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Abstract. Approximation spaces, in their many presentations, are well known
mathematical objects and many authors have studied them for long time. They
were introduced by Butzer and Scherer in 1968 and, independently, by Y. Brud-
nyi and N. Kruglyak in 1978, and popularized by Pietsch in his seminal paper
of 1981. Pietsch was interested in the parallelism that exists between the
theories of approximation spaces and interpolation spaces, so that he proved
embedding, reiteration and representation results for approximation spaces.
In particular, embedding results are a natural part of the theory since its in-
ception. The main goal of this paper is to prove that, for certain classes of
approximation schemes (X, {An}) and sequence spaces S, if S1 ⊂ S2 ⊂ c0

(with strict inclusions) then the approximation space A(X, S1, {An}) is prop-
erly contained into A(X, S2, {An}). We also initiate a study of strict inclusions
between interpolation spaces, for Petree’s real interpolation method.

1. Introduction

Suppose X is a quasi-Banach space, and let A0 ⊂ A1 ⊂ . . . ⊂ X be an infinite
chain of subsets of X, where all inclusions are strict. We say that (X, {An}) is
an approximation scheme (or that (An) is an approximation scheme in X) if:

(i) There exists a map K : N → N such that K(n) ≥ n and An +An ⊆ AK(n)

for all n ∈ N (we can assume that K is increasing).
(ii) λAn ⊂ An for all n ∈ N and all scalars λ.

(iii)
⋃

n∈N An is dense in X.
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Approximation schemes were introduced by Butzer and Scherer [10] in 1968 and,
independently, by Y. Brudnyi and N. Kruglyak under the name of “approximation
families” in 1978 [9], and popularized by Pietsch in his seminal paper [20], where
the approximation spaces Ar

p(X, An) = {x ∈ X : ‖x‖Ar
p

= ‖{E(x, An)}∞n=0‖`p,r <
∞} were studied. Here,

`p,r = {{an} ∈ `∞ : ‖{an}‖p,r =

[
∞∑

n=1

nrp−1(a∗n)p

] 1
p

< ∞}

denotes the so called Lorentz sequence space. Pietsch was interested in the par-
allelism that exists between the theories of approximation spaces and interpola-
tion spaces (e.g., he proved embedding, reiteration and representation results
for approximation spaces). In all these cases the authors imposed condition
An + Am ⊆ An+m, which implies K(n) = 2n. Simultaneously and also inde-
pendently, Tiţa [29] studied, from 1971 on, for the case of approximation of
linear operators by finite rank operators, a similar concept, based on the use
of symmetric norming functions Φ and the sequence spaces defined by them,
SΦ = {{an} : ∃ limn→∞ Φ(a∗1, a

∗
2, · · · , a∗n, 0, 0, · · · )}.

The concept of approximation scheme given in the present paper was intro-
duced by Almira and Luther [3, 4] a few years ago. They also created a theory
for generalized approximation spaces via the use of general sequence spaces S
(that they named “admissible sequence spaces”) and the definition of the ap-
proximation spaces A(X, S, {An}) = {x ∈ X : ‖x‖A(X,S) = ‖{E(x, An)}‖S < ∞}.
Other papers with a similar spirit of generality have been written by Tiţa [26] and
Pustylnik [22, 23]. Finally, a few other important references for people interested
on approximation spaces are [12, 13, 14, 15, 19, 27] and [28]. It is important to
remark that, due to the importance of the so called direct and inverse theorems
in approximation theory (also named “central theorems in approximation the-
ory”), the idea of defining approximation spaces is a quite natural one. This has
produced the negative effect that many unrelated people has though on the same
things at different places and different times, and some papers in this subject
partially overlap.

A fundamental part of the theory developed by the authors of the above men-
tioned papers consists of the study of the embeddings between the involved spaces.
Concretely, Pietsch proved that the embedding Ar

p(X, An) ↪→ As
q(X, An) holds

true whenever r > s > 0 or r = s and p < q. This, in conjunction with the central
theorems in approximation theory, which state a strong relation between smooth-
ness of functions f (compactness of operators T , respectively) and fast decay of
approximation errors E(f, An) (approximation numbers an(T ), respectively), has
been used to speak about the scale of smoothness (compactness, respectively)
defined by an approximation scheme (X, {An}). Concretely, it is assumed that
membership to the approximation space Ar

