− Ã) = 1

2i
(A− A∗). The operators

S and T are J-real and self-adjoint. Since the operator A is unitary, we have

E = A∗A = (S − iT )(S + iT ) = S2 + T 2 + i(ST − TS).

It follows that the operators T and S commute and

S2 + T 2 = E. (3.16)

Since the operators S and T are commuting bounded self-adjoint operators, they
admit the following spectral resolutions

S =

∫
L

λdEλ, T =

∫
L

zdFz,
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where Eλ, Fz are commuting resolutions of unity of operators, and L = (l1, l2],
l1, l2 ∈ R, is a finite interval of the real line which contains the spectra of the
operators S and T . Since the operators S and T are J-real, their resolutions of
unity commute with J . By equality (3.16) and using the spectral resolutions we
get ∫

L

∫
L

(λ2 + z2 − 1)dEλdFz = 0,

where the integral means the limit in the norm of H of the corresponding Riemann-
Stieltjes type sums. Thus, in all points of increase of the measure dEλdFz the
following relation is true

λ2 + z2 − 1 = 0. (3.17)

The circle (3.17) in the plane R2 we denote by Γ. For all points of the circle Γ it
is true |z| =

√
1− λ2. Therefore for all points of Γ

z = sgn(z)
√

1− λ2, (3.18)

where sgn(·) is from (3.7). By the identity λ = cos arccos λ, λ ∈ [−1, 1], the
equality (3.18) can be rewritten in the following form

z = sgn(z)
√

sin2(arccos λ) = sgn(z) sin(arccos λ),

where we have used the positivity of the sine function on [0, π]. By this represen-
tation we can write

A = S + iT =

∫
L

∫
L

(λ + iz)dEλdFz

=

∫
L

∫
L

(cos arccos λ + isgn(z) sin(arccos λ))dEλdFz

=

∫
L+

∫
L

ei arccos λdEλdFz +

∫
L−

∫
L

e−i arccos λdEλdFz, (3.19)

where L+ = (0,∞) ∩ L, L− = (−∞, 0] ∩ L. Define the following operator

S :=

∫
L

∫
L

sgn(z) arccos λdEλdFz =

∫
L

sgn(z)dFz

∫
L

arccos λdEλ.

It is obvious that S is a J-real self-adjoint operator. From relation (3.19) it
follows that (3.15) is true. �

Using the last lemma we shall prove the following theorem which is a general-
ization of [4, Chapter XI, Theorem 2].

Theorem 3.4. Let A be a unitary operator in a Hilbert space H. The operator
A admits the following representation:

A = ReiS, (3.20)

where R is a J-real unitary operator in H, and S is a bounded J-real self-adjoint
operator in H.
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Proof. Suppose that representation (3.20) is true. Then A∗ = e−iSR∗ and

Ã∗ = ẽ−iSR̃∗ = J(cos S − i sin S)JR̃∗ = (cos S + i sin S)R̃∗ = eiSR∗,

since S and R are J-real. Since R is unitary, we can write

Ã∗A = eiSR∗ReiS = e2iS.

Now we shall drop the assumption that representation (3.20) is true. Since the

operator A is unitary, operators A−1 = A∗, JA∗J and G := Ã∗A are unitary,
as well. The operator G is J-self-adjoint. In fact, by Proposition 2.8 we can

write G∗ = A∗Ã = JÃ∗AJ = G̃. By Lemma 3.3 we can find a J-real self-adjoint
operator S such that

G = e2iS.

Set

R = Ae−iS. (3.21)

The operator R is unitary as a product of two unitary operators. We can write

R̃∗ = JeiSA∗J = e−iSÃ∗. Therefore

R̃∗R = e−iSÃ∗Ae−iS = e−iSGe−iS = E.

Since the range of the unitary operator R is H, the latter equality implies that

R̃∗ = R−1. Thus, the operator R is J-unitary. Since the operator R is unitary
and J-unitary, it is J-real. From (3.21) it follows the representation (3.20). �

Let A be a linear bounded operator in a Hilbert space H and J be a conju-
gation in H. It is easy to check that operators AT A = JA∗JA, AAT = AJA∗J
are bounded J-self-adjoint operators. The operator A we shall call J-normal if
AT A = AAT . It is clear that bounded J-self-adjoint, J-skew-self-adjoint and
J-unitary operators are J-normal.
The following theorem is a generalization of [4, Chapter XI, Theorem 3]. We
adapt the idea of the proof in the finite-dimensional case with a use of the Riesz
calculus and the properties obtained in Section 2.1.

Theorem 3.5. Let A be a linear bounded operator in a Hilbert space H and
0 /∈ σ(A). Let J be a conjugation in H. Suppose that the spectrum of the operator
AAT has an empty intersection with a radial ray Lϕ = {z ∈ C : z = xeiϕ, x ≥ 0}
(ϕ ∈ [0, 2π)) in the complex plane. Then the operator A admits the following
representation

A = SU, (3.22)

where S is a bounded J-self-adjoint operator in H, and U is a bounded J-unitary
operator in H. Here

S =
√

AAT ,

where the square root is understood according to the Riesz calculus. The operators
U and S commute if and only if the operator A is J-normal. Moreover, the
operator A admits the following representation

A = U1S1, (3.23)
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where U1 is a bounded J-unitary operator in H, and S1 =
√

AT A is a bounded
J-self-adjoint operator in H. The operators U1 and S1 commute if and only if A
is J-normal.

