

Banach J. Math. Anal. 5 (2011), no. 2, 122–125

BANACH JOURNAL OF MATHEMATICAL ANALYSIS ISSN: 1735-8787 (electronic) www.emis.de/journals/BJMA/

C*-REFLEXIVITY DOESN'T PASS TO QUOTIENTS

VLADIMIR MANUILOV 1* AND JINGMING $\rm ZHU^2$

Communicated by M. Frank

ABSTRACT. Using a recently obtained criterion of C^* -reflexivity for commutative C^* -algebras, we show that the C^* -algebra of continuous functions on the Higson corona is not C^* -reflexive. This implies that C^* -reflexivity doesn't pass to quotient C^* -algebras.

1. INTRODUCTION AND PRELIMINARIES

A unital C^* -algebra A is C^* -reflexive if any Hilbert C^* -module M over A is reflexive, i.e. if the second dual M'' of M coincides with M. In [5, 3] C^* -reflexivity of some classes of C^* -algebras was established, and in [2] the following criterion of C^* -reflexivity was obtained for commutative C^* -algebras.

Theorem 1.1 ([2]). A commutative unital C^* -algebra A is not C^* -reflexive if and only if there exists a sequence $\{I_i\}_{i\in\mathbb{N}}$ of non-intersecting C^* -subalgebras $I_i \subset$ A such that the canonical inclusion $\bigoplus_{i=1}^{\infty} I_i \subset A$ extends to a *-homomorphism $\prod_{i=1}^{\infty} I_i \to A$.

Note that the *-homomorphism $\prod_{i=1}^{\infty} I_i \to A$, if exists, has to be injective because $\bigoplus_{i=1}^{\infty} I_i$ is an essential ideal of $\prod_{i=1}^{\infty} I_i$.

Let A be the C^{*}-subalgebra of l^{∞} that consists of all bounded sequences $\{a_n\}_{n\in\mathbb{N}}, a_n \in \mathbb{C}$, such that $\lim_{n\to\infty} |a_{n+1} - a_n| = 0$. This C^{*}-algebra is the algebra of all continuous functions on the Higson compactification $\nu\mathbb{N}$ of \mathbb{N} [4]. Note that the subset $c_0 = C_0(\mathbb{N}) \subset A$ of all sequences vanishing at infinity (i.e.

Date: Received: 8 April 2011; Accepted: 16 May 2011.

^{*} Corresponding author.

²⁰¹⁰ Mathematics Subject Classification. Primary 46L08, Secondary 54D99.

Key words and phrases. C^* -reflexivity, C^* -algebra, Higson corona.

 $\lim_{n\to\infty} a_n = 0$ is an ideal in A. The quotient C^* -algebra $B = C(\nu \mathbb{N})/C_0(\mathbb{N}) = C(\nu \mathbb{N} \setminus \mathbb{N})$ is the algebra of continuous functions on the Higson corona.

It was proved in [2] that $A = C(\nu\mathbb{N})$ is C^* -reflexive. Our aim is to study Hilbert C^* -modules over the quotient C^* -algebra $B = C(\nu\mathbb{N})/C_0(\mathbb{N}) = C(\nu\mathbb{N}\setminus\mathbb{N})$. Hilbert C^* -modules over quotient C^* -algebras are interesting to study in view of the theory of extensions for Hilbert C^* -modules recently developed by D. Bakić and B. Guljaš [1]. Higson corona provides a simple but non-trivial example of quotient C^* -algebras. In contrast with $A = C(\nu\mathbb{N})$, it turns out that $B = C(\nu\mathbb{N})/C_0(\mathbb{N}) = C(\nu\mathbb{N}\setminus\mathbb{N})$ is not C^* -reflexive.

2. Main results

Theorem 2.1. The C^{*}-algebra $B = C(\nu \mathbb{N} \setminus \mathbb{N})$ is not C^{*}-reflexive.

Proof. Let $n_1 < n_2 < \ldots$ and $k_1 \leq k_2 \leq \ldots$ be two sequences of positive integers such that

$$\lim_{i \to \infty} k_i = \infty \tag{2.1}$$

and

$$n_i + k_i < n_{i+1}$$
 for each $i \in \mathbb{N}$. (2.2)

Let

$$U_i = \{n_i, n_i + 1, n_i + 2, \dots, n_i + k_i\}, i \in \mathbb{N},\$$

be a sequence of disjoint (due to (2.2)) subsets in \mathbb{N} . Fix a bijection $\alpha : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ and set $V_i^j = U_{\alpha(i,j)}$.

For each $i \in \mathbb{N}$, let $I_i \subset A$ be the C^* -subalgebra of sequences $\{a_n\}_{n \in \mathbb{N}}$ such that $a_n = 0$ when $n \notin \bigcup_{j \in \mathbb{N}} V_i^j$. Let $J_i = I_i/(c_0 \cap I_i)$ be a C^* -subalgebra in B. J_i is non-zero for each $i \in \mathbb{N}$ due to (2.1). Since $I_i \cap I_k = \{0\}$ when $i \neq k$, the same holds for the quotients J_i and J_k .

