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Abstract. The relevance of modulation spaces for deformation quantization,
Landau–Weyl quantization and noncommutative quantum mechanics became
clear in recent work. We continue this line of research and demonstrate that
Qs(R2d) is a good class of symbols for Landau–Weyl quantization and propose
that the modulation spaces Mp

vs
(R2d) are natural generalized Shubin classes

for the Weyl calculus. This is motivated by the fact that the Shubin class
Qs(R2d) is the modulation space M2

vs
(R2d). The main result gives estimates of

the singular values of pseudodifferential operators with symbols in Mp
vs

(R2d)
for the standard Weyl calculus and for the Landau–Weyl calculus.

1. Introduction

Recently physicists have proposed an extension of quantum mechanics in one
approach to quantum cosmology [1, 2] that goes under the name of noncommu-
tative quantum mechanics. In [6, 7] we have used an extended Weyl calculus and
modulation spaces to gain a deeper understanding of the mathematical structures
underlying noncommutative quantum mechanics. These results are a continua-
tion of a new approach to Moyal quantization in [16] and quantum mechanical
systems of charged particles in strong uniform magnetic fields in [17, 18]. In this
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paper we focus on the relevance of modulation spaces as symbol classes of pseudo-
differential operators, in particular we investigate the Shubin class Qs(R2d). The
Shubin class can be identified with the modulation spaces M2

vs
(R2d). Our main re-

sults deal with decay estimates for singular values of pseudodifferential operators
with symbols in general Shubin class Mp

vs
(R2d), which is based on Heil’s method

for the case Qs(R2d). Our result extend the ones by Heil for Qs(R2d). In [18]
the extended Weyl calculus was called Landau–Weyl calculus. As a consequence
of results in [18] we are able to derive singular value estimates for Landau–Weyl
operators with symbols in the generalized Shubin class Mp

s (R2d). Finally we note
that the Shubin class Qs(R2d) is a Banach algebra with respect to convolution and
point-wise multiplication for s > d follows from Nikolskii’s results on convolution
algebras of weighted Lebesgue spaces Lp

v(R2d).
During the early 1980’s Feichtinger introduced the class of modulation spaces in
[9, 10]. Later he gave in joint work with Gröchenig a description of modulation
spaces as coorbit spaces of the Heisenberg group [12]. In the last two decades
modulation spaces have turned out to be the correct mathematical framework for
a rigorous treatment of many problems in time-frequency analysis. In addition
modulation spaces have been applied in a variety of areas, e.g. pseudodifferential
operators, Schrödinger operators, quantum mechanics, harmonic analysis, sam-
pling theory, stochastic processes etc., see [11] for an extensive list of references.
We refer the interested reader to the excellent survey article [11] by Feichtinger
for a discussion of the history and the manifold applications of modulation spaces.
The proofs of our main results rely on a description of modulation spaces in terms
of a Wilson basis that were constructed by Daubechies, Jaffard and Journe in [5].
A Wilson basis is an orthonormal basis of L2(R) build from a Gabor frame of
redundancy 2. Since the physicist K.G. Wilson had suggested in an informal
way a similar family of functions in [29], the basis was called Wilson basis. This
groundbreaking result was extended by Feichtinger, Gröchenig and Walnut to the
class of modulation spaces in [14]. We are convinced that modulation spaces and
their Wilson basis description will be very useful for other problems in mathe-
matical physics, e.g. the ones discussed in [26, 30, 31, 32]. The techniques and
constructions in this paper are in terms of objects associated to the Heisenberg
group.
The paper is organized as follows: In Section 2 we define the basic notions of
time-frequency analysis and briefly discuss the Weyl calculus and the Landau–
Weyl calculus. In Section 3 we introduce the modulation spaces Mp

vs
(R2d) for

the standard radial symmetric weight vs(x, ω) = (1 + x2 + ω2)s/2 and the Shubin
classes Qs(R2d). We recall Nikolskii’s result on convolution algebras and estab-
lish the Banach algebra properties of the Shubin class Qs(R2d). In Section 4 we
provide Schatten class results for pseudodifferential operators with symbols from
generalized Shubin classes Mp

vs
(R2d) and provide an application to Landau–Weyl

operators.

