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Abstract. By introducing the concept of limited completely continuous op-
erators between two arbitrary Banach spaces X and Y , we give some properties
of this concept related to some well known classes of operators and specially,
related to the Gelfand–Phillips property of the space X or Y . Then some
necessary and sufficient conditions for the Gelfand–Phillips property of closed
subspace M of some operator spaces, with respect to limited complete conti-
nuity of some operators on M , so-called, evaluation operators, are verified.

1. Introduction and preliminaries

A subset A of a Banach space X is called limited (resp. Dunford–Pettis (DP)),
if every weak∗ null (resp. weak null) sequence (x∗n) in X∗ converges uniformly on
A, that is,

lim
n→∞

sup
a∈A

|〈a, x∗n〉| = 0.

Also if A ⊆ X∗ and every weak null sequence (xn) in X converges uniformly on
A, we say that A is an L-set.
We know that every relatively compact subset of X is limited and clearly every
limited set is DP and every DP subset of a dual Banach space is an L-set, but
the converse of these assertions, in general, are false. If every limited subset of
a Banach space X is relatively compact, then X has the Gelfand–Phillips (GP)
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property and X has the relatively compact Dunford–Pettis property (DPrcP), if
every DP set in X is relatively compact. It is clear that DPrcP imply the GP
property, but if X is a Grothendieck space (i.e., weak and weak∗ convergence
of sequences in X∗ are coincide), then these properties are the same on X. For
example, the classical Banach spaces c0 and `1 have the GP property and every
separable Banach space, every Schur space (i.e., weak and norm convergence of
sequences in X are coincide), and spaces containing no copy of `1, such as reflex-
ive spaces, have the same property [2].
Also the Banach space X has the GP property if and only if every limited and
weakly null sequence (xn) in X is norm null [5]. The reader can be find some
useful and additional properties of limited and DP sets and Banach spaces with
the GP property in [2, 5, 8, 10, 17].
Here, by introducing the concept of limited completely continuous operators be-
tween Banach spaces, we obtain some characterizations of it and then the relation
between the Gelfand–Phillips property of X and limited complete continuity of
operators on X is treated. Finally, we shall obtain some necessary and/or suffi-
cient conditions for the GP property of a closed subspace of some operator spaces,
relative to the limited complete continuity of special operators, so-called, evalu-
ation operators.
The notations and terminologies are standard. We use the symbols X, Y and Z
for arbitrary Banach spaces. We denoted the closed unit ball of X by BX , the
dual of X by X∗ and T ∗ refers to the adjoint of the operator T . Also we use
〈x, x∗〉 for the duality between x ∈ X and x∗ ∈ X∗ . We refer the reader for
undefined terminologies, to the classical references [6, 12].

2. Limited completely continuous operators

Let X and Y be arbitrary Banach spaces and T : X → Y be a bounded linear
operator. We remember that:

(a) T is (weakly) compact, if T (BX) is a relatively (weakly) compact set in
Y .

(b) T is limited, if T (BX) is limited in Y .
(c) T is completely continuous, if it carries weakly null sequences in X to

norm null sequences in Y .

Since the limited and weakly convergent sequences, play an important role in the
study of Gelfand–Phillips property of Banach spaces, we define the following class
of operators:

(d) T is called limited completely continuous (abb. lcc), if T carries limited
and weakly null sequences in X to norm null ones.

We denote the class of all weakly compact and compact operators from X to Y
by W (X, Y ) and K(X, Y ), respectively. Also, we shall use the symbols Li(X, Y ),
Cc(X, Y ) and Lcc(X,Y ), for the class of all limited, completely continuous and
limited completely continuous operators from X to Y , respectively.
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It is clear that the class Lcc(X, Y ) is a closed linear subspace of L(X, Y ),
consisting of all bounded linear operators from X to Y ; which has the ideal
property, that is, for each T ∈ Lcc(X, Y ) and each two bounded linear operators
R and S, which can be composed with T , one has RTS is a limited completely
continuous operator.
Now we will establish some additional properties of lcc operators.

Theorem 2.1. A bounded operator T on X is lcc if and only if for each limited
set A ⊆ X, the set T (A) is relatively compact.

