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Abstract. Spectral synthesis deals with the description of translation invari-
ant function spaces. It turns out that the basic building blocks of this de-
scription are the exponential monomials, which are built up from exponential
functions and polynomial functions. The author collaborated with Laczkovich
[Math. Proc. Cambridge Philos. Soc. 143 (2007), no. 1, 103–120] proved
that spectral synthesis holds on an Abelian group if and only if the torsion
free rank of the group is finite. The author [Aequationes Math. 70 (2005), no.
1-2, 122–130] showed that the torsion free rank of an Abelian group is strongly
related to the properties of polynomial functions on the group. Here we show
that spectral synthesis holds on an Abelian group if and only if the ring of
polynomial functions on the group is Noetherian.

1. Introduction

Spectral analysis and spectral synthesis deal with the description of transla-
tion invariant function spaces over locally compact Abelian groups. We consider
the space C(G) of all complex valued continuous functions on a locally compact
Abelian group G, which is a locally convex topological linear space with respect to
the point-wise linear operations (addition, multiplication with scalars) and to the
topology of uniform convergence on compact sets. Continuous homomorphisms
of G into the additive topological group of complex numbers and into the multi-
plicative topological group of nonzero complex numbers, respectively, are called
additive and exponential functions, respectively. A function is a polynomial if
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it belongs to the algebra generated by the continuous additive functions. An
exponential monomial is the product of a polynomial and an exponential.

Closed translation invariant subspaces of C(G) are called varieties. It turns
out that exponential functions, or more generally, exponential monomials can
be considered as basic building bricks of varieties. A given variety may or may
not contain any exponential function or exponential monomial. If it contains an
exponential function, then we say that spectral analysis holds for the variety.
An exponential function in a variety can be considered as a kind of spectral
value and the set of all exponential functions in a variety is called the spectrum
of the variety. It follows that spectral analysis for a variety means that the
spectrum of the variety is nonempty. On the other hand, the set of all exponential
monomials contained in a variety is called the spectral set of the variety. It turns
out that if an exponential monomial belongs to a variety, then the exponential
function appearing in the representation of this exponential monomial belongs
to the variety, too. Hence, if the spectral set of a variety is nonempty, then also
the spectrum of the variety is nonempty and spectral analysis holds. There is,
however, an even stronger property of some varieties, namely, if the spectral set of
the variety spans a dense subspace of the variety. In this case we say that spectral
synthesis holds for the variety. It follows, that for nonzero varieties spectral
synthesis implies spectral analysis. If spectral analysis, respectively, spectral
synthesis holds for every variety on an Abelian group, then we say that spectral
analysis, respectively, spectral synthesis holds on the Abelian group. A famous
and pioneer result of Schwartz [10] exhibits the situation by stating that if the
group is the reals with the Euclidean topology, then spectral values do exist, that
is, any nonzero variety contains an exponential function. In other words, in this
case the spectrum is nonempty, spectral analysis holds. Furthermore, spectral
synthesis also holds in this situation: there are sufficiently many exponential
monomials in the variety in the sense that their linear hull is dense in the subspace.

In the investigations concerning spectral analysis and spectral synthesis a spe-
cial attention is attracted by the case of discrete Abelian groups. The first relevant
result is due to Lefranc ([9]) proving spectral synthesis for finite direct sums of
the additive group of integers. This result has been extended to arbitrary finitely
generated Abelian groups in [12].

In [5] Elliot presented a theorem stating that spectral synthesis holds on any
Abelian group. Unfortunately, the proof of his theorem has a serious gap, which
was pointed out by Gajda ([3]). For several years this gap has not been filled,
which means, that both the spectral analysis and spectral synthesis problems have
remained open. However, in [13] spectral analysis and in [1] spectral synthesis
was proved for commutative torsion groups.

At the 41st International Symposium on Functional Equations in 2003, Nosz-
vaj, Hungary a counterexample to Elliot’s theorem was presented by the present
author and in [14] a necessary condition was given for the presence of spectral
synthesis on discrete Abelian groups: any Abelian group with spectral synthesis
has finite torsion free rank. In [7] discrete Abelian groups with spectral analysis
have already been characterized: they are exactly those having torsion free rank
less than the continuum. Finally, a complete characterization of discrete Abelian
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groups is presented in [8]: spectral synthesis holds if and only if the torsion free
rank of the group is finite.