p(X, {An}) is a concept of smoothness
(compactness if X = B(Y1, Y2) and An = {T ∈ B(Y1, Y2) : rank(T ) < n}). Thus,
although in many concrete cases of approximation schemes (X, {An}) there ex-
ist some results, such as the representation theorems or the characterizations in
terms of moduli of smoothness or in terms of interpolation spaces, that allow to
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prove that all inclusions are strict (hence distinct parameters p, r define distinct
smoothness concepts), the full truth says us that there is no general result guaran-
teing this property. The main goal of this paper is to study some results proving
that, for certain classes of approximation schemes (X, {An}) and sequence spaces
S, if S1 ⊂ S2 ⊂ c0 (with strict inclusions) then A(X, S1, {An}) is properly con-
tained into A(X, S2, {An}). It is clear that the same kind of questions (about
strictness of the inclusions between distinct spaces), can be addressed for the
context of interpolation spaces. We devote last section of this paper to initiate a
study of this problem for Petree’s real interpolation method.

Previous to any work in the above mentioned direction, it is necessary to solve
the following question: Under which conditions on the approximation scheme
(X, {An}) and the admissible sequence space S we have that A(X,S, {An}) is
properly contained into X? This question has been fully solved in the Banach
setting by Almira and Oikhberg [5] (see also [1, 2]). Concretely, we can use
Theorem 3.3 from [5] to guarantee that, if X is Banach and (X, {An}) satis-
fies Shapiro’s theorem, for all (εn) decreasing to zero, there exists x ∈ X such
that E(x, An) ≥ εn for all n = 0, 1, · · · . In particular, if X is Banach and S is
an admissible sequence space properly contained into c0, then A(X, S, {An}) is
a proper subspace of X whenever (X, {An}) satisfies Shapiro’s theorem. Recall
that (X, {An}) satisfies Shapiro’s Theorem if and only if for all sequence {εn} ∈ c0

there exists x ∈ X such that E(x, An) 6= O(εn). These schemes were character-
ized in [5, Corollary 3.6] as those verifying E(S(X), An) = sup‖x‖=1 E(x, An) = 1
for all n (e.g., Riesz’s Lemma implies that nontrivial linear approximation schemes
satisfy Shapiro’s theorem). Moreover, in the same paper the authors show many
examples of schemes verifying Shapiro’s theorem. In particular, the process of
approximation by finite rank operators satisfies Shapiro’s theorem [5, Corollary
6.24]. Finally, we should also mention that [5, Proposition 5.6] guarantees that,
if K(n) = cn for a certain finite constant c > 0 and (X, {An}) satisfies Shapiro’s
theorem, then inclusion Ar

p(X, An) ↪→ As
q(X, An) is strict whenever r > s > 0.

We will present an easier proof of this fact for the special case of approximation
schemes (X, {An}) verifying E(S(X)∩An+1, An) > c > 0 for infinitely many nat-
ural numbers n and a fixed constant c > 0, a condition already used by Brudnyi
in [8].

2. Preliminary definitions and notations

Definition 2.1. Let S be a real linear space of sequences {an}∞n=0 ⊆ R (with
element-wise defined operations), equipped with a quasi-norm ‖ . ‖S . S is called
admissible sequence space [for the approximation scheme (X, {An})] if the fol-
lowing assumptions are satisfied:

(A1) All finite sequences {an}N
n=0 belong to S.

(A2) If 0 ≤ an ≤ bn for all n = 0, 1, 2, . . . and {bn}∞n=0 ∈ S, then {an}∞n=0 ∈ S
and ‖{an}‖S ≤ ‖{bn}‖S .

(A3) If a0 ≥ a1 ≥ a2 ≥ . . . ≥ 0 and {aK(n)}∞n=0 ∈ S then {an} ∈ S and

‖{an}∞n=0‖S ≤ CS ‖{aK(n)}∞n=0‖S ,
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where CS is a constant, which only depends on S and {K(n)}∞n=0 .

Definition 2.2. Let S be an admissible sequence space for the approximation
scheme (X, {An}). Then the space

A(X, S, {An}) := {x ∈ X : {E(x, An)}∞n=0 ∈ S} ,

endowed with ‖f‖A(X,S) := ‖{E(x, An)}∞n=0‖S is called (generalized) approxima-
tion space.

