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Abstract. It is known that C(X) is algebraically closed if X is a locally
connected, hereditarily unicoherent compact Hausdorff space. For such spaces,
we prove that if F : C(X) → C(X) is an entire function in the sense of
Lorch, i.e., is given by an everywhere convergent power series with coefficients
in C(X), and satisfies certain restrictions, then it has a root in C(X). Our
results generalizes the monic algebraic case.

1. Introduction

Let X be a compact Hausdorff space and let C(X) be the Banach algebra of
complex-valued continuous functions on X. We say that F : C(X) → C(X) is
entire (in the sense of Lorch) if it is Fréchet differentiable at every point w ∈ C(X)
and its differential is given by a multiplication operator Lw(h) = F ′(w)h, for
some F ′(w) ∈ C(X) (see [6] for details). We denote the set of entire functions by
H
(
C(X)

)
and make it into a unital algebra with the usual operations. It is well

known that F ∈ H
(
C(X)

)
if and only if it admits a power series expansion

F (w) =
∞∑

n=0

anw
n, w ∈ C(X),
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where an ∈ C(X) for all n ≥ 0, lim supn ‖an‖1/n = 0 and the series converges in
norm for each fixed w ∈ C(X).

To any entire function F , we may associate the map X × C → C defined by

(x, z) 7→
∞∑

n=0

an(x)zn
(
= F

(
z1C(X)

)
(x)
)
, (1.1)

which is easily seen to be continuous on X ×C and holomorphic with respect to
z for x ∈ X fixed. On the other hand, it is obvious that the above map uniquely
determines F . By a customary abuse of notation, we also write F for the map in
(1.1); it should be clear from the context which case we are referring to.

We say that F ∈ H
(
C(X)

)
has a root in C(X), if there exists w ∈ C(X) such

that F (x, w(x)) = 0 for all x ∈ X. If X is a locally connected compact Hausdorff
space, it was observed by Miura and Niijima [7] that C(X) is algebraically closed,
i.e., every monic polynomial with coefficients in the algebra has at least one root in
the algebra, if and only if X is hereditarily unicoherent (see also Honma and Miura
[4]). We recall that X is said to be hereditarily unicoherent, if the intersection
A ∩ B is connected for all closed connected subsets A, B of X. A short, but
accurate introduction to the state of the art in monic algebraic equations can be
found in Kawamura and Miura [5].

However, if we consider more general functions in H
(
C(X)

)
, the existence of

continuous roots is no longer guaranteed, even if X is as simple as the unit interval.
For example, the function F (x, z) = x2z − x does not have a root in C([0, 1]).
We now introduce two phenomena that arise in the preceding example and have
a strong relation with the existence of solutions of the equation F (w) = 0.

Definition 1.1. Let X be a compact Hausdorff space. A function F ∈ H
(
C(X)

)
is said to be degenerate at x0 ∈ X if the map z 7→ F (x0, z) is constant; otherwise,
it is said to be nondegenerate at x0.

Definition 1.2. Let X be a compact Hausdorff space, let Y ⊂ X be a connected
subset and x0 ∈ Y \ Y . A function w ∈ C(Y ) is said to be an asymptotic root of
F ∈ H

(
C(X)

)
if F (x, w(x)) = 0 for all x ∈ Y and

lim
x→x0

w(x) = ∞, x ∈ Y.

The aim of this paper is to prove that if X is a connected, locally connected,
hereditarily unicoherent compact Hausdorff space, then any nowhere degenerate
function F ∈ H

(
C(X)

)
with no asymptotic roots, satisfying F (x0, z0) = 0, has

at least one root w ∈ C(X) such that w(x0) = z0. It is easily seen that monic
polynomials are nondegenerate at every point of X and do not have asymptotic
roots. Consequently, our result generalizes that of Miura and Niijima [7].