Notation: For x and ω in Rd we denote their scalar product by x·ω and for the
sake of simplicity we abbreviate ‖x‖2 = x ·x by x2. The standard symplectic form
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on Rd×Rd is given by Ω(z1, z2) = x2 ·ω1−x1 ·ω2 for z1 = (x1, ω1) and z2 = (x2, ω2).
For the Schwartz class we use the symbol S(Rd), and for its dual, the space of
tempered distributions, we write S ′(Rd). For a Banach space B of functions on
Rd and a weight v we denote by Bv the weighted Banach space {f ∈ B : fv ∈ B}
with norm ‖f‖Bv

= ‖fv‖B for f ∈ B. In our discussion Bv is either the Lebesgue

space Lp
v(R2d) or the sequence space `pv(Z2d). We denote the convolution of two

compactly supported functions f and g on Rd by (f ∗ g)(x) =
∫
f(y)g(x− y)dy.

Finally Ip denotes the Schatten-von Neumann class of bounded linear operators
on a Hilbert space H consisting of all compact operators T on H with singular
values (sj(T )) in `p.

2. Basics on time-frequency analysis and pseudodifferential
operators

From a mathematical point of view time-frequency analysis is relying on the
structure of the Heisenberg group. The Schrödinger representation of the Heisen-
berg group acts on L2(Rd) by means of the unitary operators

ρ(x, ω)f = e−πix·ωπ(x, ω)f(t) = e−πix·ωMωTxf,

where Tx and Mω are defined by Txf(t) = f(t− x) and Mωf(t) = e2πix·ωf(t) for
x, ω ∈ Rd. The time-frequency/phase space shifts π(z) = MωTx for z = (x, ω)
yield a projective unitary representation of the time-frequency plane/phase space
R2d on L2(Rd), which follows from the commutation relation between Mω and Tx:

TxMω = e−2πix·ωMωTx.

Consequently the composition law of π’s is as follows:

π(z)π(z′) = e2πΩ(z,z′)π(z′)π(z),

where Ω(z, z′) denotes the standard symplectic form on R2d.
Many researchers use in the definition of the Schrödinger representation ρ an al-
ternative unimodular complex numbers τ instead of e−πix·ω. For the discussion
of Weyl operators our particular choice appears to be most suitable.
Via integration the irreducible unitary Schrödinger representation of the Heisen-
berg group gives rise to a class of operators

A =

∫∫
R2d

a(z)ρ(z)dz

for a ∈ L1(R2d). Let aΩ denote the symplectic Fourier transform of a ∈ L1(R2d),
i.e.

aΩ(z) =

∫∫
R2d

a(z′) e2πiΩ(z,z′)dz′.

The operator associated to aΩ

La =

∫∫
R2d

aΩ(z)ρ(z)dz

is the famous Weyl correspondence and a is called the Weyl symbol of the pseu-
dodifferential operator La. Pseudodifferential operators appear in many areas



62 F. LUEF, Z. RAHBANI

of mathematics, physics, and engineering, see [15] for a discussion motivated by
time-frequency analysis. There are many ways to associate to a symbol a pseu-
dodifferential operator, e.g. the Kohn–Nirenberg correspondence, but for our
purpose the Weyl calculus is best suited.
The Weyl correspondence associates the following integral operator to a symbol
a

Laf(x) =

∫∫
a
(

x+y
2
, ω

)
e2πi(x−y)ωf(y)dydω

A basic problem is to identify classes of functions or distributions a that give
bounded operators on function spaces, e.g. Hilbert spaces. We propose that the
generalized Shubin classes Mp

vs
(Rd) as good symbol classes for pseudodifferential

operators.
Research on quantum mechanical systems modeling charged particles in uniform
magnetic fields, deformation quantization and noncommutative quantum mechan-
ics suggests new quantization rules that yields to a Weyl calculus on phase space,
see [6, 16, 18], and de Gosson called it Landau–Weyl correspondence to emphasis
the connection to the Landau levels in the quantum mechanics of charged parti-
cles. We briefly review the basic notions underlying Landau–Weyl calculus. The
main idea is to look for a Weyl correspondence on double time-frequency plane
R2d ×R2d. To this end we first introduce a Schrödinger representation of R2d on
L2(R2d)

ρ̃(z′)F (z) = e2πiΩ(z,z′)F (z − z′) for F ∈ L2(R2d),

and by an elementary calculation we have that

ρ̃(z1 + z2) = e−2πiΩ(z1,z2)ρ̃(z1)ρ̃(z2) for all z1, z2 ∈ R2d.

