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Abstract. A theorem of Dixmier states that each bounded linear functional
f on the algebra of bounded linear operators on a separable Hilbert space is
a direct sum of a trace functional g and a singular functional h, vanishing
on the compact operators, such that ‖f‖ = ‖g‖ + ‖h‖. We use elementary
methods to construct, via the state space of a C

∗
-algebra, a Banach space of

C
∗

matrices that contains a closed subspace on which a version of Dixmier’s
theorem is proved. When the C

∗
-algebra is taken to be the complex numbers

our approach gives elementary and transparent proofs of Dixmier’s theorem
and the trace formula tr(AB) = tr(BA), without using the operator theoretical
machineries used in the known proofs.

1. Introduction and notation

Let f be a bounded linear functional on B(`
2
) (the space of bounded linear

operators on the Hilbert sequence space `
2
). Then f defines a bounded linear

functional on K(`
2
), the ideal of compact operators on `

2
. Thus there is a trace

class operator (or matrix) A
f

such that f(B) = tr(A
f
B), where tr denotes the

trace function, for all B ∈ K(`
2
) [5, p. 46, Theorem 1]. Since the trace class opera-

tors form an ideal in B(`
2
) [5, p. 42, Theorem 5], the function g(B) = tr(A

f
B) for

B ∈ B(`
2
) defines a bounded linear functional on B(`

2
). The functional h = f−g

vanishes on K(`
2
) is also known as a singular linear functional. Dixmier’s theorem
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FUNCTIONAL DECOMPOSITION 107

([2], [5, p. 50, Theorem 1]), which has also been attributed to Schatten, states
that this decomposition is unique and satisfies the norm equality ‖f‖ = ‖g‖+‖h‖.

As defined in the 1976 paper [1] of Alfsen and Effros, a closed subspace J of

a Banach space X is an M -ideal if the annihilator J
⊥

is complemented as an
`
1

summand in the dual space X
#

of X, i.e., X
#

= J
⊥ ⊕1 E for some closed

subspace E of X
#
. This theorem of Dixmier can now be restated as the compact

operators form an M -ideal in B(`
2
) (later it is also known as the only nontrivial

one [6, 7]). See also [3]. Most spaces with known M -ideal structures are Banach
algebras, mainly bounded operators on certain Banach spaces.

Since a C
∗
-algebra resemble the complex field in many ways, here we will use

a fixed C
∗
-algebra A with identity 1 and state space s(A), together with the pair

K(`
2
) and B(`

2
), to build a Banach space of matrices over A with an M -ideal

that corresponds to K(`
2
). The resulting space is not a Banach algebra. When

the C
∗
-algebra is taken to be C, the space is exactly B(`

2
). Since there is no

parallel machinery available for our setting, this approach also gives elementary
alternate proofs of Dixmier’s theorem and the trace formula tr(AB) = tr(BA),
without using the theory of trace class operators and other machineries.

Let A be a C
∗
-algebra with identity 1 and state space s(A) (consisting of all

states, i.e., bounded positive linear functionals of norm 1, on A) with the weak
∗

topology (as a subspace of the dual space A#
of A). For each matrix B =

[
b

jk

]
with entries b

jk
∈ A, and each ψ ∈ s(A), denote by ψ̃(B) the complex matrix[

ψ(b
jk

)
]
. Let M be the space of all matrices A =

[
a

jk

]
over A such that (the

scalar matrix)

ϕ̃(A) :=
[
ϕ(a

jk
)
]
∈ B(`

2

) for all ϕ ∈ s(A) and

the map ϕ 7→ ϕ̃(A) =
[
ϕ

(
a

jk

)]
is continuous from

s(A) with the weak
∗

topology to B(`
2

) with the norm topology.

Thus each A ∈ M defines a continuous map, ϕ 7→ ϕ̃(A), from s(A) to B(`
2
).

Since s(A) with the weak
∗

topology is a compact Hausdorff space [4, p. 257], it

is well known that C(s(A),B(`
2
)) is a Banach space with the norm

‖A‖ = sup
ϕ∈s(A)

‖ϕ̃(A)‖
B(`

2
)

.

Each A ∈M induces an element Ã in C(s(A),B(`
2
)):

Ã(ϕ) = ϕ̃(A), ϕ ∈ s(A).

So M can be considered as a subspace of the Banach space C(s(A),B(`
2
)). The

map A 7→ Ã does not map M onto C(s(A),B(`
2
)), even when `

2
is replaced by

the one dimensional C and in the very simple case of A = C([0, 1]) (the algebra
of continuous complex-valued functions on the interval [0, 1]).