Proof. suppose that T : X → Y is lcc and A ⊆ X is limited. Since every
limited set is weakly conditionally compact [6], every sequence (xn) in A has a
subsequence, denoted again by (xn), that is weakly Cauchy. On the other hands,
the difference set A−A is limited [2]. Thus the sequence (xn−xm) is limited and
weakly null, and then the sequence (Txn) is Cauchy and so is norm convergent
in the Banach space Y . Thus T (A) is relatively compact.
Conversely, if (xn) is a limited weakly null sequence in X; it is enough to show
that every subsequence of (xn), has a subsequence (xnk

) such that (Txnk
) is norm

null.
For each such subsequence of (xn), which denoted again by (xn), by hypothesis,
the sequence (Txn) is relatively compact and so has a convergent subsequence
(Txnk

). Since T carries weakly null sequences to weakly null ones, the sequence
(Txnk

) is weakly null and so ‖Txnk
‖ → 0 as k → ∞. This shows that the

sequence (Txn) is norm null and then T is lcc. �

In the following theorem, we give a characterization of GP spaces, with respect
to lcc operators.

Theorem 2.2. For a Banach space X, the following are equivalent:

(a) X has the GP property,
(b) For each Banach space Y , Lcc(X, Y ) = L(X, Y ),
(c) For each Banach space Y , Lcc(Y,X) = L(Y,X).

Proof. (a) ⇒ (b). By [5], we know that the Banach space X has the GP property
if and only if every limited weakly null sequence in X is norm convergent. So
if X has the GP property and (xn) ⊂ X is limited and weakly null, then (xn)
is norm null. Now for each bounded operator T on X, ‖Txn‖ → 0; that is
Lcc(X, Y ) = L(X, Y ).
(b) ⇒ (a). If Y = X, then (b) implies that the identity operator on X is lcc. In
other wise, X has the GP property. The proof of equivalence of (a) and (c) is
similar. �

For the following corollary, we need a theorem from [2]:

Theorem 2.3. A subset A ⊆ X is limited if and only if for each bounded operator
S : X → c0, the subset S(A) of c0 is relatively compact.

Corollary 2.4. For an operator T : X → Y , the following are equivalent:

(a) T is limited,
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(b) For each Banach space Z and each lcc operator S : Y → Z, the composi-
tion operator ST is compact,

(c) For each operator S : Y → c0 , the operator ST is compact.

Proof. (a) ⇒ (b). If T is limited and S : Y → Z is lcc, then T (BX) is limited in
Y and by Theorem 2.1, S(T (BX)) is relatively compact. So the operator ST is
compact.
(b) ⇒ (c). Since c0 has the GP property, by Theorem 2.2, every operator S :
Y → c0 is lcc. Now apply the statement (b).
(c) ⇒ (a). For every operator S : Y → c0, the operator ST is compact. That
is, S(T (BX) is relatively compact and so by Theorem 2.3, T (BX) is limited in
Y . �

Corollary 2.5. Every weakly compact operator is lcc.

Proof. Let T : X → Y be a weakly compact operator between Banach spaces X
and Y . Then by Davis-Figiel–Johnson–Pelczynski’s Theorem [3], T can be factors
through a reflexive Banach space Z; that is, there are operators S : X → Z and
R : Z → Y such that T = RS. Since Z has the GP property, by Theorem 2.2, R
and so T is lcc. �

Corollary 2.6. Let Y be a Banach space containing no copy of `1. Then for
every Banach space X, every limited operator T : X → Y is lcc.

Proof. By [6], if Y contains no copy of `1, every limited subset of Y is relatively
weakly compact. So by hypothesis, T (BX) is relatively weakly compact and T is
a weakly compact operator. �

The following theorem proves that the validity of the statement (b) of Theorem
2.2 by `∞ instead all Banach space Y , is a sufficient condition for the GP property
of X.

Theorem 2.7. A Banach space X has the GP property if and only if Lcc(X, `∞) =
L(X, `∞).