The integrated representation of ρ̃ for a in L1(R2d) gives a class of operators

L̃a =

∫∫
R2d

aΩ(z)ρ̃(z)dz

that are called Landau–Weyl operators and the mapping a 7→ L̃a as Landau–Weyl
correspondence. The kernel of the associated integral operator is

K̃(z, u) = e2πiΩ(z,u)aΩ(z, u).

The intertwiner between the two unitary representations ρ and ρ̃ of the Heisenberg
group is the windowed wavepacket transform

Uϕg(z) = 2dW (g, ϕ)( z
2
) for ϕ, g ∈ L2(Rd),

where W (g, ϕ) is the Wigner distribution

W (g, ϕ)(z) =

∫
Rd

e−2πiω·tg(x+ t
2
)ϕ(x− t

2
)dt.

An elementary computation establishes that Uϕ is an intertwiner between the two
representations. For later reference we collect these observations in the following
lemma.
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Lemma 2.1. Let a be a Weyl symbol. Then we have

U?
ϕL̃aUϕ = La.

The intertwiner allows one to transfer spectral properties of La to ones of L̃a.
For a proof we refer the interested reader to [17].

Proposition 2.2. Let a be a Weyl symbol. Then (i) the discrete spectrum of
La and L̃a are the same; (ii) If f is an eigenvector of La, i.e. Laf = λf , then
F = Uϕf is an eigenvector of L̃a and L̃aF = λF ; (ii) suppose that F is an

eigenvector of L̃a, i.e. L̃aF = λF , then f = U?
ϕF is an eigenvector of La and

Laf = λf .

3. Modulation spaces

After the introduction of modulation spaces in [10] by Feichtinger his joint
work with Gröchenig on coorbit theory [12] worked out the intrinsic relation be-
tween modulation spaces and time-frequency analysis via square-integrable rep-
resentations of the Heisenberg group. In fact, coorbit theory specialized to the
Schrödinger representation of the Heisenberg group provides the following defini-
tion of modulation spaces.
Let vs be the radial symmetric weight vs(z) = (1 + x2 + ω2)s/2 for s ∈ R. Then
for p ≥ 0 the modulation space Mp

vs
(Rd) and a g ∈ S (Rd) is defined as follows:

Mp
vs

(Rd) = {f ∈ S ′(Rd) : ‖f‖Mp
vs

=
( ∫

R2d

|〈f, ρ(x, ω)g〉|pvs(x, ω)pdxdω
)1/p

<∞}.

This defines a Banach space and its norm is independent of the function g,
any other g ∈ S (Rd) yields an equivalent norm for Mp

vs
(Rd). Since the phase-

factor e−πix·ω is irrelevant in the definition of Mp
vs

(Rd) it is actually Vgf(x, ω) =
〈f, π(x, ω)g〉 that is of significance for the following discussion. In time-frequency
analysis Vgf is known as the Short-Time Fourier Transform of f with respect to
a window g. Note that Vgf(x, ω) is the representation coefficient of the projective
representation (x, ω) 7→ π(x, ω) of R2d, [4].
Modulation spaces may be defined in much greater generality, see [10], but for
the present investigation the spaces Mp

vs
(Rd) provide the proper setting. A

variety of function spaces may be identified with modulation spaces, e.g. Fe-
ichtinger’s algebra S0(Rd) = M1

v0
(Rd) [9], M2

v0
(Rd) = L2(Rd), or more generally

weighted L2-spaces L2
s(Rd) = {f :