It is important to mention that Gorin and Sánchez Fernández [2] studied the
case where X is a connected, locally connected, hereditarily unicoherent, compact
metric space and showed that any nowhere degenerate function F ∈ H

(
C(X)

)
with no asymptotic arcs, satisfying the condition F (x0, z0) = 0, has at least one
root w ∈ C(X) such that w(x0) = z0 (for a definition of asymptotic arc, see [2]).
In our work, we do not assume that X is a first-countable space.
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2. Existence of Roots

We start by pointing out a very useful lemma, which arises naturally from
Rouché’s Theorem.

Lemma 2.1. Let X be a compact Hausdorff space, F ∈ H
(
C(X)

)
and pick

x0 ∈ X such that the map z 7→ F (x0, z) has a zero z0 of multiplicity n. Then,
there exist an open disk Dr(z0) and a neighborhood V of x0 such that

F (x, z) = P (x, z) G(x, z), (x, z) ∈ V ×Dr(z0),

where P (x, z) = zn+a1(x)zn−1+. . .+an(x) is a monic polynomial with coefficients
in C(V ) satisfying P (x0, z) = (z − z0)

n and G never vanishes in V ×Dr(z0).

Proof. Set r > 0 such that the map z 7→ F (x0, z) has no roots in Dr(z0) \ {z0}
and write Γ = {z ∈ C : |z − z0| = r}. Also, write m = minΓ |F (x0, z)| > 0.
By a standard compactness argument, we can find a neighborhood V of x0 such
that |F (x, z) − F (x0, z)| < m for all x ∈ V and z ∈ Γ. Then, an application of
Rouché’s Theorem shows that z 7→ F (x, z) has exactly n zeros in Dr(z0), counting
multiplicities, whenever x ∈ V .

For any x ∈ V , we denote the zeros of z 7→ F (x, z) in Dr(z0) by z1(x), . . . , zn(x),
taken in any order and we define

P (x, z) =
(
z − z1(x)

)
. . .
(
z − zn(x)

)
= zn + a1(x)zn−1 + . . . + an(x).

Obviously, we have P (x0, z) = (z − z0)
n. Now, consider the central symmetric

functions

sk(x) =
n∑

i=1

(
zi(x)

)k
, k ≥ 0.

Since z1(x), . . . , zn(x) are the zeros of z 7→ F (x, z) in the interior of Γ, it is well
known (and easily verified) that

sk(x) =
1

2πi

∫
Γ

zk
∂F
∂z

(x, z)

F (x, z)
dz.

Consequently, sk ∈ C(V ) for all k ≥ 0. It is also well known that the functions sk

are connected to the functions ak via the so-called Newton identities. Therefore,
the continuity of ak for 1 ≤ k ≤ n can be established by an easy induction.

Finally, for (x, z) ∈ V ×Dr(z0), define G(x, z) as the quotient F (x, z)/P (x, z)
if P (x, z) 6= 0 and set G(x, z) = 1 otherwise. �

Before going any further, we need some topological remarks. A good expo-
sition of such facts can be found in [7], a great deal of which we reproduce for
completeness. Let X be a connected topological space. A point p ∈ X separates
the distinct points a, b ∈ X \ {p} if there exist disjoint open sets A and B such
that a ∈ A, b ∈ B and X \{p} = A∪B. If the point p belongs to every connected
closed subset of X containing a and b, we say that p cuts X between a and b. If
X is a locally connected and connected compact Hausdorff space, then p cuts X
between a and b if and only if p separates the points a and b (cf. [3, Theorem
3-6]).
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If X is a connected compact Hausdorff space, there exists a minimal connected
closed subset, with respect to set inclusion, containing both a and b (cf. [3,
Theorem 2-10]). If X is hereditarily unicoherent, such a minimal set is unique
and we denote it by E[a, b]. Clearly, every point in E[a, b]\{a, b} cuts X between
a and b. Therefore, if we assume that X is also locally connected, such points
also separate a and b. We define the separation order � in E[a, b] the following
way: for distinct points p, q ∈ E[a, b], we say that p ≺ q if p = a or p separates
a and q. Then, we write p � q if p = q or p ≺ q. Such choice makes E[a, b] into
a totally ordered space (cf. [3, Theorem 2-21]). If we define the order topology
in E[a, b] the usual way, then it coincides with the induced topology in E[a, b]
(cf. [3, Theorem 2-25]). Also, by [3, Theorem 2-26], every non-empty subset of
E[a, b] has a least upper bound, i.e., E[a, b] is order-complete.