Proof. If X does not have the GP property, then by [5], there exists a limited
and weakly null sequence (xn) in X such that ‖xn‖ = 1, for all n. Choose a
normalized sequence (x∗n) in X∗ such that |〈xn, x

∗
n〉| = 1, for all n, and define the

operator T : X → `∞ by

Tx = (〈x, x∗n〉) , x ∈ X.
But T is not lcc, Since the sequence (xn) is limited and weakly null and ‖Txn‖ ≥ 1,
for all n. �

It is clear that every completely continuous operator is lcc, but the converse,
in general, is false. In the following, we give a characterization of this converse
assertion, with respect to the DP∗ property of Banach spaces. Recall that a
Banach space X has the DP∗ property, if every relatively weakly compact subset
of X is limited, or equivalently, every weakly null sequence in X, is limited.

Theorem 2.8. A Banach space X has the DP∗ property if and only if for each
Banach space Y , Cc(X, Y ) = Lcc(X,Y ).
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Proof. If X has the DP∗ property and T : X → Y is lcc, then for every weakly
null sequence (xn) in X, it is limited and so by hypothesis on T , the sequence
(Txn) is norm null. Hence T is completely continuous. Conversely, if every lcc
operator on X is completely continuous, then X has the DP∗ property. In fact,
if (xn) is a non limited and weakly null sequence in X, then by passing to a
subsequence, there exist a weak∗ null sequence (x∗n) in X∗ such that

|〈xn, x
∗
n〉| > ε,

for all integer n and some positive ε, [5]. Now the bounded operator T : X → c0
defined by Tx = (〈x, x∗n〉) is lcc, thanks to Theorem 2.2; while it is not com-
pletely continuous, since (xn) is weakly null and ‖Txn‖ > ε for all n. This is a
contradiction. �

We conclude this section by proving that the operator ideal Lcc of all lcc operators
between Banach spaces, by meaning of [4], is injective but it is not surjective.
Recall that an operator ideal U is injective, if for each Banach spaces X, Y and
Z and each isometric embedding J : Y → Z, the operator T ∈ L(X,Y ) belongs
to U if JT ∈ U . Also U is surjective, if for each Banach spaces X, Y and Z and
each surjection Q : Z → X, the operator T ∈ L(X, Y ) belongs to U if TQ ∈ U .

Theorem 2.9. The operator ideal Lcc is injective but not surjective.

Proof. Suppose that T ∈ L(X, Y ) and J : Y → Z is an isometric embedding,
such that JT is lcc. If (xn) is limited and weakly null in X, then ‖JTxn‖ → 0
as n → ∞. By hypothesis on J , ‖Txn‖ → 0 and so T is lcc too. Hence Lcc
is injective. Now, for the proof of non surjectivity of Lcc, suppose that X is a
Banach space without the GP property. Then the identity operator i : X → X
is not lcc. On the other hands, if one define QX : `1(BX) → X via

QX(φ) =
∑

x∈BX

φ(x)x , φ ∈ `1(BX),

then by [11], QX is a surjective operator. Thus the Schur property and so GP
property of `1(BX) implies that the operator QX = iQX is lcc, while the identity
operator i is not. �

3. Evaluation operators and GP property

For each two Banach spaces X and Y , by meaning of [4] or [11], let U(X,Y )
be the component of operator ideal U of all operators from X to Y that belongs
to U . If M is a closed subspace of U(X, Y ), for each arbitrary elements x ∈ X
and y∗ ∈ Y ∗, the evaluation operators φx : M → Y and ψy∗ : M → X∗ on M are
defined by

φx(T ) = Tx , ψy∗(T ) = T ∗y∗ , T ∈M.

Also, the point evaluation sets related to x ∈ X and y∗ ∈ Y ∗ are the images of
the closed unit ball BM of M , under the evaluation operators φx and ψy∗ and are

denoted by M1(x) and M̃1(y
∗) respectively.

In the following, among other things, we give some necessary and sufficient con-
ditions of GP property of some closed subspace M of operator ideals with respect
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to limited complete continuity of all evaluation operators. At the first, we give
some generalizations of [14, Theorem 2.5], [16, Theorem 4] and [18, Theorem 1].
Recall that a Banach space X has the RDP property [9], if every DP subset of
X is relatively weakly compact.

Theorem 3.1. Let X and Y be two Banach spaces and M be a closed subspace
of operator ideal U(X, Y ), such that M∗ has the Schur property.

(a) If X∗ and Y are Grothendieck spaces, then all of the point evaluation sets

M1(x) and M̃1(y
∗) are limited.