A theory for these spaces was developed by Almira and Luther [3]. In partic-
ular, they proved the following properties:

(P1) (A(X, S, {An}), ‖ · ‖A(X,S)) is a quasi-normed space.
(P2) Assume that S has the property

‖{an}‖S ≤ C lim
n→∞

‖{ak}n
k=0‖S for all {an} ∈ S with a0 ≥ a1 ≥ · · · ≥ 0, (2.1)

where C > 0 is a constant depending only on S. Assume also that X is
complete and that any non-increasing sequence of non-negative numbers
{an} ∈ `∞ belongs to S if and only if limn→∞ ‖{ak}n

k=0‖S < ∞. Then
A(X, S, {An}) is complete.

Definition 2.3. A scale of smoothness is a family of pairwise distinct sequence
spaces S = {Si}i∈I such that Si ⊆ c0 for all i, all inclusions Si ↪→ Sj are continu-
ous, and the inclusion relation ⊂ defines a total order on S.

Some examples of scales of smoothness are the Lorentz scale of smoothness L =
{`p,r : 0 < r < ∞ and 0 < p ≤ ∞} and the Lorentz–Zygmund scale of smoothness
LZ = {`p,r,γ : 0 < r, γ < ∞ and 0 < p ≤ ∞}, where

`p,r,γ = {{an} ∈ `∞ : ‖{an}‖p,r,γ =

[
∞∑

n=1

nrp−1(1 + log n)γp(a∗n)p

] 1
p

< ∞}

More precisely, we have the following technical result:

Lemma 2.4. L is an scale of smoothness, since the following are strict inclusions:

(a) `p,r+e ⊂ `q,r for all 0 < p, q and 0 < r, e < ∞.
(b) `p,r ⊂ `q,r for all 0 < p < q and 0 < r < ∞.

Furthermore, LZ is also an scale of smoothness, since Lorentz–Zygmund sequence
spaces satisfy the following strict inclusions:

(c) `p,r+e,γ ⊂ `p,r,α for all 0 < p ≤ ∞,0 < γ, α < ∞ and 0 < r, e < ∞.
(d) `p,r,γ ⊂ `q,r,γ for all 0 < p < q ≤ ∞,0 < γ < ∞ and 0 < r < ∞.
(e) `p,r,γ ⊂ `p,r,α for all 0 < p ≤ ∞, 0 < r < ∞ and 0 < α < γ < ∞.

Proof. For the case of Lorentz sequence spaces, see [11, Lemma 1.5.2. and sub-
sequent remarks, pp. 29-31]. Part (a) is also proved by other means at Section
4 of this paper. The proof for the Lorentz–Zygmund scale of smoothness is simi-
lar. �
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Definition 2.5. We say that the scale of smoothness S is admissible with re-
spect to the approximation scheme (X, {An}) if all members of S are admissi-
ble sequence spaces with respect to (X, {An}). We say that the approximation
scheme (X, {An}) preserves the scale of smoothness S if S is admissible and
A(X, Si, {An}) is strictly contained into A(X, Sj, {An}) whenever Si, Sj ∈ S and
Si ⊂ Sj.

Definition 2.6. We say that the sequence space S is rearrangement invariant if
{an} ∈ S ⇔ {a∗n} ∈ S. We say that the scale of smoothness S is rearrangement
invariant if all members of S are rearrangement invariant.

Note that, given any sequence space S satisfying (A1), (A2), the new sequence
space given by

S∗ = {{an} : {a∗n} ∈ S},
when provided by the norm ‖{an}‖S∗ = ‖{a∗n}‖S is rearrangement invariant. Fur-
thermore, if S is admissible with respect to the approximation scheme (X, {An}),
then S∗ is also admissible for this approximation scheme and A(X,S, {An}) =
A(X, S∗, {An}). It is because of these observations that we assume, in all what
follows, that our admissible sequence spaces and our admissible scales of smooth-
ness are rearrangement invariant.

3. The linear case

Theorem 3.1. Let (X, {An}) be a nontrivial linear approximation scheme and
let us assume that X is Banach. If S1, S2 are two sequence spaces, S2 is strictly
contained into S1, and, for all decreasing sequences a0 ≥ a1 ≥ · · · we have that

{an} ∈ Si if and only if lim
n→∞

‖{ak}n
k=0‖Si

< ∞ (i = 1, 2). (3.1)

Then the norms of A(X, S1, {An}) and A(X, S2, {An}) are not equivalent. In
particular, if the spaces Si satisfy (2.1), then A(X, S2, {An}) is strictly contained
into A(X,S1, {An}). In other words: (X, {An}) preserves all scales of smoothness
whose members satisfy (2.1) and (3.1). Furthermore, if X is Hilbert or dim An <
∞ for all n then (X, {An}) preserves all scales of smoothness.