In particular, representations (3.22) and (3.23) are true for operators

A = E + K, (3.24)

where K is a compact operator in H, ‖K‖ < 1.

Proof. We set

S =
√

AAT =

∫
Γ

√
λRλ(AAT )dλ.

The contour Γ is constructed in the following way. Let TR = {z ∈ C : |z| = R}
be a circle which contains σ(AAT ) inside, R > 0. Let d > 0 be the distance
between the closed set σ(AAT ) and the segment [0, Reiϕ], where ϕ is from the
statement of the Theorem. Consider parallel segments on the distance d

2
of the

above segment. Join this segments by a half of a circle in a neighborhood of zero
and complete the contour with a part of the big circle TR. We have constructed
the contour Γ which contains the spectrum of the operator AAT inside and its
intersection with the ray Lϕ is empty. We choose an arbitrary analytic branch of
the root in C\Lϕ.

A bounded operator B := AAT is J-self-adjoint as it was noticed above. Con-
sequently, its resolvent is also a J-self-adjoint operator. In fact, by virtue of
Proposition 2.10 we can write

R∗
λ(B) = ((B − λE)−1)∗ = (B∗ − λE)−1 = (B̃ − λE)−1

= (J(B − λE)J)−1 = J(B − λE)−1J = JRλ(B)J, λ ∈ ρ(B).

The operator S is J-self-adjoint as a limit of J-self-adjoint integral sums. More-
over, there exists the inverse S−1 which is J-self-adjoint, as well. Set

U = S−1A,

and notice that U−1 = A−1S (recall that 0 /∈ σ(A)). Then

UŨ∗ = S−1AÃ∗(̃S−1)∗ = S−1S2S−1 = E.

Multiplying the latter equality from the left side by U−1 we get

Ũ∗ = U−1.

Thus, the operator U is J-unitary.
Suppose that the operators U and S in representation (3.22) commute. Then

AAT = SU (̃U∗)(̃S∗) = S2,

AT A = (̃U∗)SSU = S2.

Conversely, if operators A and AT commute then using last relations (without
the latter equality) we write:

S2 = (̃U∗)S2U = U−1S2U,

US2 = S2U.
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Since U commutes with S2, it commutes with an arbitrary function of this oper-
ator. In particular, U commutes with S.

Now we shall establish the possibility of resolution (3.23) for the operator A.
By virtue of Proposition 2.10 for an arbitrary linear bounded operator D in H
we can write

JR∗
λ(D)J = J(D∗ − λE)−1J = (JD∗J − λE)−1 = Rλ(D

T ), λ ∈ ρ(D).

Therefore

ρ(D) = ρ(DT )

holds for an arbitrary linear bounded operator D in H. Applying this equality to
the operator A we conclude that 0 /∈ σ(AT ). Choose an arbitrary λ ∈ Lϕ. Notice
that

AT A− λE = A−1(AAT − λE)A.

Therefore (AT A− λE)−1 exists and

(AT A− λE)−1 = A−1(AAT − λE)−1A

is defined on the whole H and bounded. Thus, the ray Lϕ does not intersect with
the spectrum of the operator AT A. Applying the proven part of the Theorem to
the operator AT we get a resolution AT = SU , where S =

√
AT A is a bounded

J-self-adjoint operator and U is a bounded J-unitary operator. By virtue of
Proposition 2.8 we can write

A = Ũ∗S̃∗ = U−1S.

It remains to notice that U−1 is a bounded J-unitary operator.
Let the operator A has the form (3.24). In this case 0 /∈ σ(A) and we can write

AAT = (E + K)J(E + K∗)J = E + C,

where C := K + JK∗J + KJK∗J . Notice that the operator C is compact as
a sum of compact operators. It is not hard to see that the operator J(E +
K∗)−1J(E + K)−1 is the inverse to the operator AAT . Therefore 0 /∈ σ(AAT ).
Since the spectrum of the compact operator C is discrete with a unique point of
concentration 0, one can find the ray which is required in the statement of the
Theorem. �

There is an essential difference between the properties of the J-form [·, ·]J
and the properties of the indefinite metric in the Krein spaces. This difference
does not allow to apply methods from [24] to obtain or to study the J-polar
decomposition in our case. In particular, the J-form can take arbitrary complex
values. Some elementary properties of the J-form are illustrated by the result
below. This result shows that the null set HJ ;0 (which was defined above as
HJ ;0 = {x ∈ H : [x, x]J = 0}) is not a subspace (we can not even say that it is a
linear set). Consider an arbitrary Hilbert space H. Let J be a conjugation in H
and F = {fk}k∈Z+ be a corresponding orthonormal basis in H. Set

HR := {x ∈ H : (x, fk) ∈ R, k ∈ Z+}.
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Notice that for an arbitrary element x ∈ H we can write the following resolution:

x = xR + ixI , xR, xI ∈ HR. (3.25)

Namely, if x =
∑∞

k=0 xkfk, we set xR :=
∑∞

k=0 Re xkfk, xI :=
∑∞

k=0 Im xkfk. It is
easy to see that representation (3.25) is unique.