(b) If X∗ and Y have RDP property, then all evaluation sets are relatively
weakly compact.

(c) If X∗ and Y have the Grothendieck and GP properties, then all evaluation
sets are relatively compact.

(d) If X and Y ∗ contain no copy of `1, then all evaluation sets are relatively
compact.

Proof. If M∗ has the Schur property, then for every weak null sequence (Λn) in
M∗, it is norm null and so is uniformly convergent on the unit ball BM of M .
This shows that BM is a DP set. Since the DP sets preserve under each bounded
linear operator, we see that all evaluation sets are DP too.
For completeness of the proof of (a), it is enough to note that every DP subset of
a Grothendieck space is limited. The investigation of the rest assertions (b)-(d)
are similar. For the proof of (d), one need combine the above technique with a
theorem from [7] that states, every DP set in the dual of Banach spaces containing
no copy of `1, is relatively compact. �

The following theorem shows that the limited complete continuity of all evaluation
operators is a necessary condition for the GP property of closed subspace M ⊆
U(X,Y ):

Theorem 3.2. For each two Banach spaces X and Y , if the closed subspace M
of arbitrary operator ideal U(X, Y ) has the GP property, then all of the evaluation
operators φx and ψy∗ are lcc.

Proof. Since all φx : M → Y and ψy∗ : M → X∗ are bounded linear operators, it
is an easy consequence of Theorem 2.2. �

By a similar method, we have the following necessary condition for the GP prop-
erty of the dual of closed subspace M ⊆ U(X,Y ).

Theorem 3.3. Suppose that X∗∗ and Y ∗ have the DP∗ property such that the
dual M∗ of a closed subspace M ⊆ U(X, Y ) has the GP property, Then all of the

evaluation sets M1(x) and M̃1(y
∗) are DP sets.

Proof. Since M∗ has the GP property, by Theorem 2.2, the adjoint operators
φ∗x : Y ∗ → M∗ and ψ∗y∗ : X∗∗ → M∗ are lcc. So by Theorem 2.8, these operators
are completely continuous.
For the proof M1(x) ⊆ Y is a DP set in Y , suppose that (y∗n) is a weakly null
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sequence in Y ∗. Then ‖φ∗xy∗n‖ → 0 as n→∞, for all x ∈ X. Since

‖φ∗xy∗n‖ = sup{|〈φ∗xy∗n, T 〉| : T ∈ BM}
= sup{|〈y∗n, Tx〉| : T ∈ BM},

the sequence (y∗n) converges uniformly on M1(x). This shows that M1(x) is a DP

set in Y , for all x ∈ X. A similar proof shows that all M̃1(y
∗) are DP in X∗. �

Finally, we conclude this section by proving that the lcc of evaluation operators
is a sufficient condition for the GP property of the subspace. For the proof of the
following two theorems, we remember two theorems from [1, 13, 15]:

Theorem 3.4. ([1, 15]) Let X and Y be Banach spaces and H be a subset of
L(X, Y ) such that

(a) H(BX) := {Tx : T ∈ H, x ∈ BX} is relatively compact,
(b) H∗y∗ := {T ∗y∗ : T ∈ H} is relatively compact, for all y∗ in Y ∗.

Then H is relatively compact.

Recall that a subset H ⊆ L(X, Y ) is uniformly completely continuous, if for every
weakly null sequence (xn) in X,

lim
n→∞

sup
T∈H

‖Txn‖ = 0.

Theorem 3.5. ([13]) If X contains no copy of `1, then a subset H ⊆ K(X,Y )
is relatively compact if and only if H is uniformly completely continuous and for
each x ∈ X, the set φx(H) is relatively compact in Y .

Theorem 3.6. Suppose that M is a closed linear subspace of Li(X,Y ) that the
closed linear span of the set M(X) := {Tx : T ∈M,x ∈ X} is a GP subspace of
Y . If all evaluation operators ψy∗ are lcc, then M has the GP property.