Proof. We just need to prove that the norms of the involved spaces are not equiv-
alent. Now, by hypothesis, we know that there exists a sequence {εn} ∈ S1 \ S2.
Moreover, we can assume with no loss of generality that ε0 > ε1 > · · · > 0. Let
yN ∈ AN+1 be such that E(yN , Ak) = εk for all k ≤ N (this element exists be-
cause of the linearity assumption and because X is Banach, see [7]). Obviously,
we have that {yN} ⊆ A(X, S1, {An}) ∩ A(X, S2, {An}),

lim
N→∞

‖yN‖A(X,S1) = lim
n→∞

‖{εk}n
k=0‖S1 < ∞

and
lim

N→∞
‖yN‖A(X,S2) = lim

n→∞
‖{εk}n

k=0‖S2 = ∞.

This proves first part of the theorem. Last claim is a direct consequence of clas-
sical Bernstein’s Lethargy Theorem [6] and its generalization to Hilbert setting
by Nikolskii [17, 16] and Tjuriemskih [31, 30] (see also [1]). �
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4. General approximation schemes

Theorem 4.1. Let us assume that (X, {An}) is an approximation scheme such
that E(S(X) ∩ An+1, An) ≥ c > 0, for infinitely many natural numbers n ∈ N,
and for a certain constant c > 0. Let S1, S2 be two admissible sequence spaces
verifying

lim
N→∞

‖{1, 1, · · · , 1N-th position, 0, 0, · · · }‖S1

‖{1, 1, · · · , 1N-th position, 0, 0, · · · }‖S2

= +∞.

Then the norms of A(X, S1, {An}) and A(X, S2, {An}) are not equivalent.

Proof. By hypothesis, there exists a sequence of elements aN ∈ AN (N ∈ N0 ⊆ N)
such that aN ∈ AN , ‖aN‖X = 1, and E(aN , AN−1) > c. Then 1 ≥ E(aN , Ak) > c
for all k < N and E(aN , Ak) = 0 for all k ≥ N . Let us use the notation
1N = {1, 1, · · · , 1N-th position, 0, 0, · · · }. Then

‖{E(aN , Ak)}∞k=0‖S1 ≥ c‖1N‖S1 and ‖{E(aN , Ak)}∞k=0‖S2 ≤ ‖1N‖S2 ,

so that

‖aN‖A(X,S1)

‖aN‖A(X,S2)

=
‖{E(aN , Ak)}∞k=0‖S1

‖{E(aN , Ak)}∞k=0‖S2

≥ c
‖1N‖S1

‖1N‖S2

→∞ (for N →∞).

This proves the theorem. �

Remark 4.2. Theorem 4.1 can be used for the Lorentz sequence spaces `p,r. To
prove this it is enough to take into account that, for all α > −1,

lim
N→∞

∑N
k=1 kα

Nα+1
=

1

α + 1
,

(see [21, Part I, Problem 71]) so that

lim
N→∞

‖1N‖`q,r2

‖1N‖`p,r1

= lim
N→∞

(
∑N

k=1 kr2q−1)
1
q

(
∑N

k=1 kr1p−1)
1
p

= lim
N→∞

(N r2q/r2q)
1
q

(N r1p/r1p)
1
p

=
(r1p)

1
p

(r2q)
1
q

lim
N→∞

N r2−r1

=


+∞ for r1 < r2

0 for r1 > r2

(r1p)
1
p

(r2q)
1
q

for r1 = r2

In particular, these computations show that inclusion `p,r+e ⊂ `q,r is strict for all
r, e > 0 and all p, q > 0. Unfortunately, these computations are not useful for the
important case r1 = r2. In order to deal with this case, so that we can prove that
our approximation scheme preserves the Lorentz smoothness scale, we need to
restrict a little bit more the class of approximation schemes we are considering.
Concretely, we can use the following result by Brudnyi.