Example 1.1. With A = C[0, 1] there is a continuous map Ψ : s(A) → C such
that there does not exist a ∈ A that satisfies Ψ(ϕ) = ϕ(a) for all ϕ ∈ s(A).
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Proof. Each t ∈ [0, 1] induces a state ϕt on A: the evaluation functional ϕ
t
(a) =

a(t) for all a ∈ A. Let a1 ∈ A be given by a1(t) = t for all t ∈ [0, 1]. Let

V =

{
ϕ ∈ s(A) :

∣∣∣ϕ(a1)− ϕ
1/2

(a1)
∣∣∣ < 1

4

}
,

a weak
∗

neighborhood of ϕ
1/2

. Since s(A), with the relative weak
∗

topology,

being compact and Hausdorff [4, p. 257], is normal, there is a continuous map
Ψ : s(A) → C such that Ψ(ϕ

1/2
) = 1 and Ψ(ϕ) = 0 for all ϕ ∈ s(A) \ V . In

particular Ψ(ϕ
0
) = 0. Suppose there is an a ∈ A such that

Ψ(ϕ) = ϕ(a) for all ϕ ∈ s(A).

Then 1 = Ψ(ϕ
1/2

) = a(1/2) and 0 = Ψ(ϕ
0
) = a(0). Let ϕ̂ := 1

5
ϕ

1/2
+ 4

5
ϕ

0
. Then

ϕ̂ ∈ s(A) and∣∣∣ϕ̂(a1)− ϕ
1/2

(a1)
∣∣∣ =

∣∣∣∣15ϕ1/2
(a1) +

4

5
ϕ0(a1)− ϕ

1/2
(a1)

∣∣∣∣ =
2

5
>

1

4
.

Thus ϕ̂ ∈ s(A) \ V , and hence,

0 = Ψ(ϕ̂) = ϕ̂(a) =
1

5
a (1/2) +

4

5
a (0) =

1

5
,

which is a contradiction. �

It will be shown in Proposition 2.1 that the image of M under the map A 7→ Ã
is a closed subspace of C(s(A),B(`

2
)), and M is a Banach space with the norm

‖A‖ = sup
ϕ∈s(A)

‖ϕ̃(A)‖
B(`

2
)

.

Let A ∈ M. For each n ∈ N, Any
denotes the n−th compression matrix

of A; that is, the (j, k)-th entry of Any
is exactly the same as that of A for

1 ≤ j, k ≤ n, and is zero otherwise. Denote by An [respectively, A
n| ] the matrix

whose first n rows [respectively, columns] coincide with that of A and all other
rows [respectively, columns] are zero. Dually, A

n
[respectively, A|n ] is the matrix

whose first n rows [respectively, columns] are zero and all other rows [respectively,
columns] coincide with that of A. Denote by K the space of all A ∈M with the
property that ∥∥A− An

∥∥ = ‖A
n
‖ → 0 as n→∞.

Note that this is equivalent to the compactness of A (i.e., A ∈ K(`
2
)) when A is

the complex field C.
We will show that the annihilator K⊥

of K behaves in the dual space M#
of M

just like [K(`
2
)]
⊥

in [B(`
2
)]

#
, as in Dixmier’s theorem. That is K is an M -ideal

in M.
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2. Preliminary results

We begin the section by showing that M is a Banach space.

Proposition 2.1. M is a Banach space with the norm

‖A‖ = sup
ϕ∈s(A)

‖ϕ̃(A)‖
B(`

2
)

.

The state norm ‖·‖
s

on A is defined by

‖a‖
s

= sup
ϕ∈s(A)

|ϕ(a)| , a ∈ A.

The state norm is a norm and [8, Proposition 2.3]

‖a‖
s
≤ ‖a‖ ≤ 2 ‖a‖

s
for all a ∈ A.

The state norm and the C
∗
-norm on A are equivalent.

Proof. It suffices to show that the image of M under the map A 7→ Ã is closed

in C(s(A),B(`
2
)). Let {An} be a sequence in M such that Ãn → Ψ for some

Ψ ∈ C(s(A),B(`
2
)). Let An =

[
a

(n)

jk

]
. For each j, k ∈ N,∥∥∥a(n)

jk
− a

(m)

jk

∥∥∥
s

= sup
ϕ∈s(A)

∣∣∣ϕ(a
(n)

jk
)− ϕ(a

(m)

jk
)
∣∣∣

≤ sup
ϕ∈s(A)

‖ϕ̃(An)− ϕ̃(Am)‖
B(`

2
)

→ 0

as n,m → ∞. By the equivalence of the state norm and the norm on A, the

sequence
{
a

(n)

jk

}
n∈N

is a Cauchy sequence in A. Thus there is an a
jk
∈ A such

that
∥∥∥a(n)

jk
− a

jk

∥∥∥ → 0. We also have∥∥∥Ãn(ϕ)−Ψ(ϕ)
∥∥∥
B(`

2
)

→ 0 for all ϕ ∈ s(A).

For each ϕ ∈ s(A), let Ψ(ϕ) =
[
ψ

jk
(ϕ)

]
. It follows that

ϕ(a
(n)

jk
) → ψ

jk
(ϕ) for all ϕ ∈ s(A).

But we also have
ϕ(a

(n)

jk
) → ϕ(a

jk
) for all ϕ ∈ s(A),

and hence
ϕ(a

jk
) = ψ

jk
(ϕ) for all ϕ ∈ s(A).

Let A =
[
a

jk

]
. Then

Ψ(ϕ) =
[
ψ

jk
(ϕ)

]
=

[
ϕ(a

jk
)
]

= ϕ̃(A) = Ã(ϕ) for all ϕ ∈ s(A).