∫
Rd |f(x)|2(1 + x2)s/2dx < ∞}, Bessel po-

tential spaces Hs = {f :
∫

Rd |f̂(ω)|2(1 + ω2)s/2dω < ∞} and Shubin classes

Qs(Rd) = L2
s(Rd)∩Hs(R2d), which turns out to be M2

vs
(Rd), see [3]. Throughout

this paper we suppose s > 0.
In the sequel we need modulation spaces over R2d, which are defined in the

same way as above. Before we continue the treatment of modulation spaces we
interlude with a discussion of Banach algebra properties of Qs(R2d) with respect
to convolution and pointwise multiplication. We note that it is a consequence
of Nikolskii’s work on convolution algebras for weighted Lebesgue spaces Lp

v(Rd)
and [8, 28].
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A positive function v on R2d is called a Nikolskii–Wermer weight, if for some
p ∈ [1,∞] with conjugate exponent p′ we have that

Cp,v = sup
z

( ∫
R2d

( v(z)

v(z′)v(z − z′)

)p′

dz′
)1/p′

<∞. (3.1)

Wermer proved that Lp
v(R2d) is a convolution algebra, if it satisfies the Nikolskii–

Wermer condition (3.1). In the case of the Lp
v(R2d) Nikolskii demonstrated the

sufficiency of (3.1) in [25], as well as the necessity of it in the case p = ∞. We
give the elegant argument of Nikolskii in the case of Lp

v(R2d), since it appears to
be forgotten by researcher in mathematics.

Proposition 3.1 (Nikolskii–Wermer). Let v be a Nikolskii–Wermer weight on
R2d. Then Lp

v(R2d) is a Banach convolution algebra, i.e.

‖F ∗G‖Lp
v
≤ Cp,v‖F‖Lp

v
‖G‖Lp

v
.

Proof. Let F̃ and G̃ in Lp
v(R2d). Then we set F = F̃ v, G = G̃v. An application

of Hölder’s inequality yields the assertion:

‖(F̃ ∗ G̃)v‖Lp = ‖v(F
v
∗ G

v
)‖Lp

=
[ ∫

R2d

[ ∫
R2d

|F (x, y)|
v(x, y)

|G(x− z, y − t)|
v(x− z, y − t)

dxdy
]p

v(z, t)pdzdt
]1/p

=
[ ∫

R2d

[ ∫
R2d

|F (x, y)||G(x− z, y − t)| v(z,t)
v(x,y)v(x−z,y−t)

dxdy
]p

dzdt
] 1

p

≤
[ ∫

R2d

[( ∫
R2d

( v(z, t)

v(x, y)v(x− z, y − t)

)p′

dxdy
)1/p′

( ∫
R2d

(|F (x, y)||G(x− z, y − t)|)pdxdy
)1/p]p

dzdt
]1/p

≤ Cp,v‖F‖Lp‖G‖Lp ≤ Cp,v‖F̃‖Lp
v
‖G̃‖Lp

v
.

�

A straightforward computation demonstrates that vs is a Nikolskii–Wermer
weight of Lp(R2d) for s > 2d/p′.

Corollary 3.2. If s > d, then (L2
vs

(R2d), ∗) is a Banach convolution algebra.

Since the Bessel potential spaces Hs(R2d) are weighted function spaces on the
Fourier transform side, we have that Hs(R2d) is a Banach algebra with respect
to pointwise multiplication for s > d. Therefore we deduce that the Shubin
class Qs(R2d) is a Banach algebra with respect to convolution and pointwise
multiplication for s > d.

Theorem 3.3. M2
vs

(Rd) is a Banach algebra with respect to convolution and
pointwise multiplication if and only if C2,vs < ∞, i.e. for s > d. Consequently,
Qs(R2d) is in S0(Rd).

The final statement in the theorem is a consequence of results on embeddings
of weighted Lp-spaces in [19].
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3.1. Wilson bases. The great relevance of modulation spaces for time-frequency
analysis is founded in a characterization of the spaces Mp

vs
(Rd) in terms of Gabor

frames G(g,Λ) = {π(λ)g : λ ∈ Λ} for L2(Rd), where g is called a Gabor atom and
Λ is a lattice in R2d. Recall G(g,Λ) is a Gabor frame for L2(Rd), if there exists
two constants A,B > 0 such that

A‖f‖2
2 ≤

∑
λ∈Λ

| 〈f, π(λ)g〉 |2≤ B‖f‖2
2

holds for all f ∈ L2(Rd). If A = B then we call G(g,Λ) a tight frame or a Parseval
frame.
We have the following important fact, that is crucial for the modern theory of
Gabor frames, see [22].