Theorem 4.3 (Brudnyi, see Theorem 4.5.12 and Remark 4.5.13 in [8]). Let us
assume that (X, {An}) is an approximation scheme such that X is Banach and
E(S(X)∩An+1, An) ≥ c > 0 for all n ∈ N, and for a certain constant c > 0. Let
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us also assume that An + Am ⊆ A− n + m for all n,m ∈ N and let {εn} be any
convex non-increasing sequence of positive real numbers belonging to c0. Then:

(i) There exists an element x ∈ X such that E(x, An) ≥ εn for all n ∈ N and

lim inf E(x,An)
εn

< ∞.

(ii) If, furthermore, supn∈N
εn

ε2n
< ∞ then there exists an element x ∈ X such

that E(x, An) ≈ εn

Corollary 4.4. If the approximation scheme (X, {An}) verifies the hypotheses of
Theorem 4.3, then it preserves the Lorentz scale of smoothness.

Proof. We only need to deal with the case r1 = r2 = r and p < q. Take εn =

n−r(1+log2 n)−
1
q . This sequence belongs to `r,q\`r,p and it is convex. Furthermore,

sup
n∈N

n−r(1 + log2 n)−
1
q

(2n)−r(1 + log2(2n))−
1
q

= sup
n∈N

1

2−r

n−r(1 + log2 n)−
1
q

n−r(2 + log2 n)−
1
q

< ∞

Thus, if we apply part (ii) of Brudnyi’s Theorem, we have that there exists x ∈ X
such that E(x, An) ≈ εn. Hence x ∈ Ar

q(X, {An}) \ Ar
p(X, {An}). �

An interesting example of approximation scheme verifying Brudnyi’s conditions
is the following one: Take X a quasi-Banach space such that there exists an
infinite sequence of linear projections Pn : X → X satisfying rank(Pn) = n
for all n ≥ 1 and supn≥1 ‖Pn‖ = C < ∞ (e.g. this condition holds for X
whenever X contains a complemented subspace Y such that Y has a Schauder
basis). Then (X, {Σn}) satisfies the hypotheses of Theorem 4.3, where Σn =
{T ∈ B(X, X) : rank(T ) < n}. Of course, in this case, E(T, Σn) = an(T ) is
the n-th approximation number of the operator T . To prove this claim, it is
enough to take into account that, if Hn = Pn(X) and we define Qn : X → Hn by
Qn(x) = Pn(x) and in : Hn → X denotes the inclusion map, then 1Hn = QnPnin,
‖Qn‖ = ‖Pn‖ ≤ C, ‖in‖ = 1, so that:

1 = an(1Hn) ≤ ‖Qn‖an(Pn)‖in‖ ≤ Can(Pn) for all n = 1, 2, · · · .

Hence an( Pn

‖Pn‖) = 1
‖Pn‖an(Pn) ≥ 1

C
an(Pn) ≥ c = 1/C2 > 0, n = 1, 2, · · · , so that

Pn

‖Pn‖ ∈ S(B(X, X)) ∩ Σn+1 and E( Pn

‖Pn‖ , Σn) = an( Pn

‖Pn‖) > c.

Corollary 4.5. Let us assume that X is Banach and the approximation scheme
(X, {An}) satisfies Shapiro’s theorem. Then there exists an increasing sequence
of natural numbers {m(n)} such that (X, {Am(n)}) preserves the Lorentz scale of
smoothness.

Proof. By hypothesis, the approximation scheme (X, {An}) satisfies Shapiro’s
theorem so that E(S(X), An) = 1 for all n (see [5, Corollary 3.6]). It follows that
we can use the density of

⋃
n∈N An in X to prove that, for a certain increasing

sequence of natural numbers m(n), Bn = Am(n) satisfies Bn + Bm ⊆ Bn+m and
E(S(X)∩Bn+1, Bn) ≥ 1

2
for all n, so that (X, {Bn}) is an approximation scheme

verifying the hypotheses of Theorem 4.3. �

Remark 4.6. There are, of course, non-linear approximation schemes verifying
stronger results than the general results given by Theorem 4.1 and Corollaries
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4.4, 4.5. For example, Starovoitov [24] has proved that approximation of con-
tinuous functions by rational functions Rn := {p(t)/q(t) : p, q ∈ Πn and q(t) 6=
0 for all t ∈ [a, b]}, satisfies Bernstein’s Lethargy Theorem, so that the non-linear
approximation scheme (C[a, b], {Rn}) preserves all scales of smoothness.