That is Ã = Ψ ∈ C(s(A),B(`
2
)), and A ∈M. �

Now we prove some properties of K that are parallel to well-known properties
of compact operators.

Proposition 2.2. K is a closed proper subspace of M.
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Proof. Let {A
k
}∞k=1 be a sequence inK such that ‖A

k
− A‖ → 0 for some A ∈ M.

Let ε > 0. There exists an N ∈ N such that

‖A
k
− A‖ < ε

4
for all k ≥ N .

Since A
N
∈ K, there is an n0 ∈ N such that∥∥∥(A

N
)

n
− A

N

∥∥∥ < ε

4
for all n ≥ n0 .

Let n ≥ n0 .∥∥An − A
∥∥ ≤∥∥An − (A

N
)n

∥∥ +
∥∥(A

N
)n − A

N

∥∥ + ‖A
N
− A‖

<
∥∥∥(A− A

N
)

n

∥∥∥ +
ε

4
+
ε

4
≤ ‖A

N
− A‖+

ε

2
< ε

That is
∥∥A− An

∥∥ → 0 as n→∞, and hence A ∈ K.
By definition, we have K ⊆ M. To see that the inclusion is proper, we note

that the matrix A with 1 (the identity of A) on the diagonal and 0 elsewhere
(i.e., A(j, k) = δ

jk
1) is in M but not in K. Weak

∗
to norm continuity of the map

ϕ 7→ ϕ̃(A) follows immediately from the fact that ϕ̃(A) is the identity matrix in

B(`
2
) for each ϕ ∈ s(A). Thus A ∈M. But

∥∥ϕ̃(A− An)
∥∥ = 1 for all ϕ ∈ s(A)

and all n ∈ N, which implies that A 6∈ K. �

Proposition 2.3. Let A ∈ M satisfy A = A
N| (respectively, A = A

N
) for some

fixed N ∈ N. Then A ∈ K, and
∥∥A− Aνy

∥∥ → 0 as ν →∞.

Proof. Suppose A = A
N
∈ M. For n ≥ N , we have An = A

N
= A. Thus∥∥A− An

∥∥ = 0 for all n ≥ N , and hence A ∈ K.
If A = A

N| ∈M, then the transpose of A,

B = A
T

(
B

jk
= (A

T

)
jk

= A
kj
∀ j, k ∈ N

)
,

satisfies

B = A
T

= [A
N| ]

T

= B
N
,

and hence, ∥∥B −Bn

∥∥ = 0 for all n ≥ N .

For each n ≥ N we have∥∥∥A− A
n|

∥∥∥ = sup
ϕ∈s(A)

∥∥∥ϕ̃(
A− A

n|

)∥∥∥
B(`

2
)

= sup
ϕ∈s(A)

∥∥∥∥(
ϕ̃

(
A− A

n|

))T
∥∥∥∥
B(`

2
)

= sup
ϕ∈s(A)

∥∥∥∥ϕ̃(
A

T −
(
A

n|

)T
)∥∥∥∥

B(`
2
)

= sup
ϕ∈s(A)

∥∥ϕ̃ (
B −Bn

)∥∥
B(`

2
)

=
∥∥B −Bn

∥∥ = 0.

Since A is assumed to be in M, this shows that A = A
N| ∈ K, and hence∥∥A− Aνy

∥∥ =
∥∥A− Aν

∥∥ → 0 as ν →∞.
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For the case A = A
N
, we see as above that C = A

T
satisfies C = C

N| ∈ K,
and hence∥∥A− Aνy

∥∥ =
∥∥∥(
A− Aνy

)T
∥∥∥ =

∥∥C − Cν

∥∥ → 0 as ν →∞.

�

For each A =
[
a

jk

]
∈M, A

∗
is defined by

(A
∗
)

jk
= a

∗

kj
for all j, k ∈ N.

It is easy to see that A
∗ ∈M whenever A ∈M.

Proposition 2.4. Let A =
[
a

jk

]
be a matrix over A.

(1) A ∈ K iff the map ϕ 7→ ϕ̃(A) is continuous form s(A) with the weak
∗

topology to K(`
2
) with the operator norm topology.

(2) A ∈ K iff A
∗

=
[
a
∗

jk

]T

∈ K.

(3) If A ∈M, then A ∈ K iff
∥∥∥A− A

n|

∥∥∥ =
∥∥∥A|n

∥∥∥ → 0 as n→∞.

Proof. (1) [⇒] Suppose A ∈ K. Then A ∈ M. Thus ϕ 7→ ϕ̃(A) is continuous

from s(A) with weak
∗

topology to B(`
2
) with norm topology. It suffices to show

that ϕ̃(A) ∈ K(`
2
) for all ϕ ∈ s(A). Let ϕ ∈ s(A). We have∥∥ϕ̃(A)− [ϕ̃(A)]n

∥∥
B(`

2
)

=
∥∥ϕ̃(A− An)

∥∥
B(`

2
)

≤
∥∥A− An

∥∥ → 0 as n→∞

and hence ϕ̃(A) ∈ K(`
2
).