All the results listed above focus on the problem of spectral analysis and spec-
tral synthesis on the whole group, that is, on all varieties, simultaneously. Nev-
ertheless, an equally interesting problem is to investigate the spectral properties
of a single variety, only. Obviously, a possible characterization of this type may
not depend merely on the algebraic structure of the group. Hence, it might be
useful to reformulate the global condition on the torsion free rank transforming it
into some condition which may be localized. In this paper we give an equivalent
condition to the property of an Abelian group having finite torsion free rank in
terms of the ring structure of polynomial functions on the group.

2. Polynomial functions on Abelian groups

Although the theory of polynomial functions on Abelian groups can be pre-
sented in a more general setting (see e.g. [6], [11]), for our purposes it is enough
to consider complex valued polynomial functions. The additive group of integers,
respectively complex numbers will be denoted by Z, respectively C.

Let G be an Abelian group. For any function f : G → C and for any y in G
one introduces the difference of f with increment y or shortly the difference of f
as the function ∆yf : G → C defined by

∆yf(x) = f(x + y)− f(x)

for any x in G. For any positive integer n and for any y1, y2, . . . , yn in G we use
the notation ∆y1,y2,...,yn for the product

∆y1 ◦∆y2 ◦ · · · ◦∆yn .

In particular, if y1 = y2 = · · · = yn, then we write ∆n
y for ∆y1,y2,...,yn .

The functional equation

∆y1,y2,...,yn+1f(x) = 0 (2.1)

will be referred to as Fréchet’s equation. Another basic functional equation is

∆n
yf(x) = n!f(y) , (2.2)

which is called the monomial equation. In these equations we suppose that
f : G → C is a function and the equations hold for all x, y, y1, y2, . . . , yn+1,
respectively. Solutions of the Fréchet’s equation (2.1) are called polynomial func-
tions of degree at most n and nonzero solutions of the monomial equation (2.2)
are called monomial functions of degree n. The zero function can be considered
as a monomial function of degree −1.

It is known (see e.g. [2], [11]) that any solution f : G → C of (2.1) has a unique
representation in the form

f(x) =
n∑

j=0

aj(x)

for all x in G, where aj : G → C is a solution of (2.2) with j in place of n. In other
words, any nonzero polynomial function of degree at most n has a unique repre-
sentation as a sum of nonzero monomial functions of degree not higher than n.
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Let n be a positive integer. If G, H are any sets and an arbitrary function
F : Gn → H is given, then the function x 7→ F (x, x, . . . , x) is called the diagonal-
ization of F . The function F : Gn → H is called symmetric if

F (xσ(1), xσ(2), . . . , xσ(n)) = F (x1, x2, . . . , xn)

holds for any x1, x2, . . . , xn in G and for any permutation σ of the set {1, 2, . . . , n}.
If G is an Abelian group and n is a positive integer, then the function F : Gn → C

is n-additive if the function t 7→ F (x1, . . . , xi−1, t, xi+1, . . . , xn) is a homomorphism
of G into C for each i = 1, 2, . . . , n and for any elements x1, . . . , xi−1, xi+1, . . . , xn

in G. We call 1-additive functions simply additive. Sometimes this terminology
is extended for n = 0 by considering any constant function to be 0-additive. It
is clear that if σ is any permutation of the set {1, 2, . . . , n}, then the function
symF : Gn → C defined by

symF (x1, x2, . . . , xn) =
1

n!

∑
σ

F (xσ(1), xσ(2), . . . , xσ(n))

(the summation extends for all permutations σ of the set {1, 2, . . . , n}) is obviously
symmetric and has the same diagonalization as F . Moreover, if F is n-additive,
then symF is n-additive, too.

In [2] (see also [11]) it is proved that if n is a positive integer and G is an
Abelian group, then the diagonalization of any nonzero n-additive symmetric
function F : Gn → C is a monomial function of degree n. Taking symF instead
of F we see that this holds for the diagonalization of any nonzero n-additive
function. We note that from the results of [2] it follows that the converse of this
statement is also true: any monomial function of degree n is the diagonalization
of some n-additive symmetric function.