5. The case of approximation by finite rank operators

In this section we will study, for arbitrary infinite dimensional Banach spaces

X, Y , the inclusion relations between the ideal of operators L(a)
p,r(X, Y ) = {T ∈

B(X, Y ) : (an(T )) ∈ `p,r}, where an(T ) = infS∈B(X,Y ),rank(S)<n ‖T − S‖ denotes
the n-th approximation number of the operator T . These ideals have been the
subject of many papers and monographs. In particular, if we use the standard

notation L(a)
p,r =

⋃
X,Y L

(a)
p,r(X, Y ), and we take into account the inclusions of

Lorentz sequence spaces (see Lemma 2.4 below), then it is clear that L(a)
p,r+e ⊆ L

(a)
q,r

for all 0 < p, q and 0 < r, e < ∞ and L(a)
p,r ⊆ L(a)

q,r for all 0 < p < q and 0 < r <
∞. What is more, it is well known that, via the computation of approximation
numbers of the diagonal operators D : `p → `p, it is possible to show that these
inclusions are strict. But, to the knowledge of the author of this paper, strict

inclusions of the type L(a)
p,r+e(X, Y ) ⊂ L(a)

p,r(X, Y ) or L(a)
p,r(X, Y ) ⊂ L(a)

q,r(X,Y ) have
not been yet proved for arbitrary Banach spaces X, Y . This is what we make,
with the help of a very strong result by Oikhberg [18], in this section. Concretely,
we prove that for all X, Y infinite dimensional Banach spaces, approximation
by finite rank bounded linear operators T : X → Y preserves the Lorentz scale
of smoothness. A similar result also holds true for Lorentz–Zygmund scale of
smoothness. Some related results appear in [25], where equivalence of several
distinct norms for some operator ideals (defined as approximation spaces with
the help of symmetric norming functions) are proved.

Lemma 5.1. Assume that {an} ∈ `p,r and 0 < C < ∞. Then (a[n/C]) ∈ `p,r.

Proof. By definition, {an} ∈ `p,r if and only if {a∗n} ∈ `p,r, so that we can assume
with no loss of generality, that {an} is non-increasing. Then (a[n/C]) is also non-
increasing and, if we take into account that [n/C] can repeat its value at most
[C] + 1 times, we get:

• Case p ≥ 1
r
:

∞∑
n=1

nrp−1(a[n/C])
p ≤

∞∑
n=1

(C([n/C] + 1))rp−1 (a[n/C])
p

≤
∞∑

m=1

([C] + 1) (C(m + 1))rp−1 ap
m

≤ ([C] + 1)Crp−12pr−1

∞∑
m=1

mrp−1ap
m < ∞,

since supm≥1
(m+1)rp−1

mrp−1 = 2rp−1.
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• Case p < 1
r
:

∞∑
n=1

nrp−1(a[n/C])
p ≤

∞∑
n=1

(C[n/C])rp−1 (a[n/C])
p

≤ ([C] + 1)Crp−1

∞∑
m=1

mrp−1ap
m.

�

Indeed, a more general result can be proved.

Lemma 5.2. Let α, C > 1 and let S be an admissible sequence space with respect
to approximation schemes satisfying K(n) = αn. Let {an} be a non-increasing
sequence of non-negative real numbers. Then {an} ∈ S ⇔ (a[n/C]) ∈ S. In par-
ticular, this equivalence is verified by all Lorentz and Lorentz–Zygmund sequence
spaces, since they are admissible for K(n) = 2n.

Proof. Let us assume that (a[n/C]) ∈ S. The inequality a[n/C] ≥ an for all n, in
conjunction with the fact that S is a solid, implies that {an} ∈ S. Let us prove
the other implication. We use that α > 1 to claim that, for a certain natural
number k ≥ 1, αk > [C]+1. Let us assume that {an} is a non-increasing sequence
of non-negative real numbers and let {bn} be the sequence given by bn = a[n/C],
n = 1, 2, .... We want to show that {bn} ∈ S. Now, bαkn = ah

αkn
C

i ≤ an for all n

(since {an} is non-increasing and αkn/C ≥ ([C]+1)n/C ≥ n). Hence {bαkn} ∈ S.
Now, {bαk−1n} is non-increasing, so that admissibility of S for K(n) = αn implies
that {bαk−1n} ∈ S. A repetition of this argument k times gives us {bn} ∈ S. �

Theorem 5.3. For all X, Y infinite dimensional Banach spaces, approximation
by finite rank bounded linear operators T : X → Y preserves all its admissible
scales of smoothness. In particular, it preserves the Lorentz and the Lorentz–
Zygmund scales of smoothness.