(1) [⇐] Let ε > 0. By continuity, for each ϕ ∈ s(A), there is a weak
∗

open set
V

ϕ
⊆ s(A) such that

ϕ ∈ V
ϕ

and
∥∥∥ϕ̃(A)− ψ̃(A)

∥∥∥
K(`

2
)

=
∥∥∥ϕ̃(A)− ψ̃(A)

∥∥∥
B(`

2
)

<
ε

4
∀ ψ ∈ V

ϕ
.

Since s(A) with the weak
∗

topology is a compact Hausdorff space [4, p. 257], and

s(A) ⊆
⋃

ϕ∈s(A)

V
ϕ
,

there are ϕ1 , . . . ϕk
∈ s(A) such that

s(A) ⊆
k⋃

j=1

Vϕ
j
.

For each j = 1, . . . , k, since ϕ̃
j
(A) ∈ K(`

2
), there is an N

j
∈ N such that∥∥∥ϕ̃

j
(A)− [ϕ̃

j
(A)]n

∥∥∥
B(`

2
)

=
∥∥∥ϕ̃

j
(A)− [ϕ̃

j
(An)]

∥∥∥
B(`

2
)

<
ε

4
for all n ≥ N

j
.
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Put N = max
{
N

j
: j = 1, . . . , k

}
. Then for n ≥ N and ϕ ∈ s(A), we have

ϕ ∈ Vϕ
j

for some j = 1, . . . , k, and thus∥∥ϕ̃(A)− ϕ̃(An)
∥∥
B(`

2
)

≤
∥∥∥ϕ̃(A)− ϕ̃

j
(A)

∥∥∥
B(`

2
)

+
∥∥∥ϕ̃

j
(A)− ϕ̃

j
(An)

∥∥∥
B(`

2
)

+
∥∥∥ϕ̃

j
(An)− ϕ̃(An)

∥∥∥
B(`

2
)

<
ε

4
+
ε

4
+

∥∥∥∥[
ϕ̃

j
(A)− ϕ̃(A)

]
n

∥∥∥∥
B(`

2
)

<
ε

2
+

∥∥ϕ̃
j
(A)− ϕ̃(A)

∥∥
B(`

2
)

<
3ε

4

Since ϕ ∈ s(A) is arbitrary,∥∥A− An

∥∥ = sup
ϕ∈s(A)

∥∥ϕ̃(A− An)
∥∥
B(`

2
)

= sup
ϕ∈s(A)

∥∥ϕ̃(A)− ϕ̃(An)
∥∥
B(`

2
)

≤3ε

4
< ε for all n ≥ N.

(2) [⇒] Suppose that A ∈ K. Then ϕ 7→ ϕ̃(A) is weak
∗

to norm continuous

from s(A) to K(`
2
). Let ε > 0. For each ϕ ∈ s(A), there is a weak

∗
neighborhood

Uϕ of ϕ such that

for all ψ ∈ Uϕ , ψ̃(A) ∈ K and
∥∥∥ϕ̃(A)− ψ̃(A)

∥∥∥
B(`

2
)

< ε.

Since ψ is a positive linear functional, ψ(a
∗
) = ψ(a) for all a ∈ A [4, p. 255].

From ψ̃(A) ∈ K(`
2
), we have ψ̃(A

∗
) = [ψ̃(A)]

∗ ∈ K(`
2
), and∥∥∥ϕ̃(A

∗
)− ψ̃(A

∗
)
∥∥∥
B(`

2
)

=
∥∥∥[ϕ̃(A)]

∗ − [ψ̃(A)]
∗
∥∥∥
B(`

2
)

=
∥∥∥ϕ̃(A)− ψ̃(A)

∥∥∥
B(`

2
)

< ε.

Thus the map ϕ 7→ ϕ̃(A
∗
) is continuous from s(A) with weak

∗
topology to K(`

2
)

with norm topology. Hence A
∗ ∈ K by part (1).

(2) [⇐] Suppose that A
∗ ∈ K. Then A = (A

∗
)
∗ ∈ K.

(3) [⇒] Suppose A ∈ K. Then A
∗ ∈ K and hence∥∥A∗ − (A

∗
)n

∥∥ → 0 as n→∞.

Thus ∥∥∥A− A
n|

∥∥∥ =
∥∥∥(A− A

n|)
∗
∥∥∥ =

∥∥A∗ − (A
∗
)n

∥∥ → 0 as n→∞.

(3) [⇐] Suppose
∥∥∥A− A

n|

∥∥∥ → 0. Since each A
n| ∈ K by Proposition 2.3, and

since K is closed under the operator norm, A ∈ K. �

3. The dual of K

In this section we will obtain a functional matrix representation of the dual K#

of K. First note that for A =
[
a

jk

]
∈M, and each j, k ∈ N, we have∥∥a

jk

∥∥ ≤ 2
∥∥a

jk

∥∥
s

= 2 sup
ϕ∈s(A)

∣∣ϕ(a
jk

)
∣∣ ≤ 2 sup

ϕ∈s(A)

‖ϕ̃(A)‖
B(`

2
)

= 2 ‖A‖ .