To avoid repetitions, we assume henceforth that X is a connected, locally
connected, hereditarily unicoherent compact Hausdorff space, unless stated oth-
erwise.

Lemma 2.2. The following two properties hold:
i-) Any connected subset of X containing a and b, must contain E[a, b].
ii-) An arbitrary intersection of connected subsets of X is either empty or

connected.

Proof. The first part is a direct consequence of the fact that any point in the set
E[a, b] \ {a, b} separates a and b. For the second part, let {Mα} be a collection of
connected subsets of X and suppose that ∩αMα has at least two points. Given any
pair of distinct points a, b ∈ ∩αMα, we must have E[a, b] ⊂ Mα for all α, whence
we obtain E[a, b] ⊂ ∩αMα. The connectedness of ∩αMα is now obvious. �

The above lemma will be used very often later.

Lemma 2.3. Let D ⊂ X be connected and x∗ ∈ D \ D. Suppose that the
function F ∈ H

(
C(X)

)
is nondegenerate at x∗ and consider w ∈ C(D) such that

F (x, w(x)) = 0 for all x ∈ D. Then, there exists the limit

lim
x→x∗

w(x), x ∈ D,

in the Riemann sphere.

Proof. Denote the Riemann sphere by Ĉ = C ∪ {∞} and let {Uα}α∈I be a local
basis at x∗ consisting of connected open sets. It is readily seen that the family

F =
{
w(D ∩ Uα) : α ∈ I

}
is a filterbase in Ĉ. Since the latter is compact, F

has at least one accumulation point, i.e.,

Fac =
⋂
α∈I

w(D ∩ Uα) 6= ∅.

Next, by Lemma 2.2, it is easy to see that D∩Uα is connected for all α ∈ I and
the continuity of w implies that w(D ∩ Uα) is also connected. Suppose that Fac is

not connected, i.e., there exist disjoint open sets A, B ⊂ Ĉ such that Fac ⊂ A∪B,
Fac ∩ A 6= ∅ and Fac ∩B 6= ∅. Note that we can write⋂

α∈I

w(D ∩ Uα) ∩
(
Ĉ \ (A ∪B)

)
= Fac ∩

(
Ĉ \ (A ∪B)

)
= ∅
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and accordingly, the compactness of Ĉ implies the existence of a finite set of

indices α1, . . . , αn ∈ I such that w(D ∩ Uα1)∩. . .∩w(D ∩ Uαn)∩
(
Ĉ\(A∪B)

)
= ∅.

Since F is a filterbase, we can find β ∈ I such that w(D ∩ Uβ) ⊂ w(D ∩ Uα1) ∩
. . . ∩ w(D ∩ Uαn) and thus, w(D ∩ Uβ) ⊂ A ∪ B. However, as Fac ⊂ w(D ∩ Uβ),

we must have w(D ∩ Uβ) ∩ A 6= ∅ and w(D ∩ Uβ) ∩ B 6= ∅. Hence, w(D ∩ Uβ)
cannot be connected, which is absurd.

We assume, towards contradiction that Fac contains at least two points. Let
ε > 0 be arbitrary and let z∗ ∈ Fac, z∗ 6= ∞. Pick δ > 0 and a neighborhood Uγ of
x∗ with γ ∈ I such that |F (x, z)−F (x∗, z∗)| < ε whenever x ∈ Uγ and |z−z∗| < δ.