Theorem 3.4. If G(g,Λ) is a Gabor frame for L2(Rd) with g ∈ M1
vs

(Rd), then
G(g,Λ) is a Banach frame for Mp

vs
(Rd), 1 ≤ p ≤ ∞. Consequently, each f in

Mp
vs

(Rd) has a discrete representation with respect to a dual window γ ∈M1
vs

(Rd),
i.e.

f =
∑
λ∈Λ

〈f, π(λ)γ〉π(λ)g

that converges unconditional for p ∈ [1,∞) and with weak∗-converge in M∞
1/vs

(Rd).

Furthermore, we have for all f ∈Mp
vs

(Rd)

A‖f‖Mp
vs
≤

( ∑
λ∈Λ

|〈f, π(λ)g〉|pvs(λ)p
)1/p ≤ B‖f‖Mp

vs
.

In general Gabor frames are redundant systems, but Daubechies, Jaffard and
Journe found a modification of Gabor frames of redundancy 2 that provides
an orthonormal basis for L2(R), [5]. This construction goes under the name
Wilson basis, since they followed some suggestions of the physicist K. Wilson
[29]. Wilson bases are a useful gadget in various proofs of basic properties of
modulation spaces, e.g. in the isomorphism theorem for modulation spaces, the
kernel theorem for M1

vs
(Rd), or in the approach of Feichtinger and Kozek to

quantization [15].
Let G(g, 1

2
Z × Z) be a Gabor system of redundancy 2 in L2(R). Then the

associated Wilson system, W(g), consists of the functions

ψk0 = Tkg

ψkn =
√

2 Re(Tk/2Mng) k, n ∈ Z , k 6= 0

ψkn =
√

2 Im(Tk/2Mng) k, n ∈ Z , k 6= 0

or briefly

ψkn = cnTk/2(Mn + (−1)k+nM−n)g k, n ∈ Z, n ≥ 0

where c0 = 1/2, cn = 1/
√

2 for n ≥ 0.

Theorem 3.5 (Daubechies-Jaffard-Journe). Let g be in L2(R) such that g = g∗

and ‖g‖2 = 1. If G(g, 1
2
Z×Z) is a tight Gabor frame for L2(R), then W(g) is an

orthonormal Wilson basis of L2(R).



66 F. LUEF, Z. RAHBANI

In [5] it was shown that the Gabor atom g in the preceding theorem can be
chosen in the Schwartz class S (R) or even g and its Fourier transform ĝ may be
exponentially decaying.
Shortly after this breakthrough Feichtinger, Gröchenig and Walnut extended the
result of Theorem 3.5 to a characterization of modulation spaces in [14], i.e. they
showed that W(g) is an unconditional basis for Mp

vs
(R).

Theorem 3.6 (Feichtinger-Gröchenig-Walnut). Assume that W(g) is an or-
thonormal basis for L2(R) with g ∈M1

vs
(R). Then we have that

C−1‖f‖Mp
vs
≤

( ∞∑
n=0

∑
k∈Z

| 〈f, ψkn〉 |p vs(
k
2
, n)p

)1/p ≤ C‖f‖Mp
vs
,

for a constant C ≥ 1. Furthermore, the orthogonal expansion

f =
∞∑

n=0

∑
k∈Z

〈f, ψkn〉ψkn

converges unconditionally in the Mp
vs

(R)-norm if p ∈ [1,∞) and weak* in M∞
1/vs

(R)
otherwise.

A proof of this theorem is given in Chapter 12 of [21] and was first given in
[14].

So far we have considered Wilson bases in R, but we can generalize them to
higher dimensions by means of a tensor product construction.
Given an orthonormal basis W(g) = {ψkn : k, n ∈ Z, n ≥ 0} for L2(R) one defines
the basis functions on L2(Rd) as the (tensor) products

Ψrs(x) = ud
i=1ψrisi

(xi)

where r, s ∈ Zd, s ≥ 0. Then {Ψrs, r, s ∈ Zd, s ≥ 0} is an orthonormal basis for
L2(Rd) and more generally an unconditional basis for Mp

vs
(Rd).