We will need the following lemma in the proofs of Propositions 3.2 and 3.3
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Lemma 3.1. Let {fn} be a sequence in the dual space X
#

of a Banach space X

such that f(x) =
∞∑

k=1

f
k
(x) converges for all x ∈ X. Then f ∈ X#

.

Proof. A routine argument shows that f is linear. For the boundedness of f , let

gn =
n∑

k=1

f
k

for each n ∈ N. Then gn ∈ X
#

. For each x ∈ X, since
∞∑

k=1

f
k
(x)

converges, there is an αx ≥ 0 such that |gn(x)| ≤ αx for all n ∈ N. So {gn} is a

sequence in X
#

that is pointwise bounded. The uniform boundedness principle
implies that {gn} is uniformly bounded; i.e., there is a β such that ‖gn‖ ≤ β for
all n ∈ N. For each x ∈ X, we have

|f(x)| = lim
n→∞

∣∣∣∣∣
n∑

k=1

f
k
(x)

∣∣∣∣∣ = lim
n→∞

|gn(x)| ≤ lim sup
n→∞

‖gn‖ ‖x‖ ≤ β ‖x‖ .

Thus f ∈ X#
with ‖f‖ ≤ β. �

Proposition 3.2. For each f ∈ K#
, there exists a unique matrix

[
f

jk

]
, with

f
jk
∈ A#

, such that

f(A) =
∞∑

j=1

∞∑
k=1

f
jk

(a
jk

) for all A =
[
a

jk

]
∈ K.

Conversely, each matrix
[
g

jk

]
over A#

with the property that
∞∑

j=1

∞∑
k=1

g
jk

(a
jk

) converges for every A =
[
a

jk

]
∈ K,

defines a bounded linear functional

g(A) =
∞∑

j=1

∞∑
k=1

g
jk

(a
jk

)
(
A =

[
a

jk

]
∈ K

)
on K.

Moreover, in this case,
∞∑

k=1

∞∑
j=1

g
jk

(a
jk

) converges, and,

∞∑
k=1

∞∑
j=1

g
jk

(a
jk

) =
∞∑

j=1

∞∑
k=1

g
jk

(a
jk

) for all
[
a

jk

]
∈ K.

Thus K#
is identified with the space of all such matrices. The norm of such a

matrix is defined to be the norm of the bounded linear functional it represents,
i.e.,

∥∥[
f

jk

]∥∥ = ‖f‖ if
[
f

jk

]
represents f ∈ K#

.

Proof. Let f ∈ K#
. For each (j, k) ∈ N × N and each a ∈ A, since the matrix

E
jk

(a) with (j, k) entry a and all others 0 is easily seen from Proposition 2.3 to
be in K with ∥∥E

jk
(a)

∥∥ = ‖a‖
s
≤ ‖a‖ ,
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we define f
jk

by
f

jk
(a) = f(E

jk
(a)) for all a ∈ A.

It is readily seen that f
jk

is linear, and∣∣f
jk

(a)
∣∣ =

∣∣f(E
jk

(a))
∣∣ ≤ ‖f‖∥∥E

jk
(a)

∥∥ ≤ ‖f‖ ‖a‖ .
Hence f

jk
∈ A#

with
∥∥f

jk

∥∥ ≤ ‖f‖. Let A =
[
a

jk

]
∈ K. For each n ∈ N, An ∈ K,

and, by Proposition 2.3,∥∥An − [An ]νy
∥∥ → 0 as ν →∞.

Thus, by linearity,
n∑

j=1

ν∑
k=1

f
jk

(a
jk

) = f([An ]νy ) → f(An) as ν →∞.

That is

f(An) =
n∑

j=1

∞∑
k=1

f
jk

(a
jk

).

Since
∥∥A− An

∥∥ → 0 as n→∞, f(An) → f(A), and hence

f(A) =
∞∑

j=1

∞∑
k=1

f
jk

(a
jk

).

Now suppose
[
g

jk

]
is a matrix over A#

such that

∞∑
j=1

∞∑
k=1

g
jk

(a
jk

) converges for every A =
[
a

jk

]
∈ K.

For each fixed m,n ∈ N, define ĝmn : K → C by

ĝmn(A) = gmn(amn) for each A =
[
a

jk

]
∈ K.

Then
|ĝmn(A)| ≤ ‖gmn‖ ‖amn‖ ≤ 2 ‖A‖ ‖gmn‖

i.e., ĝmn ∈ K
#
. Since by assumption

gm(A) :=
∞∑

k=1

ĝ
mk

(A) =
∞∑

k=1

g
mk

(a
mk

) converges for every A =
[
a

jk

]
∈ K,

by Lemma 3.1, gm ∈ K
#
. Since we also assume that

g(A) :=
∞∑

m=1

gm(A) =
∞∑

m=1

∞∑
k=1

g
mk

(a
mk

) converges for every A =
[
a

jk

]
∈ K,

by Lemma 3.1 again, the functional g is bounded, i.e., g ∈ K#
.