Since z∗ ∈ w(D ∩ Uγ), there exists xγ ∈ D∩Uγ such that |w(xγ)−z∗| < δ, whence
we obtain that |F (xγ, w(xγ)) − F (x∗, z∗)| < ε. Given that F (xγ, w(xγ)) = 0,
we must have |F (x∗, z∗)| < ε. Since ε is arbitrary, F (x∗, z∗) = 0. Therefore,
any finite point of Fac is a root of z 7→ F (x∗, z). Since F is nondegenerate at
x∗, z 7→ F (x∗, z) is a non-constant entire function and therefore has at most
countably many roots. As a result, Fac is at most countable. Since it is also a

non-empty, connected subset of Ĉ, we get our desired contradiction and conclude
that Fac reduces to a single point. Then, it is straightforward to see that such
point must be the limit of w(x) as x → x∗. �

We now prove the main result of the paper.

Theorem 2.4. Let F ∈ H
(
C(X)

)
be a nowhere degenerate function, having

no asymptotic roots and assume that there exist x0 ∈ X and z0 ∈ C such
that F (x0, z0) = 0. Then there exists w ∈ C(X) such that w(x0) = z0 and
F (x, w(x)) = 0 for all x ∈ X.

Proof. Let D be the set of pairs (D, w), where D ⊂ X is a connected subset
containing x0, w ∈ C(D), w(x0) = z0 and F (x, w(x)) = 0 for all x ∈ X. The
family D is not empty, as it contains the pair (D0, w0), where D0 = {x0} and
w0 : D0 → C is defined by w0(x0) = z0. We define a partial order in D as follows:
we write (D1, w1) ≤ (D2, w2) if D1 ⊂ D2 and w2|D1 = w1.

Let {(Dα, wα)}α∈I be a chain in D. Set D̃ =
⋃

α Dα and define w̃ : D̃ → C
by w̃(x) = wα(x), if x ∈ Dα. It is obvious that D̃ is a connected subset of
X containing x0 and w̃ is a well defined function such that w̃(x0) = z0 and

F (x, w̃(x)) = 0 for all x ∈ D̃.

We subsequently prove that w̃ is continuous on D̃. Let x̃ ∈ D̃ be arbitrary
and consider a local basis {Uβ}β∈J at x̃ consisting of connected open sets. The

family F =
{
w̃(D̃ ∩ Uβ) : β ∈ J

}
may be regarded as a filterbase in Ĉ. If we

denote its set of accumulation points by Fac =
⋂

β w̃(D̃ ∩ Uβ), it is obvious that

w̃(x̃) ∈ Fac, since x̃ ∈ D̃ ∩ Uβ for all β ∈ J .

We show that w̃(D̃ ∩ Uβ) is connected for all β ∈ J . Suppose on the contrary

that there exist two disjoint open sets A, B ⊂ Ĉ such that w̃(D̃ ∩ Uβ) ⊂ A ∪ B,

w̃(D̃ ∩ Uβ) ∩ A 6= ∅ and w̃(D̃ ∩ Uβ) ∩ B 6= ∅. Pick ξA ∈ w̃(D̃ ∩ Uβ) ∩ A and

ξB ∈ w̃(D̃ ∩ Uβ) ∩ B. Then, we can find xA, xB ∈ D̃ ∩ Uβ such that w̃(xA) = ξA
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and w̃(xB) = ξB. Note that

xA ∈

(⋃
α∈I

Dα

)
∩ Uβ =

⋃
α∈I

(Dα ∩ Uβ)

and accordingly, there exists an index α1 ∈ I such that xA ∈ Dα1 ∩Uβ. Similarly,
there exists α2 ∈ I such that xB ∈ Dα2 ∩ Uβ. Since {(Dα, wα)}α∈I is a chain,
we may assume Dα1 ⊂ Dα2 . In that case, xA, xB ∈ Dα2 ∩ Uβ, whence we derive
that E[xA, xB] ⊂ Dα2 ∩ Uβ, by an application of Lemma 2.2. Observe that
w̃(E[xA, xB]) = wα2(E[xA, xB]) is connected; however, w̃(E[xA, xB]) ⊂ A ∪ B,
ξA ∈ w̃(E[xA, xB]) ∩ A and ξB ∈ w̃(E[xA, xB]) ∩ B, which is clearly impossible.

We have reached a contradiction, which proves the connectedness of w̃(D̃ ∩ Uβ)

for all β ∈ J . Therefore, w̃(D̃ ∩ Uβ) is also connected and an analogous argument
to that of Lemma 2.3 shows that Fac must be connected as well.