4. Schatten class results for Weyl and Landau–Weyl calculus

In this section we present and prove results on singular values of pseudodifferen-
tial operators for the Weyl and Weyl-Landau calculus with symbols in Mp

vs
(R2d).

Our main theorem extends the ones by Heil in [23] for the case of Weyl quanti-
zation and symbols in the Shubin class M2

vs
(R2d). The usefulness of modulation

spaces as symbol classes for pseudodifferential operators was demonstrated for
the first time in [27] and was later continued in [20].

The method of Heil relies on the fact that the pseudodifferential operators have
a kernel and that a finite rank approximation of the kernel allows one to deduce
estimates of its singular values. Instead of a frame expansion we invoke Wilson
bases to obtain a finite rank approximation for the pseudodifferential operator.
One of the reasons for this choice is that it provides a straightforward treatment
of Feichtinger’s kernel theorem for the modulation spaces M1

vs
(Rd) for s ≥ 0, see

[15, 13]. The Schwartz kernel theorem is central in the treatment of distributions.
Feichtinger was able to deduce a kernel theorem for M1

v (Rd), where v is a weight
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on R2d. We restrict our discussion to the radial symmetric weight vs, see [21] for
the general case.

If L is a bounded operator between M1
vs

(Rd) and M∞
1/vs

(Rd), then we can asso-

ciate to A a matrix (a(k,m),(l,n)) with respect to the Wilson basis by

a(k,m),(l,n) = 〈Lψl,n, ψk,m〉 for k, l,m, n ∈ Zd,m, n ≥ 0.

The fact that the Wilson description of modulation spaces yields an elementary
proof of the kernel theorem for M1

vs
(Rd), see [21].

Theorem 4.1 (Feichtinger). (1) If L is a bounded operator from M1
vs

(Rd) to
M∞

1/vs
(Rd), then there exists a unique kernel k ∈M∞

1/vs
(R2d) such that

〈Lf, g〉 = 〈k, g ⊗ f〉 f, g ∈M1
vs

(Rd).

(2) An element k ∈ M∞
1/vs

(R2d) defines a bounded operator L : M1
vs

(Rd) −→
M∞

1/vs
(Rd) by

〈Lf, g〉 = 〈k, g ⊗ f〉 f, g ∈M1
vs

(Rd).

Let {Ψk,l : k, l ∈ Rd} be a Wilson basis for L2(Rd). Then the matrix entries for
the operator L are given by a(k,l),(m,n) = 〈LΨk,l,Ψm,n〉 and the associated kernel
is

k =
∑

k,l,m,n

a(k,l),(m,n)Ψk,l ⊗Ψm,n. (4.1)

Therefore integral operators with kernels in Mp
vs

(R2d) are bounded operators
from M1

vs
(Rd) to M∞

1/vs
(Rd). Since pseudodifferential operators with symbol

a ∈ Mp
vs

(R2d) may be viewed as integral operators Ak with kernel in Mp
vs

(R2d),
we are interested in their compactness properties. The invariance of Mp

vs
(R2d)

under symplectic Fourier transform yields that a pseudodifferential La with a ∈
Mp

vs
(R2d) has a kernel in Mp

vs
(R2d).

There is a vast literature on this circle of ideas. We make use of a theorem in
[24], where Labate invokes some results about absolutely summing operators to
prove statements about the summability of the singular values of pseudodifferen-
tial operators. Let T be a positive compact operator on the Hilbert space L2(Rd).
Then the singular values {sj(T )}∞j=1 are the square roots of the eigenvalues of the
positive, selfadjoint operator T ∗T .

Proposition 4.2 (Labate). Let 1 ≤ p < ∞ and p′ is the conjugate exponent of
p.

(i) If 1 ≤ p ≤ 2 and k ∈ Mp(Rd), then the singular values of Ak are 2-summable
and

‖A‖I2 = ‖Ak‖I2
=

( ∑
sj(Ak)

2
)1/2 ≤ C ‖k‖Mp .