For each A =
[
a

jk

]
∈ K, since the matrix A|k| = A

k| − A
(k−1)| , with the k-th

column the same as that of A and all others 0, is in K,
∞∑

j=1

g
jk

(a
jk

) = g(A|k|) converges, for all k ∈ N.
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Since
∥∥∥A− A

m|

∥∥∥ → 0 as m→∞,

∞∑
j=1

∞∑
k=1

g
jk

(a
jk

) = g(A) = lim
m→∞

g(A
m|) = lim

m→∞

[
m∑

k=1

g(A|k|)

]

= lim
m→∞

[
m∑

k=1

∞∑
j=1

g
jk

(a
jk

)

]
=

∞∑
k=1

∞∑
j=1

g
jk

(a
jk

).

�

Next we show that if
[
f

jk

]
∈ K#

, then the two double sums both converge and

are equal for each A =
[
a

jk

]
∈M, not just for elements in K.

Proposition 3.3. For each f =
[
f

jk

]
∈ K#

and each A =
[
a

jk

]
∈M, both

f̂(A) :=
∞∑

j=1

∞∑
k=1

f
jk

(a
jk

) and g(A) :=
∞∑

k=1

∞∑
j=1

f
jk

(a
jk

)

converge, and they have the same sum. Furthermore f̂ is a bounded linear func-

tional on M with norm
∥∥∥f̂∥∥∥

M#

= ‖f‖
K#

.

Proof. Let A =
[
a

jk

]
∈ M. Then for each j ∈ N, the row j matrix A

j
=

A
j
− A

j−1
∈ K. Thus

∞∑
k=1

f
jk

(a
jk

) converges for every j ∈ N.

Suppose
∞∑

j=1

∞∑
k=1

f
jk

(a
jk

) does not converge.

Then there are an ε > 0 and two sequences {jν} , {lν} in N such that

1 ≤ j1 < l1 < j2 < l2 < . . . < jν < lν < . . . , and∣∣∣∣∣∣
lν∑

j=jν

∞∑
k=1

f
jk

(a
jk

)

∣∣∣∣∣∣ > ε for all ν ∈ N.

Let Aν = A
lν
− A

jν−1
, the matrix whose rows from jν -th through lν -th coincide

with that of A and all others are 0; let

αν =
1

ν
sgn

 lν∑
j=jν

∞∑
k=1

f
jk

(a
jk

)

 ; and B =
∞∑

ν=1

ανAν .

We show that B ∈ K but the sum for f(B) diverges. Let η > 0. There is a
ν0 ∈ N such that

∞∑
ν=ν0

‖A‖
2

ν2 <
η

2

4
.
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For n ≥ jν0
, ϕ ∈ s(A), and x = {x

k
} ∈ `

2
, let ν1 be the largest ν such that

jν ≤ n. Thus ν1 ≥ ν0 , and hence,∥∥ϕ̃ (
B −Bn

)
x
∥∥2

`
2

=
∥∥[
ϕ̃(B)− ϕ̃(Bn)

]
x
∥∥2

`
2

=

lν
1∑

j=n+1

∣∣∣∣∣αν
1

∞∑
k=1

ϕ(a
jk

)x
k

∣∣∣∣∣
2

+
∞∑

ν=ν
1
+1

lν∑
j=jν

∣∣∣∣∣αν

∞∑
k=1

ϕ(a
jk

)x
k

∣∣∣∣∣
2

=
∣∣∣αν

1

∣∣∣2 lν
1∑

j=n+1

∣∣∣∣∣
∞∑

k=1

ϕ(a
jk

)x
k

∣∣∣∣∣
2

+
∞∑

ν=ν
1
+1

|αν |
2

lν∑
j=jν

∣∣∣∣∣
∞∑

k=1

ϕ(a
jk

)x
k

∣∣∣∣∣
2

≤ 1

ν2

1

∞∑
j=1

∣∣∣∣∣
∞∑

k=1

ϕ(a
jk

)x
k

∣∣∣∣∣
2

+
∞∑

ν=ν
1
+1

1

ν2

∞∑
j=1

∣∣∣∣∣
∞∑

k=1

ϕ(a
jk

)x
k

∣∣∣∣∣
2

≤‖A‖
2

ν2

1

‖x‖
2

`
2

+
∞∑

ν=ν2

‖A‖
2

ν2 ‖x‖
2

`
2
<
η

2

4
‖x‖

2

`
2
.

Since this is true for all x ∈ `2 , we see that∥∥ϕ̃(B −Bn)
∥∥
B(`

2
)

≤ η

2
.

But ϕ ∈ s(A) is also arbitrary,∥∥B −Bn

∥∥ ≤ η

2
< η.

Since this is true for all n ≥ jν
0
, we conclude that B ∈ K.

On the other hand we also have

f(B) =
∞∑

j=1

∞∑
k=1

f
jk

(b
jk

) =
∞∑

ν=1

αν

lν∑
j=jν

∞∑
k=1

f
jk

(a
jk

)

=
∞∑

ν=1

1

ν

∣∣∣∣∣∣
lν∑

j=jν

∞∑
k=1

f
jk

(a
jk

)

∣∣∣∣∣∣ ≥
∞∑

ν=1

ε

ν
= ∞,

contradicting B ∈ K and f ∈ K#
. Therefore

∞∑
j=1

∞∑
k=1

f
jk

(a
jk

) converges.