Proof. Let H ⊆M be limited subset of M . For the proof of relative compactness
of H in M , By Theorem 3.4, it is enough to show that H(BX) and all H∗(y∗) are
relatively compact in Y and X∗ respectively.
We know that a bounded operator T : X → Y is limited if and only if the adjoint
operator T ∗ is weak∗-norm sequentially continuous [2] and also, a subset A of X
is limited if and only if every pointwise convergent sequence of bounded linear
operators on X, converges uniformly on A [17].
If (y∗n) is a weak∗ null sequence in Y ∗, then the weak∗-norm sequential continuity
of the adjoint of each T ∈ H, implies that ‖ψy∗n(T )‖ = ‖T ∗y∗n‖ → 0 as n→∞.
That is the sequence ψy∗n of bounded linear operators on M , converges pointwise
and so converges uniformly on the limited subset H of M . Hence

sup {|〈Tx, y∗n〉| : T ∈ H, x ∈ BX}
= sup{|〈x, T ∗y∗n〉| : T ∈ H, x ∈ BX}
= sup{‖T ∗y∗n‖ : T ∈ H},

tends to zero, as n→∞. Thus H(BX) is limited and the hypothesis on the GP
property implies that H(BX) is relatively compact in Y . On the other hands, for
each y∗ ∈ Y ∗, the evaluation operator ψy∗ is lcc and by Theorem 2.1, it carries
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the limited set H to relatively compact set H∗(y∗) = ψy∗(H). Now Theorem 3.4
implies that H is relatively compact in M . �

Theorem 3.7. Let X and Y be two Banach spaces such that X contains no copy
of `1. If M is closed subspace of K(X, Y ) such that each evaluation operators φx

is lcc on M , then M has the GP property.

Proof. Suppose that H ⊆M is a limited set. If (xn) is a weakly null sequence in
X, then complete continuity of each operator T ∈ H, implies that the sequence
(φxn) is norm null at each point T ∈ H and then by [17], it is uniformly convergent
on the limited set H. This shows that H is uniformly completely continuous. On
the other hands, each φx is lcc and so by Theorem 2.1, φx(H) is relatively compact,
for all x ∈ X. Now an appeal to Theorem 3.5 shows that H is relatively compact
in K(X, Y ) and so M has the GP property. �

The following theorem extends [8, Theorem 2].

Theorem 3.8. Let X and Y be two Banach spaces such that Y has the Schur
property. If M is a closed subspace of L(X, Y ) such that each evaluation operators
ψy∗ is lcc on M , then M has the GP property.

Proof. If M does not have the GP property, then by [5], there exists a limited
and weakly null sequence (Tn) in M that is not norm null and by passing to a
subsequence, we may assume that ‖Tn‖ > ε, for all integer n and some ε > 0.
Choose a sequence (xn) in BX such that for all n, ‖Tnxn‖ > ε. On the other
hands, for each y∗ ∈ Y ∗, the evaluation operator ψy∗ : M → X∗ is lcc, so
‖T ∗ny∗‖ = ‖ψy∗Tn‖ → 0 and then

|〈Tnxn, y
∗〉| ≤ ‖T ∗ny∗‖ → 0, as n→∞.

This means that the sequence (Tnxn) is weakly null and so norm null, thanks to
the Schur property of Y . This contradiction shows that M has the GP property.

�

Finally, by a similar technique, we give a sufficient condition for the GP property
of closed subspaces of Lw∗(X∗, Y ), consisting of all bounded weak∗-weak contin-
uous operators from X∗ to Y , and note that for each operator T ∈ Lw∗(X∗, Y ),
the adjoint operator T ∗ tends Y ∗ into X.

Theorem 3.9. Let X and Y be two Banach spaces such that X has the Schur
property. If M is a closed subspace of Lw∗(X∗, Y ) such that each evaluation
operators φx∗ is lcc on M , then M has the GP property.

Proof. If one can choose a limited and weakly null sequence (Tn) in M such that
‖Tn‖ > ε for some ε > 0 and all integer n, then by hypothesis on evaluation
operators, for each x∗ ∈ X∗, ‖Tnx

∗‖ → 0, as n→ 0. Since ‖T ∗n‖ > ε, there exists
a sequence (y∗n) in BY ∗ such that ‖T ∗ny∗n‖ > ε, for all n.
But the Schur property of X shows that the weakly null sequence (T ∗ny

∗
n) is norm

null, which is a contradiction. �
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