Ak is a compact (for p = 1, Ak is weakly compact and completely continuous)
operator which maps Mp(Rd) into itself.



68 F. LUEF, Z. RAHBANI

(ii) If 2 ≤ p < ∞ and k ∈ Mp′(Rd), then Ak is a compact and completely con-
tinuous operator which maps Mp′(Rd) into itself. Singular values of Ak are p-
summable such that

‖A‖Ip = ‖Ak‖Ip
=

( ∑
sj(Ak)

p
)1/p ≤ C ‖k‖Mp′ .

The singular values sj(T ) of T have a geometric description as the distance of
T from the operators of rank less than j:

sj(T ) = inf{‖T − A‖L2 : A rank(A) < j}.
We state this inequality in the following lemma and give its short proof. This
description of singular values allows one to derive an elementary statement about
singular values of a sum of two compact operators.

Lemma 4.3. Let S, T be a compact operators on the Hilbert space L2(Rd). Then
we have that

sj+k−1(S + T ) ≤ sj(S) + sk(T.)

Proof. If rankA < j and rankB < k then rank(A+B) < j + k − 1 and

sj+k−1(S + T ) ≤ ‖S − A+ T −B‖L2 ≤ ‖S − A‖L2 + ‖T −B‖L2 .

Therefore we establish the desired assertion after taking the infimum over the
operators of finite rank less than m and n, respectively. �

The main idea is to expand the symbol of a pseudodifferential operators in
terms of a Wilson basis. Actually we will prove that:

Theorem 4.4. For integral kernel k ∈ Mp
vs

(R2d) and corresponding integral op-
erator Akf(x) =

∫
k(x, y)f(y)dy and s > 0, the following statements hold for

singular values {sj(Ak)}:
(i) If 1 ≤ p ≤ 2 and k ∈Mp

vs
(R2d), then sN(Ak) = O(N−s/2d−1/p)

(ii) If 2 ≤ p <∞ and k ∈Mp′
vs

(R2d) then sN(Ak) = O(N−s/p′d−1/p′).

Corollary 4.5. If the kernel k is in Mp
vs

(R2d), then

(i) for 1 ≤ p ≤ 2, Ak ∈ Ir, if r > 2d
s+d

.

(ii) for 2 ≤ p <∞, Ak ∈ Ir, if r > 2p′d
sp′+2d

.

Proof. (i) By definition Ak is in Ir if
∑
sj(Ak)

r ≤ ∞. Since k is in Mp
s (R2d)

so by Theorem 4.4 we have∑
sj(Ak)

r ≤
∑

(j
−s−d

2d )r.

This series is convergence if r(s+d)
2d

> 1 and therefore r > 2d
s+d

.
(ii) Follows similar lines as the proof of (i).

�

The proof of Theorem 4.4 will be based on a few lemmas. The first lemma
enables us to approximate singular values of our pseudodifferential operators in
Ip.



GENERALIZED SHUBIN CLASSES AND LANDAU–WEYL OPERATORS 69

Lemma 4.6. If an operator A is in Ip, then

s2N(A)p ≤ 1
N

∑
l>N

sl(A)p ≤ 1
N

inf{‖A− T‖p
Ip

: rank(T ) < N}

Remark 4.7. In our discussion of pseudodifferential operators, the existence of
a matrix representation with respect to a multivariate Wilson basis is the cru-
cial tool in our proofs. Let kernel k be in Mp(R2d) and consider the Wilson

basis ψmn for Mp(Rd). Then by the tensor products, Ψmn(x, y) = ψmn(x)ψmn(y)
yield a basis for Mp(R2d), so by (4.1), k =

∑
m,n∈Z2d〈k,Ψmn〉Ψmn and Ak =∑

m,n∈Z2d〈k,Ψmn〉AΨmn such that

AΨmn(f) =

∫
Ψmn(x, y)f(y)dy =

∫
ψmn(x)ψmn(y)f(y)dy = ψmn(x)〈f, ψmn〉.

The last equality arises from duality and shows that AΨmn is a rank-one operator.