A similar argument shows that the sum in the other order for g also converges.
Uniform boundedness arguments similar to that used in the proof of Proposi-

tion 3.2 show that f̂ and g are both bounded linear functionals on M.
For A ∈ M, since A

n| ∈ K, for each n ∈ N, by last part of the preceding
proposition,

|g(A)| = lim
n→∞

∣∣∣g(An|)
∣∣∣ = lim

n→∞

∣∣∣f(A
n|)

∣∣∣ ≤ lim sup
n→∞

‖f‖
∥∥∥An|

∥∥∥ ≤ ‖f‖ ‖A‖ ,
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thus ‖g‖ ≤ ‖f‖. Also g|
K

= f , we see that ‖g‖ ≥ ‖f‖, and thus ‖f‖ = ‖g‖.
Similarly

∥∥∥f̂∥∥∥ = ‖f‖.

To see that the two sums are equal, we first show that the sequence {gn} defined
by

gn(A) :=
n∑

k=1

∞∑
j=1

f
jk

(a
jk

)
(
A =

[
a

jk

]
∈ K

)
is a Cauchy sequence in K#

. Suppose {gn} is not a Cauchy sequence in K#
. Then

there exist an ε > 0 and sequences {kν}ν∈N , {lν}ν∈N in N such that

lν−1 + 1 ≤ kν < lν (where l0 = 0), and
∥∥∥glν

− g
kν

∥∥∥ > 2ε for all ν ∈ N.

Thus there are elements Aν ∈ K such that

‖Aν‖ = 1 and
∣∣∣glν

(Aν )− g
kν

(Aν )
∣∣∣ > 2ε.

Let

αν =
1

ν
sgn

[
g

lν
(Aν )− g

kν
(Aν )

]
and B =

∞∑
ν=1

ανAν .

Then an argument similar to that used above shows that

B ∈ K but g(B) =
∞∑

k=1

∞∑
j=1

f
jk

(B(j, k)) diverges,

which is a contradiction. Therefore {gn} is a Cauchy sequence in K#
. Thus there

is an h ∈ K#
such that

‖gn − h‖
K#
→ 0.

But since each A ∈ K has
∥∥∥A− A

n|

∥∥∥ → 0, also g ∈ K#
and gn(A) = g(A

n|), we

have

gn(A) → g(A) for each A ∈ K.

Thus g = h and hence

‖gn − g‖
K#
→ 0.

For each A =
[
a

jk

]
∈M, since

∞∑
j=1

∞∑
k=1

f
jk

(a
jk

) and
∞∑

j=1

n∑
k=1

f
jk

(a
jk

) converge for all n ∈ N,

(f̂ − gn)(A) =f̂(A)− gn(A) =
∞∑

j=1

∞∑
k=1

f
jk

(a
jk

)−
∞∑

j=1

n∑
k=1

f
jk

(a
jk

)

=
∞∑

j=1

∞∑
k=n+1

f
jk

(a
jk

) =
∞∑

j=1

∞∑
k=1

f̃
jk

(a
jk

)
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where

f̃
jk

=

{
f

jk
for k > n

0 otherwise.

Notice that ̂(f − gn) = f̂ − gn , and, by Proposition 3.2, that f = g on K. Thus,
from the first part, we have

lim
n→∞

∥∥∥f̂ − gn

∥∥∥
M#

= lim
n→∞

∥∥∥ ̂(f − gn)
∥∥∥
M#

= lim
n→∞

‖f − gn‖
K#

= lim
n→∞

‖g − gn‖
K#

= 0.

Therefore
f̂(A) = lim

n→∞
gn(A) for all A ∈M,

and hence, for each A =
[
a

jk

]
∈M,

∞∑
j=1

∞∑
k=1

f
jk

(a
jk

) = f̂(A) = lim
n→∞

gn(A) =
∞∑

k=1

∞∑
j=1

f
jk

(a
jk

).

�

Note that this proposition corresponds to the fact that the trace functional
satisfies tr(AB) = tr(BA) for a trace class A and bounded B on a Hilbert space.
The proof of this proposition can easily be adapted to a proof of the trace identity.
Since each

[
f

jk

]
∈ K#

defines a bounded linear functional

f̂(A) =
∞∑

j=1

∞∑
k=1

f
jk

(a
jk

) (A =
[
a

jk

]
∈M)

on M with the same norm
∥∥∥f̂∥∥∥

M#

=
∥∥[
f

jk

]∥∥
K#

. The space of all such linear

functionals f̂ will be denoted by K̂#

4. The main theorem

Now we are ready for the main Dixmier’s theorem. Denote by K⊥
the subspace

of M#
consisting of bounded linear functionals on M that vanish on K.

Theorem 4.1. For each f ∈ M#
, there is a unique pair g ∈ K̂# and h ∈ K⊥

such that
f = g + h and ‖f‖ = ‖g‖+ ‖h‖.