Proof. Let S be an admissible scale of smoothness for approximation by finite
rank bounded linear operators and let us assume that S1, S2 ∈ S, S1 ⊂ S2. Let
(εn) ∈ S2\S1. We can assume with no loss of generality that (εn) is non-increasing
and converges to zero, since our sequence spaces are assumed to be rearrangement
invariant. Now, Theorem 1.1 from [18] guarantees that there exists an operator
T ∈ B(X,Y ) such that 3ε[n/6] ≥ an(T ) ≥ εn/9 for all n = 1, 2, · · · . Hence Lemma
5.2 implies that (an(T )) ∈ S2 \ S1. �

6. Real interpolation spaces

As it is well known, central theorems in approximation theory state a strong
relation between approximation spaces and the interpolation spaces obtained by
the use of the K-functional of Petree K(x, t,X, Y ) = infy∈Y ‖x− y‖X + t‖y‖Y ,

(X, Y )θ,q = {x ∈ X : ‖x‖θ,q = ‖t−(θ+ 1
q
)K(x, t,X, Y )‖Lq(0,∞) < ∞},

where 0 < θ < 1 and 0 < q ≤ ∞. In particular, if we use that Y is con-
tinuously embedded into X and K(x, t,X, Y ) is a monotone function of t, it
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is not difficult to prove that the norm of (X, Y )θ,q is equivalent to the norm
ρθ,q(x) = ‖{2kθK(x, 1

2k , X, Y )}∞k=0‖`q and, with this new norm, interpolation
spaces and approximation spaces are quite similar objects: we just replace the er-
rors of best approximation by the evaluation of Petree’s K-functional at the points
of a certain decreasing sequence of positive real numbers. It is then natural to
ask for a version of Bernstein’s lethargy theorem in terms of K-functionals. This
result already exists and was obtained by Krugljak [8, Theorems 4.5.7 and 4.5.10].
Concretely, he proved that, given a couple of quasi-Banach spaces (X0, X1), the
following are equivalent claims:

(K1) For each continuous concave function ϕ : (0, 1] → [0,∞] such that

lim
t→0

ϕ(t) = 0

there exists an element x ∈ X0 + X1 such that K(x, t,X0, X1) ≈ ϕ.

(K2) There exists x ∈ X0+X1 such that
∫ t

0
K(x, s, X0, X1)ds ≤ γK(x, t,X0, X1)

for all t ∈ (0, 1] and a certain γ > 0.

An easy consequence of Krugljak’s theorem is the following

Corollary 6.1. Let us assume that (X, Y ) is a couple, and Y ⊂ X. Let us assume
that condition (K2) is satisfied for the couple (X, Y ) and let (θ, q), (θ∗, q∗) be two
distinct points of (0, 1) × (0,∞]. Then (X, Y )θ,q 6= (X, Y )θ∗,q∗. Furthermore, all
these spaces are strictly contained into X.

In this section we state and prove a version of Shapiro’s theorem in terms of
K-functionals and we use it to state a general condition for the strict inclusion
of (X, Y )θ,q into X.

Theorem 6.2. Let Y be a quasi-semi-normed subspace of the quasi-Banach space
X and let us consider the K-functional K(x, t) = infy∈Y [‖x− y‖X + t‖y‖Y ]. The
following are equivalent claims:

(a) There exists c > 0 such that, for all t ∈ (0, 1], sup‖x‖X=1 K(x, t) > c.
(b) There exists c > 0 such that, for every strictly decreasing sequence of

positive numbers {tn} ∈ c0, we have that sup‖x‖X=1 K(x, tn) > c, n =
0, 1, 2, · · · .

(c) There exists c > 0 and a strictly decreasing sequence of positive numbers
{tn} ∈ c0 such that sup‖x‖X=1 K(x, tn) > c, n = 0, 1, 2, · · · .

(d) For all (bn) ⊂ [0,∞) such that limn→∞ bn = ∞ and all strictly decreasing
sequence of positive numbers {tn} ∈ c0, we have that A({bn}, {tn}) = {x ∈
X : supn≥1 bnK(x, tn) < ∞} is a proper subset of X.

In particular, when (a) holds true, the interpolation spaces (X, Y )θ,q are proper
subspaces of X.