Let $a^{(i)} \in I_i$, and let $\dot{a}^{(i)} \in J_i$ denote the class of $a^{(i)}$. Assume that $\sup_{i \in \mathbb{N}} ||\dot{a}^{(i)}||$ is bounded. Then the sequence $(\dot{a}^{(1)}, \dot{a}^{(2)}, \ldots)$ represents an element of $\prod_{i \in \mathbb{N}} J_i$.

For a sequence $a = \{a_n\}_{n \in \mathbb{N}}$ and for a set $U = \{m, m + 1, \dots, m + k\}$ define $L(a|_U)$ by

$$L(a|_{U}) = \max_{n=m-1}^{m+k} |a_{n+1} - a_{n}|$$

As $a^{(i)} \in A$ for each $i \in \mathbb{N}$, so, by definition, we have $\lim_{j\to\infty} L(a^{(i)}|_{V_i^j}) = 0$. So, for each $i \in \mathbb{N}$, we can find an integer m_i such that

$$\sup_{\geq m_i} L(a^{(i)}|_{V_i^j}) \le \frac{1}{i}$$

and set $b_n^{(i)} = \begin{cases} a_n^{(i)}, & \text{if } n \in \bigcup_{j=m_i}^{\infty} V_i^j \\ 0, & \text{otherwise.} \end{cases}$

As $a^{(i)} - b^{(i)}$ is finite for each $i \in \mathbb{N}$, so $\dot{b}^{(i)} = \dot{a}^{(i)}$.

Define a sequence $c = \{c_n\}_{n \in \mathbb{N}}$ by $c_n = \sum_{i=1}^{\infty} b_n^{(i)}$ and note that this sum contains no more than one non-trivial summand for each $n \in \mathbb{N}$, since all V_i^j are disjoint.

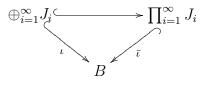
Lemma 2.2. (1) $c \in A$; (2) $c_n = b_n^{(i)}$ when $n \in V_i^j$ for some $j \in \mathbb{N}$; (3) $\dot{c} \in B$ depends only on $\dot{a}^{(i)} \in B$, $i \in \mathbb{N}$, but not on their representatives in A.

Proof. The claim directly follows from the construction of c.

The above construction determines a *-homomorphism

$$\bar{\iota}: \prod_{i=1}^{\infty} J_i \to B \quad \text{by} \quad \bar{\iota}(\dot{a}^{(1)}, \dot{a}^{(2)}, \ldots) = \dot{c}.$$

It is clear that $\overline{\iota}$ makes the diagram



commuting, where $\iota_i : J_i \subset B$ is the canonical inclusion and $\iota = \bigoplus_{i=1}^{\infty} \iota_i$. Hence, by C^* -reflexivity criterion, B is not C^* -reflexive.

As the Higson corona is a closed subspace of the Higson compactification, so we get the following corollary.

Corollary 2.3. C^{*}-reflexivity is not a hereditary property.

This result suggests the following definition.

Definition 2.4. A compact Hausdorff space X is called *hereditarily* C^* -reflexive if C(Y) is C^* -reflexive for any compact subset $Y \subset X$.

Let $\beta \mathbb{N}$ denote the Stone–Čech compactification of integers.

Theorem 2.5. X is hereditarily C^{*}-reflexive if and only if no closed subspace of X is homeomorphic to $\beta \mathbb{N}$.

Proof. If X is not hereditarily C^* -reflexive then there exists a closed subspace $Y \subset X$ such that C(Y) is not C^* -reflexive. Then, by Theorem 4.1 of [2], $\beta \mathbb{N}$ can be embedded in Y (hence, in X too) as a closed subspace. In the opposite direction, if $Y = \beta \mathbb{N} \subset X$ is a closed subspace then X cannot be hereditarily C^* -reflexive since $C(\beta \mathbb{N}) = l^\infty$ is not C^* -reflexive.

Acknowledgement. The first named author acknowledges partial support from RFFI, grant No. 10-01-00257.

References

- D. Bakić and B. Guljaš, Extensions of Hilbert C^{*}-modules, Houston J. Math. 30 (2004), 537–558.
- M. Frank, V. Manuilov and E. Troitsky, A reflexivity criterion for Hilbert C^{*}-modules over commutative C^{*}-algebras, New York J. Math. 16 (2010), 399–408.
- A.S. Mishchenko, Representations of compact groups in Hilbert modules over C^{*}-algebras, Proc. Steklov Inst. Math. 166 (1986), 179–195.

124

- 4. J. Roe, Coarse cohomology and index theory for complete Riemannian manifolds, Memoirs Amer. Math. Soc. **497**. 1993.
- 5. V.A. Trofimov, Reflexivity of Hilbert modules over an algebra of compact operators with associated identity, Mosc. Univ. Math. Bull. 41 (1986), No.5, 51–55.

¹ Dept. of Math., Harbin Institute of Technology, 92 West Da-Zhi Str., Harbin, 150001, P.R. China;

Dept. of Mech. and Math., Moscow State University, Leninskie Gory, Moscow, 119991, Russia.

E-mail address: manuilov@mech.math.msu.su

 2 Dept. of Math., Harbin Institute of Technology, 92 West Da-Zhi Str., Harbin, 150001, P.R. China.

E-mail address: jingmingzhu_math@163.com