Define the following vectors:

f+
k,l :=

1√
2
(fk + ifl), f−k,l :=

1√
2
(fk − ifl), k, l ∈ Z+.

Theorem 3.6. Let H be a Hilbert space and J be a conjugation in H. Let
F = {fk}∞k=0 be a corresponding orthonormal basis in H. The set HJ ;0 has the
following properties:
1. The set HJ ;0 is closed;
2. x ∈ HJ ;0 ⇒ Jx ∈ HJ ;0, αx ∈ HJ ;0, α ∈ C;
3. x, y ∈ HJ ;0 : x ⊥J y ⇒ αx + βy ∈ HJ ;0, α, β ∈ C;
4. HJ ;0 = {x ∈ H : x = xR + ixI , xR, xI ∈ HR, ‖xR‖ = ‖xI‖, (xR, xI) = 0};
5. The set HJ ;0 has no inner points;
6. span HJ ;0 = H;
7. The set {f+

2k,2k+1, f
−
2k,2k+1}k∈Z+ is an orthonormal basis in H whose elements

belong to HJ ;0.

Proof. The 1-st statement follows from continuity of the operator J and from
continuity of the scalar product in H.
The second and third statements follows from the linearity of the J-form and
from the properties of the conjugation J .
The 4-th statement is directly verified.
Suppose that the set HJ ;0 has an inner point x0 such that

x ∈ H, ‖x− x0‖ < ε ⇒ x ∈ HJ ;0, (3.26)

for a number ε > 0. Let us write for x0 the resolution (3.25):

x0 = x0,R + ix0,I , x0,R, x0,I ∈ HR.

Suppose first that x0,I 6= 0. Set

xε := x0 + i
ε

2‖x0,I‖
x0,I = x0,R + ix0,I

(
1 +

ε

2‖x0,I‖

)
.

Notice that ‖xε−x0‖ = ε
2

< ε, and by (3.26) we obtain that xε ∈ HJ ;0. Applying
the fourth statement with the points x0 and xε, we get

‖x0,R‖ = ‖x0,I‖, (3.27)

and

‖x0,R‖ = ‖x0,I

(
1 +

ε

2‖x0,I‖

)
‖ = ‖x0,I‖+

ε

2
> ‖x0,I‖,

respectively. The contradiction proves statement 5 for the case x0,I 6= 0.
If x0,I = 0 then the fourth statement implies that relation (3.27) is true and

therefore x0 = 0. If zero is an inner point of the set HJ ;0 then the second statement
implies HJ ;0 = H. It is a nonsense, since, for example, the elements of the basis
F do not belong to the set HJ ;0.
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Let us prove the seventh statement. Using orthonormality of the elements
fk, k ∈ Z+, we directly check that elements of the set {f+

2k,2k+1, f
−
2k,2k+1}k∈Z+ , are

orthonormal. Notice that

f2k =
1√
2
(f+

2k,2k+1 + f−2k,2k+1), f2k+1 =
1√
2i

(f+
2k,2k+1 − f−2k,2k+1), k ∈ Z+.

Therefore span{f+
2k,2k+1, f

−
2k,2k+1}k∈Z+ = H and the set {f+

2k,2k+1, f
−
2k,2k+1}k∈Z+ is

an orthonormal basis in H. It remains to notice that

[f±2k,2k+1, f
±
2k,2k+1]J =

1

2
[f2k ± if2k+1, f2k ± if2k+1]J = 0,

and therefore f±2k,2k+1 ∈ HJ ;0, k ∈ Z+.
The sixth statement follows from the seventh statement. �

It is of interest to study some specific types of J-symmetric and J-skew-
symmetric operators in more details. For example, there is an extensive literature
on the Jacobi matrices (see [1]) and their generalizations (e.g. [38]) which are re-
lated to symmetric operators. Recently, we solved the direct and inverse spectral
problems for (2N +1)-diagonal complex symmetric and skew-symmetric matrices
[39],[40], [41]). These matrices are related to J-symmetric and J-skew-symmetric
operators and can be further studied.
Self-adjoint operators with a simple spectrum are the operators which lead to
the functional model of an arbitrary self-adjoint operator. So, it is of interest to
study J-self-adjoint operators with a simple spectrum. What properties do their
matrices have? This may lead to a functional model for J-self-adjoint operators
and then for J-normal operators. Thus, our results on matrix representations
and on the J-polar decomposition can be viewed as a first step in this program,
as well.

Acknowledgements. The author is grateful to referees for their useful sug-
gestions and comments.
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