In the class of complex polynomial functions there is a special subclass. Let G
be an Abelian group, n a positive integer, P a complex polynomial of degree N
in n variables and a1, a2, . . . , an (complex) additive functions. Then it is easy to
see that the function x 7→ P

(
a1(x), a2(x), · · · , an(x)

)
is a polynomial function of

degree at most N . We call polynomial functions of this kind simply polynomials.
We note that in [11] the terminology is different: these types of polynomial func-
tions are called normal polynomials and polynomial functions are called simply
polynomials. Roughly speaking, a polynomial on an Abelian group is a polyno-
mial of complex homomorphisms. Polynomials are the elements of the complex
algebra generated by all complex homomorphisms.

An important property of complex polynomial functions is that they form a
commutative ring.

Theorem 1. Let G be an Abelian group. Then the set of all complex polynomial
functions on G is a commutative ring.

Proof. Clearly, the sum of two polynomial functions is a polynomial function.
For the rest of the proof, by the results of [2], it is enough to show that the
product of the diagonalizations of an m-additive and an n-additive function is the
diagonalization of an m + n-additive function. Let f : Gm → C and g : Gn → C
be m-additive, respectively n-additive functions, then the function h : Gm+n → C
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defined by,

h(x1, x2, . . . , xm, y1, y2, . . . , yn) = f(x1, x2, . . . , xm)g(y1, y2, . . . , yn)

for x1, x2, . . . , xm, y1, y2, . . . , yn in G is clearly m + n-additive. It is obvious, that
the diagonalization of h is the product of the diagonalizations of f and g. This
implies our statement.

The commutativity of the ring of the polynomial functions is obvious. �

Clearly the polynomials form a subring in the ring of polynomial functions.
The following theorem characterizes those Abelian groups on which polynomial
functions and polynomials coincide (see [15]).

Theorem 2. The torsion free rank of a discrete Abelian group is finite if and only
if any complex generalized polynomial on the group is a polynomial.

3. Spectral synthesis

In this section, based on the results in [14], [15] and [7], we show that the pres-
ence of spectral synthesis on an Abelian group heavily depends on the structure of
the ring of polynomials on the group. Homomorphisms of an Abelian group into
the multiplicative group of nonzero complex numbers will be called exponentials.

Let G be an Abelian group. Given a function f : G → C and an element y in
G the function τyf : G → C defined by

τyf(x) = f(x + y)

is called the translate of f by y. A linear space of complex valued functions on
G, which is closed under forming point-wise limits and containing all translates
of its elements is called a variety. We say that spectral synthesis holds for a given
variety if the sum of all finite dimensional varieties is dense in this variety. It is
known ([17]), that this is the case if and only if the elements of the function algebra
generated by polynomials and exponentials, the so-called exponential polynomials,
form a dense subspace in the variety. We say that spectral synthesis holds on an
Abelian group, if spectral synthesis holds for each variety on the group. For more
about spectral synthesis the reader should consult [16].

Theorem 3. Let G be an Abelian group. Spectral synthesis holds on G if and
only if the ring of polynomial functions over G is Noetherian.

Proof. Suppose that spectral synthesis holds on G. Then, by [14], the torsion free
rank of G is finite, and, by [15], the linear space of complex additive functions on
G is of finite dimension. Let a1, a2, . . . , an be a basis of this space. By the linear
independence of the functions a1, a2, . . . , an there exist elements x1, x2, . . . , xn in
G such that the matrix

(
ai(xj)

)n

i,j=1
is regular. For k = 1, 2, . . . , n we consider

the systems of linear equations

δi,k =
n∑

j=1

λk,jaj(xi)
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for the unknowns λk,j (j = 1, 2, . . . , n), where i = 1, 2, . . . , n. Here δi,k = 1 for
i = k and δi,k = 0 for i 6= k. Using the unique solution λk,j we define the functions

Ak(x) =
n∑

j=1

λk,jaj(x)

for each x in G. Then the functions Ak for k = 1, 2, . . . , n are additive and
linearly independent, as Ak(xi) = 1 for i = k and Ak(xi) = 0 for i 6= k. Hence
the functions A1, A2, . . . , An form a basis in the space of all complex additive
functions on G.

Then, again by the results in [15], every polynomial function p : G → C has
the form

p(x) = P
(
A1(x), A2(x), . . . , An(x)

)
, (3.1)

where P : Cn → C is a complex polynomial. We show that equation (3.1) sets up
an isomorphism between the ring R of polynomial functions on G and the ring
C[z1, z2, . . . , zn] of complex polynomials in n variables.