Lemma 4.8. Let k be a kernel in Mp
vs

(R2d). Then singular values of the corre-
sponding integral operator Ak behave as follow:

sj(Ak) = O(j
− s

2d
−1

p ).

Proof. For each N > 0 and k ∈ Mp
vs

(R2d), set kN =
∑

|m|,|n|≤N〈k,Ψmn〉Ψmn then

AkN
=

∑
|m|,|n|≤N〈k,Ψmn〉AΨmn . For m = (m1,m2) and n = (n1, n2) define

JN = {m1,m2, n1, n2 ∈ Zd : |m1|, |m2|, |n1|, |n2| < N} = {−N, ...N}4d.

By previous remark AkN
is a finite-rank operator and its range is the line through

ψmn(x). So we have

rank(AkN
) ≤ (2N + 1)2d ≤ 10dN2d.

In view of the Wilson basis description of modulation spaces, Proposition 4.2 and
Lemma 4.6 we obtain the following:

Ms2M(Ak)
p ≤

2M∑
l=M+1

sl(Ak)
p ≤

∑
l>rank(AkN

)

sl(Ak)
p ≤ ‖Ak − AkN

‖p
Ip

≤ ‖k − kN‖p
Mp =

∥∥∥∥∥∥
∑

m,n/∈JN

〈k,Ψmn〉Ψmn

∥∥∥∥∥∥
p

Mp

≤ C
∑

m,n/∈JN

|〈k,Ψmn〉|p vs(m,n)p

vs(m,n)p

≤ C
∑

m,n/∈JN

|〈k,Ψmn〉|p vs(m,n)p( sup
m,n/∈JN

1
vs(m,n)p )

≤ C( sup
m,n/∈JN

1
vs(m,n)p ) ‖k‖p

Mp
s
.

Since m,n /∈ JN , so

vs(m1,m2, n1, n2) = (1+m2
1+m

2
2+n162+n2

2)
s/2 ≥ (1+4N2)s/2 ≥ (1+N2)s/2 ≥ (N2)s/2
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and therefore
1

vs(m1,m2, n1, n2)p
≤ 1

N sp
= N−sp.

This means that

Ms2M(Ak)
p ≤ C ′N−sp

where C ′ is a constant independent of k. Now set M = 10dN2d, then

Ms2M(Ak)
p ≤ C ′N−sp ⇒

s2M(Ak)
p ≤ C ′

10d
N−sp−2d = DN−sp−2d ⇒

s2M(Ak) ≤ DN
−sp−2d

p .

Now by reindexing j = 2M = 20dN2d we have N = ( j
20d )

1
2d . If we substitute this

expression into the above inequality, then we get the desired formula for sj

sj ≤ D((
j

20d
)

1
2d )

−sp−2d
p ,

i.e. sj(Ak) = O(j−s/2d−1/p). �

The proof of the main result Theorem 4.4 is a straightforward consequence of
the preceding lemma.

Proof of Theorem 4.4

(i) Let 1 ≤ p ≤ 2 then by Proposition 4.2(i), it is enough to set p = 2.
(ii) Proposition 4.2-(ii) and substituting p′ instead of p in Lemma 4.8 imply

the result.

All the results so far are also true for the Kohn–Nirenberg quantization due
to the invariance of the modulation spaces with radial symmetric weights under
metaplectic transformations [23]. The final result states that the main result
remains valid for operators of the Landau–Weyl calculus. This is a consequence
of the discussion at the end of Section 2.

Theorem 4.9. If a ∈ Mp
vs

(R2d), then we have the following results for the Weyl

operator La and the Landau–Weyl operator L̃a:
(i) For 1 ≤ p ≤ 2 the operators La and L̃a are in Ir if r > 2d

s+d
.

(ii) For 2 < p ≤ ∞ the operators La and L̃a are in Ir if r > 2p′d
sp′+2d

.
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22. K. Gröchenig, Weight functions in time-frequency analysis. Pseudo-differential operators:
partial differential equations and time-frequency analysis, 343–366, Fields Inst. Commun.,
52, Amer. Math. Soc., Providence, RI, 2007.

23. C. Heil, Integral operators, pseudodifferential operators, and Gabor frames. Advances in
Gabor analysis, 153–169, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Boston, MA,
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