Proof. The monotonicity of K(x, t) on (0, 1] gives the equivalences (a) ⇔ (b) ⇔
(c). To prove the other equivalences we need firstly note that A({bn}, {tn}) is
a quasi-Banach space continuously embedded into X. Let us now show that
(b) ⇔ (d).
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(b) ⇒ (d) Let, for each n ∈ N, xn ∈ S(X) be such that K(xn, tn) > c. Then

‖xn‖A({bn},{tn}) = sup
m≥1

bmK(xn, tm) ≥ bnK(xn, tn) > bnc →∞.

This shows that the norms of A({bn}, {tn}) and X are not equivalent, so that
A({bn}, {tn}) 6= X. This ends the proof.
(d) ⇒ (b) We show that the negation of (b) implies the negation of (d). Let {tn} ∈
c0 be a decreasing sequence and let us consider the values dn = sup‖x‖X=1 K(x, tn).
Then (dn) is a non-increasing sequence, so that (b) fails for {tn} if and only if
dn → 0. Assume this is the case. Let bn = 1

dn
and let x ∈ X. Then

sup
n≥1

bnK(x, tn) = sup
n≥1

bn‖x‖XK(
x

‖x‖X

, tn) ≤ sup
n≥1

bn‖x‖Xdn ≤ ‖x‖X < ∞.

Hence A({bn}, {tn}) = X and (d) also fails for {tn}. This ends the proof of the
equivalences.

Let us now assume that condition (a) holds true. In order to prove that
(X, Y )θ,q is a proper subspace of X, we use that

(X, Y )θ,q ⊆ (X,Y )θ,∞ = A({2nθ}, {2−n}) $ X.

�

Sometimes condition (a) of Theorem 6.2 can be checked directly. For example,

(a) holds true as soon as Y
X

is properly contained into X, since in that case
there exists x ∈ X with 0 < c = E(x, Y ) ≤ K(x, t) (all t > 0). If we assume that
Y is a dense subspace of X, things can be more complicated, but there are also
cases where a simple computation makes the work. For example, for X = C[0, 1]
and Y = C(1)[0, 1] it is easy to find, for each n ≥ 2, and for 0 < a < b < 1,
f(t) ∈ C[0, 1] such that f(a) = −1, f(b) = 1. Hence, if g ∈ C(1)[0, 1] and
‖f − g‖∞ < 1/2 then g(a) < −1/2, g(b) > 1/2, and the Mean Value Theorem

guarantees that ‖g‖C(1) ≥ g(b)−g(a)
b−a

≥ 1/(b − a). Thus, for t < 1/2 we have

that K(f, t) ≥ t 1
b−a

. Taking b − a ≤ t we get K(f, t) ≥ 1/2. Of course, these
computations are just a particular case of the following general situation:

Proposition 6.3. Let X, Y be such that Y is a dense subspace of X and there
exists an strictly decreasing function φ : (0, 1] → R+ and a constant c ∈ (0, 1)
such that limt→0 φ(t) = +∞ and, for each ε > 0 there exists xε ∈ S(X) such that
y ∈ Y and ‖xε−y‖X < c implies ‖y‖Y ≥ φ(ε). Then the K-functional associated
to the pair (X,Y ) satisfies condition (c) of Theorem 6.2

Proof. Take tn = 1
φ(1/n)

and zn = x 1
n
. Then K(zn, tn) ≥ c since otherwise we

would have ‖zn− y‖X + tn‖y‖Y < c for a certain y ∈ Y , which is impossible since
‖zn − y‖X ≤ c implies tn‖y‖Y ≥ tnφ(1/n) = 1 > c. This ends the proof. �

Of course, in many concrete cases, K(x, t) is known (or, at least, an equivalent
function w(x, t) ≈ K(x, t) is known). In these cases part (a) can also be checked
by direct computations and, usually, this checking can be made with some easy
estimations.
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On the other hand, it would be nice to know if condition (a) of Theorem 6.2
follows just from the strictness of the inclusions (X, Y )θ,q ⊂ X, since a similar
result is known for approximation spaces. Concretely, in [5] it is proved that
approximation schemes (X, {An}) verifying K(n) = cn satisfy Shapiro’s theorem
if and only if the approximation space Ar

q(X, {An}) is properly contained into
X for some choice of parameters q, r. Finally, another main open question (still
unsolved) is to know if condition (K2) above can be relaxed in order to guarantee
that the natural inclusions between interpolation spaces are strict.
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