Let H denote the subgroup H of G generated by the elements x1, x2, . . . , xn.
Then every element y in H can be written in the form

y = m1x1 + m2x2 + · · ·+ mnxn (3.2)

with some integers m1, m2, . . . ,mn. This representation is unique, which follows
from the fact that the equation

m1x1 + m2x2 + · · ·+ mnxn = 0 (3.3)

with some integers m1, m2, . . . ,mn implies m1 = m2 = · · · = mn = 0. Indeed, by
equation (3.3) we have for k = 1, 2, . . . , n

mk = m1Ak(x1) + m2Ak(x2) + · · ·+ mnAk(xn) = 0 .

Using the representation (3.2) for y we define

Φ(y) = (m1, m2, . . . ,mn) .

Then clearly Φ : H → Zn is an isomorphism.
Returning back to the mapping p 7→ P of the ring R into the polynomial ring

C[z1, z2, . . . , zn] defined in (3.1), first we show that P is uniquely defined by p.
Supposing the contrary, we have that there is a polynomial function p 6= 0 in R
such that the corresponding P in C[z1, z2, . . . , zn] satisfies

P
(
A1(x), A2(x), . . . , An(x)

)
= 0

for each x in G. If (m1, m2, . . . ,mn) is arbitrary in Zn, then for the element
y = m1x1 + m2x2 + · · ·+ mnxn in H we have Ak(y) = mk, which means

P (m1, m2, . . . ,mn) = P
(
A1(y), A2(y), . . . , An(y)

)
= 0 ,

that is, P = 0 on Zn. It follows that P = 0, hence p = 0. It is then clear, that the
mapping p 7→ P is a ring isomorphism, hence, as C[z1, z2, . . . , zn] is Noetherian,
the necessity part of our theorem is proved.

Suppose now that the ring R of polynomial functions on G is Noetherian and
spectral synthesis does not hold on G. Then, by the results in [7], the torsion free
rank of G is infinite. It follows that G has a subgroup H which is isomorphic to
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the direct product of ℵ0 copies of Z, say H =
∏

n∈N Zn, where Zn = Z for each
n = 0, 1, . . . . Let pn denote the projection of H onto Zn, that is

pn(x) = x(n)

for each x : N → Z in H and n in N . Then pn : H → C is a homomorphism of
H into the additive group of C, that is

pn(x + y) = pn(x) + pn(y)

holds for all x, y in H and n in N. It is well known that any homomorphism of a
subgroup of an Abelian group into a divisible Abelian group can be extended to
a homomorphism of the whole group. As the additive group of complex numbers
is obviously divisible, the homomorphisms pn of H can be extended to complex
homomorphisms of the whole group G (see e.g. [4], Vol.I., (A.7) Theorem, p.441.).
We shall denote the extensions by pn, too. The functions pn for n = 0, 1, . . .
belong to the ring R. Let In denote the ideal in R generated by the polynomial
functions p0, p1, . . . , pn for n = 0, 1, . . . . Suppose that pn+1 belongs to In for some
n in N. This means that there are polynomial functions q0, q1, . . . , qn such that

pn+1(x) =
n∑

j=0

qj(x)pj(x)

holds for each x in H. Let x(n+1) be the element of H whose n + 1-st component
is 1, the others being zero. Putting x = x(n+1) in the above equation we have
1 = 0, a contradiction.

Hence the ideals I0 ⊂ I1 ⊂ . . . form a ascending chain, which contradicts the
assumption that R is Noetherian. Our theorem is proved. �
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8. M. Laczkovich and L. Székelyhidi, Spectral synthesis on discrete Abelian groups, Math.
Proc. Cambridge Philos. Soc. 143(2007), no. 1, 103–120.

9. M. Lefranc, L’analyse harmonique dans Zn, C. R. Acad. Sci. Paris 246 (1958), 1951–1953.
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11. L. Székelyhidi, Convolution type functional equations on topological Abelian groups, World

Scientific Publishing Co. Inc., Teaneck, NJ, 1991.



POLYNOMIAL FUNCTIONS AND SPECTRAL SYNTHESIS 131
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15. L. Székelyhidi, Polynomial functions and spectral synthesis, Aequationes Math. 70 (2005),
no. 1-2, 122–130.
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