Proof. For each (j, k) ∈ N×N, define f
jk

by f
jk

(a) = f(E
jk

(a)) for all a ∈ A. Then

f
jk
∈ A#

with
∥∥f

jk

∥∥ ≤ ‖f‖. Then as in the proof of Proposition 3.2 the matrix[
f

jk

]
represents a bounded linear functional f̃ = f |

K
on K. By Proposition 3.3,[

f
jk

]
defines a bounded linear functional g =

(̂
f̃
)

=
(̂
f |
K

)
on M, where

g(A) =
∞∑

j=1

∞∑
k=1

f
jk

(a
jk

) for all A =
[
a

jk

]
∈M,
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and

‖g‖
M#

=
∥∥∥f̃∥∥∥

K#

.

Let h = f − g. It is clear that h ∈ K⊥
. The uniqueness of the decomposition

follows from the fact that K̂# ⊕K⊥
= M#

is a direct sum.
Since ‖f‖ ≤ ‖g‖ + ‖h‖, it suffices to prove that ‖f‖ ≥ ‖g‖ + ‖h‖. Let ε > 0.

Since ‖g‖
M#

=
∥∥g|

K

∥∥, there is an A =
[
a

jk

]
∈ K such that

‖A‖ = 1 and g(A) > ‖g‖ − ε

8
.

There is also a B =
[
b

jk

]
∈M such that

‖B‖ = 1 and h(B) > ‖h‖ − ε

8
.

Form the convergence of the double sum, there is a j0 such that∣∣∣∣∣
∞∑

j=n

∞∑
k=1

f
jk

(a
jk

)

∣∣∣∣∣ < ε

8
∀ n > j0 .

There is also a k0 such that ∣∣∣∣∣∣
j0∑

j=1

∞∑
k=k0+1

f
jk

(a
jk

)

∣∣∣∣∣∣ < ε

8
.

By Proposition 3.3,

∞∑
j=1

∞∑
k=1

f
jk

(b
jk

) =
∞∑

k=1

∞∑
j=1

f
jk

(b
jk

),

thus there is a j1 ≥ j0 such that∣∣∣∣∣∣
∞∑

j=j1+1

∞∑
k=1

f
jk

(b
jk

)

∣∣∣∣∣∣ < ε

8
.

Put

f̂
jk

=

{
0 if 1 ≤ j ≤ j1
f

jk
if j1 < j

Then
[
f̂

jk

]
∈ K#

. Thus

∞∑
j=j1+1

∞∑
k=1

f
jk

(b
jk

) =
∞∑

j=1

∞∑
k=1

f̂
jk

(b
jk

) =
∞∑

k=1

∞∑
j=1

f̂
jk

(b
jk

)

=
∞∑

k=1

∞∑
j=j1+1

f
jk

(b
jk

)



120 T. WOOTIJIRATTIKAL, S.C. ONG

converges, and hence there is a k1 ≥ k0 such that∣∣∣∣∣∣
∞∑

k=k1+1

∞∑
j=j1+1

f
jk

(b
jk

)

∣∣∣∣∣∣ < ε

8
.

Let

A0(j, k) =

{
a

jk
if 1 ≤ j ≤ j0 , and 1 ≤ k ≤ k0

0 otherwise,

B0(j, k) =

{
b

jk
if j1 < j, and k1 < k

0 otherwise;

and let C =
[
c

jk

]
= A0 +B0 . Then ‖C‖ = max {‖A0‖ , ‖B0‖} ≤ 1. Since h ∈ K⊥

,
and A0 , B−B0 ∈ K, we have h(A0) = 0, and hence h(B) = h(B0). Therefore

‖f‖ ≥ |f(C)| = |g(A0) + g(B0) + h(A0) + h(B0)|

≥ |g(A0) + h(B0)| − |g(B0)| > Re[g(A0)] + Re[h(B0)]−
ε

8

=Re

g(A)−
∞∑

j=j0+1

∞∑
k=1

f
jk

(a
jk

)−
j0∑

j=1

∞∑
k=k0+1

f
jk

(a
jk

)

 + h(B)− ε

8

> ‖g‖ − ε

8
−

∣∣∣∣∣∣
∞∑

j=j0+1

∞∑
k=1

f
jk

(a
jk

)

∣∣∣∣∣∣−
∣∣∣∣∣∣

j0∑
j=1

∞∑
k=k0+1

f
jk

(a
jk

)

∣∣∣∣∣∣ + ‖h‖ − ε

4

> ‖g‖+ ‖h‖ − 5ε

8
> ‖g‖+ ‖h‖ − ε.

Since the preceding argument holds for every ε > 0, we conclude that

‖f‖ ≥ ‖g‖+ ‖h‖ .

�

We note that when A is the complex field C, then s(A) consists of the identity

map alone. So a matrix A over C is in M iff A is in B(`
2
) and A is in K iff A is in

K(`
2
). A matrix defines a bounded linear functional on K(`

2
) iff it is represented

by a trace class matrix and hence it is a trace class matrix itself. Thus Dixmier’s
Theorem is an immediate consequence of this result.
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