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C∗-REFLEXIVITY DOESN’T PASS TO QUOTIENTS
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Abstract. Using a recently obtained criterion of C∗-reflexivity for commuta-
tive C∗-algebras, we show that the C∗-algebra of continuous functions on the
Higson corona is not C∗-reflexive. This implies that C∗-reflexivity doesn’t pass
to quotient C∗-algebras.

1. Introduction and preliminaries

A unital C∗-algebra A is C∗-reflexive if any Hilbert C∗-module M over A is
reflexive, i.e. if the second dual M ′′ of M coincides with M . In [5, 3] C∗-reflexivity
of some classes of C∗-algebras was established, and in [2] the following criterion
of C∗-reflexivity was obtained for commutative C∗-algebras.

Theorem 1.1 ([2]). A commutative unital C∗-algebra A is not C∗-reflexive if
and only if there exists a sequence {Ii}i∈N of non-intersecting C∗-subalgebras Ii ⊂
A such that the canonical inclusion ⊕∞i=1Ii ⊂ A extends to a ∗-homomorphism∏∞

i=1 Ii → A.

Note that the ∗-homomorphism
∏∞

i=1 Ii → A, if exists, has to be injective
because ⊕∞i=1Ii is an essential ideal of

∏∞
i=1 Ii.

Let A be the C∗-subalgebra of l∞ that consists of all bounded sequences
{an}n∈N, an ∈ C, such that limn→∞ |an+1 − an| = 0. This C∗-algebra is the
algebra of all continuous functions on the Higson compactification νN of N [4].
Note that the subset c0 = C0(N) ⊂ A of all sequences vanishing at infinity (i.e.
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limn→∞ an = 0) is an ideal in A. The quotient C∗-algebra B = C(νN)/C0(N) =
C(νN \ N) is the algebra of continuous functions on the Higson corona.

It was proved in [2] that A = C(νN) is C∗-reflexive. Our aim is to study
Hilbert C∗-modules over the quotient C∗-algebra B = C(νN)/C0(N) = C(νN\N).
Hilbert C∗-modules over quotient C∗-algebras are interesting to study in view of
the theory of extensions for Hilbert C∗-modules recently developed by D. Bakić
and B. Guljas̆ [1]. Higson corona provides a simple but non-trivial example
of quotient C∗-algebras. In contrast with A = C(νN), it turns out that B =
C(νN)/C0(N) = C(νN \ N) is not C∗-reflexive.

2. Main results

Theorem 2.1. The C∗-algebra B = C(νN \ N) is not C∗-reflexive.

Proof. Let n1 < n2 < . . . and k1 ≤ k2 ≤ . . . be two sequences of positive integers
such that

lim
i→∞

ki = ∞ (2.1)

and
ni + ki < ni+1 for each i ∈ N. (2.2)

Let
Ui = {ni, ni + 1, ni + 2, . . . , ni + ki}, i ∈ N,

be a sequence of disjoint (due to (2.2)) subsets in N. Fix a bijection α : N×N → N
and set V j

i = Uα(i,j).
For each i ∈ N, let Ii ⊂ A be the C∗-subalgebra of sequences {an}n∈N such

that an = 0 when n /∈ ∪j∈NV j
i . Let Ji = Ii/(c0 ∩ Ii) be a C∗-subalgebra in B. Ji

is non-zero for each i ∈ N due to (2.1). Since Ii ∩ Ik = {0} when i 6= k, the same
holds for the quotients Ji and Jk.

Let a(i) ∈ Ii, and let ȧ(i) ∈ Ji denote the class of a(i). Assume that supi∈N ‖ȧ(i)‖
is bounded. Then the sequence (ȧ(1), ȧ(2), . . .) represents an element of

∏
i∈N Ji.

For a sequence a = {an}n∈N and for a set U = {m,m + 1, . . . ,m + k} define
L(a|U) by

L(a|U) = maxm+k
n=m−1 |an+1 − an|.

As a(i) ∈ A for each i ∈ N, so, by definition, we have limj→∞ L(a(i)|V j
i
) = 0. So,

for each i ∈ N, we can find an integer mi such that

sup
j≥mi

L(a(i)|V j
i
) ≤ 1

i

and set b
(i)
n =

{
a

(i)
n , if n ∈ ∪∞j=mi

V j
i

0, otherwise.

As a(i) − b(i) is finite for each i ∈ N, so ḃ(i) = ȧ(i).

Define a sequence c = {cn}n∈N by cn =
∑∞

i=1 b
(i)
n and note that this sum contains

no more than one non-trivial summand for each n ∈ N, since all V j
i are disjoint.

Lemma 2.2. (1) c ∈ A;

(2) cn = b
(i)
n when n ∈ V j

i for some j ∈ N;
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(3) ċ ∈ B depends only on ȧ(i) ∈ B, i ∈ N, but not on their representatives in
A.

Proof. The claim directly follows from the construction of c.
�

The above construction determines a ∗-homomorphism

ῑ :
∞∏
i=1

Ji → B by ῑ(ȧ(1), ȧ(2), . . .) = ċ.

It is clear that ῑ makes the diagram

⊕∞i=1Ji
� � //

� q

ι
""FF

FF
FF

FF
F

∏∞
i=1 Ji
mM

ῑ{{ww
ww

ww
ww

w

B

commuting, where ιi : Ji ⊂ B is the canonical inclusion and ι = ⊕∞i=1ιi. Hence,
by C∗-reflexivity criterion, B is not C∗-reflexive.

�

As the Higson corona is a closed subspace of the Higson compactification, so
we get the following corollary.

Corollary 2.3. C∗-reflexivity is not a hereditary property.

This result suggests the following definition.

Definition 2.4. A compact Hausdorff space X is called hereditarily C∗-reflexive
if C(Y ) is C∗-reflexive for any compact subset Y ⊂ X.

Let βN denote the Stone–Čech compactification of integers.

Theorem 2.5. X is hereditarily C∗-reflexive if and only if no closed subspace of
X is homeomorphic to βN.

Proof. If X is not hereditarily C∗-reflexive then there exists a closed subspace
Y ⊂ X such that C(Y ) is not C∗-reflexive. Then, by Theorem 4.1 of [2], βN
can be embedded in Y (hence, in X too) as a closed subspace. In the opposite
direction, if Y = βN ⊂ X is a closed subspace then X cannot be hereditarily
C∗-reflexive since C(βN) = l∞ is not C∗-reflexive.

�
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