Also, by reviewing the techniques introduced in the proof of Lemma 2.3, it is
straightforward to see that any finite point of Fac is a zero of the non-constant
entire function z 7→ F (x̃, z), which shows that Fac is at most countable. Since it
is also non-empty and connected, it must reduce to a single point, which in this
case is obviously w̃(x̃). Then, it is easy to conclude that w̃ is continuous at x̃.

A standard application of Zorn’s Lemma shows that D has a maximal element,
which we denote by (D∗, w∗). We wish to prove that D∗ = X.

We first show that D∗ is closed. Conversely, suppose that there exists x∗ ∈
D∗ \D∗. A direct application of Lemma 2.3 shows that w∗(x) has a limit in the
Riemman sphere as x → x∗ (x ∈ D∗), which cannot be infinity by the assumption
on the non-existence of asymptotic roots for F . Therefore, w∗ has a continuous
extension w̃∗ to D∗ ∪ {x∗}. Note that the map x 7→ F (x, w̃∗(x)) vanishes on
D∗ and is continuous on the connected set D∗ ∪ {x∗}, whence we deduce that
F (x, w̃∗(x)) = 0 for all x ∈ D∗ ∪ {x∗}. Consequently, we have proven that
(D∗, w∗) < (D∗ ∪ {x∗}, w̃∗), which contradicts the maximality of (D∗, w∗).

Finally, suppose that D∗ 6= X, i.e., there exists y ∈ X \ D∗. Since, as noted
in page 4, E[x0, y] is order-complete with respect to the separation order, there
exists a least upper bound m of E[x0, y] ∩ D∗. Since D∗ is closed, it is easy to
see that m ∈ D∗; moreover, we have the inclusions E[x0, m] ⊂ D∗ (by Lemma
2.2) and E[m, y] \ {m} ⊂ X \ D∗. By taking into account that F (m, w∗(m)) =
0 and F is nowhere degenerate, we can use Lemma 2.1 to find an open disk
Dr(w

∗(m)) and a neighborhood V of m such that F (x, z) = P (x, z) G(x, z) for
all (x, z) ∈ V × Dr(w

∗(m)), where P is a monic polynomial with coefficients in
C(V ) and G is free of zeros in V × Dr(w

∗(m)). Without loss of generality, we
may assume that V is connected and then, we select y1 ∈ E[m, y] \ {m} such
that E[m, y1] ⊂ V . Since E[m, y1] is a totally ordered and order-complete space,
we can find w1 ∈ C(E[m, y1]) such that P (x, w1(x)) = 0 for all x ∈ E[m, y1],
by [1, Theorem 3]. Also, given that P (m, z) is a power of (z − w∗(m)) (see
Lemma 2.1), we must have w1(m) = w∗(m). By the continuity of w1, we can
pick ȳ ∈ E[m, y1] \ {m} such that w1(E[m, ȳ]) ⊂ Dr(w

∗(m)). Now, we write
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D̃ = D∗ ∪ E[m, ȳ] and consider the function w̃ : D̃ → C defined by

w̃(x) =

{
w∗(x), x ∈ D∗;

w1(x), x ∈ E[m, ȳ].

It is easy to see that D∗ \ {m} and E[m, ȳ] \ {m} are both open in D̃, whence it

may be inferred that w̃ is continuous on D̃. We prove that F (x, w̃(x)) = 0 for all

x ∈ D̃. The result is obvious for x ∈ D∗. On the other hand, if x ∈ E[m, ȳ], then
it is straightforward to see that w̃(x) ∈ Dr(w

∗(m)) (recall the choice of ȳ) and
consequently, we have F (x, w̃(x)) = P (x, w̃(x)) G(x, w̃(x)) = 0. Thus, we have

shown that (D∗, w∗) < (D̃, w̃), which contradicts the maximality of (D∗, w∗).
The proof is now complete. �

Remark 2.5. Note that we have assumed that X is connected in the preceding
theorem, while Miura and Niijima [7] have shown that such restriction is un-
necessary for C(X) to be algebraically closed. Can we drop the connectedness
hypothesis in Theorem 2.4? Not completely. The connected components of a
locally connected space are open. Hence, if we can find a root of F in C(Xλ)
for every connected component Xλ of X, we easily conclude that F has a root
in C(X). If F is nowhere degenerate and has no asymptotic roots, this can be
done by Theorem 2.4, provided that F (x0, z0) = 0 for some x0 ∈ Xλ and z0 ∈ C.
Such condition is not always met for arbitrary functions F ∈ H

(
C(X)

)
(e.g.,

take F to be a suitable exponential function in one connected component of X).
However, if F is a non-constant monic polynomial, it is trivially fulfilled and we
may recover the results from [7].

Remark 2.6. The restrictions imposed to F in the hypotheses of Theorem 2.4
are not necessary for the existence of roots. For example, consider the algebra
C([0, 1]) and define F1(x, z) = exp(xz) − 1. It is clearly degenerate at x0 = 0.
Moreover, the function ω : (0, 1] → C defined by ω(x) = 2πix−1 is an asymptotic
root of F1. However, it obviously has the zero function as a root.

To finish this paper, we introduce two examples showing how the presence of
degeneracy and asymptotic roots can interfere with the existence of roots.

Example 2.7. Recall that F is degenerate at x0 ∈ X if z 7→ F (x0, z) is a constant
map. Obviously, if it is not the zero map, F cannot have any root. On the other
hand, let X = [0, 1] and write h(x) = sin(1/x). Consider the function

F (x, z) =

{
x
(
exp z − exp h(x)

)
, 0 < x ≤ 1;

0, x = 0.

It can be easily verified that F ∈ H
(
C(X)

)
. Also, note that F is degenerate

at x0 = 0 and z 7→ F (0, z) is the zero function. Suppose that w ∈ C(X) is a root
of F . Then, F (x, w(x)) = 0 for all x ∈ [0, 1] implies that w(x) = h(x) + 2k(x)πi
for x ∈ (0, 1], where k(x) ∈ Z. By continuity, k(x) must be constant, which
yields w(x) = sin(1/x) + 2kπi for all x ∈ (0, 1]. Since this function does not have
a continuous extension to the interval [0, 1], we have reached a contradiction.
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Moreover, although the function g(x) = sin(1/x) + 2kπi satisfies F (x, g(x)) = 0
for all x ∈ (0, 1], it does not have a limit in the Riemann sphere as x → 0.
Therefore, the hypothesis of nondegeneracy is also essential for Lemma 2.3.

Example 2.8. Let X = [0, 1]. Consider the function ϕ(z) = z exp(−z) and
any continuous curve ω : [0, 1) → C such that ω(0) = 0, ω(x) = (1 − x)−1 for
1/2 ≤ x < 1 and its image avoids the point 1 (the zero of ϕ′). Define the function

F (x, z) =

{
ϕ(z)− ϕ(ω(x)), 0 ≤ x < 1;

ϕ(z), x = 1.

It can be easily seen that F ∈ H
(
C(X)

)
and is nowhere degenerate; however,

ω is an asymptotic root of F . Suppose that w ∈ C(X) is a root of F . Then,
we must have ϕ(w(x)) = ϕ(ω(x)) for all x ∈ [0, 1). We prove that the set
A = {x ∈ [0, 1) | w(x) = ω(x)} is open and closed in [0, 1). The second assertion
is obvious from the continuity of w−ω. On the other hand, if w(x0) = ω(x0) = z0,
we have that ϕ is locally injective at z0 (since ϕ′(ω(x)) 6= 0 for all x ∈ [0, 1)).
Since ϕ(w(x)) = ϕ(ω(x)), the continuity of w and ω implies that such functions
must coincide in a neighborhood of x0, proving that A is open in [0, 1). Next,
note that 0 ∈ A. Since [0, 1) is connected, we conclude that A = [0, 1). However,
this means that w(x) →∞ as x → 1, which is clearly absurd.
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