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OPTIMAL RANGE THEOREMS FOR OPERATORS WITH p-TH
POWER FACTORABLE ADJOINTS
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Abstract. Consider an operator T : E → X(µ) from a Banach space E to
a Banach function space X(µ) over a finite measure µ such that its dual map
is p-th power factorable. We compute the optimal range of T that is defined
to be the smallest Banach function space such that the range of T lies in it
and the restricted operator has p-th power factorable adjoint. For the case
p = 1, the requirement on T is just continuity, so our results give in this case
the optimal range for a continuous operator. We give examples from classical
and harmonic analysis, as convolution operators, Hardy type operators and the
Volterra operator.

1. Introduction and notation

In recent years, vector measures and vector valued integration has been used for
characterizing optimal domains for operators that are defined on Banach function
spaces. This technique has shown to be a useful tool in this setting, and nice
description of such optimal domains (i.e. the largest Banach function space having
some concrete properties to which the operator can be extended) are nowadays
known due to the application of this tool. The Volterra and Hardy operators,
for instance, have been intensively studied from this point of view, but more
examples can be found in the literature (see for instance [4, 5, 7, 8]). In this
paper we adapt this technique for the analysis of the optimal range of operators
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with values in Banach function spaces. Of course, the natural way of doing that
is by dualizing the results on optimal domains: in this sense, the starting point
is to study optimal domains for Köthe adjoint operators.

On the other hand, p-th power factorable operators where introduced in [15]
in order to find specialized versions of the optimal domain theorems for the case
of operators satisfying stronger properties than continuity (norm inequalities).
This technique is based on the theory of Lp spaces of a vector measure (see
[11, 10, 15, 16]). There are plenty of examples of such operators in classical and
harmonic analysis, as the ones related to Lp-improving measures (see [15, Ch.7]).
The space that is optimal for an operator with respect to this property (i.e. the
bigger Banach function space in which the operator still preserves the particular
property considered) satisfies in this case more specific geometric properties, like
p-convexity in the case of p-th power factorable operators.

The aim of this paper is to provide some results that allow to compute optimal
ranges for operators with values in Banach function spaces and to show some
applications for interesting operators, as Hardy type operators or convolution
operators. For improving the characterization that can be given for the optimal
range of such operators, we will impose stronger requirements on the adjoint
operators related with their p-th power factorability.

Our notation is standard. If E is a Banach space, we denote by E∗ its dual
space. If 1 ≤ p ≤ ∞, we will write p′ for the extended real number satisfying
1/p + 1/p′ = 1. Throughout the paper, (Ω, Σ, µ) will be a finite measure space
and X(µ) a Banach function space in the sense of [12, p.28]. L0(µ) is the space
of (classes of) measurable functions. We will simply write X instead of X(µ)
if no explicit reference to the measure is needed. If A ∈ Σ, we write µ|A and
X|A(µ|A) to the restriction of the measure and the space to the set A. We denote
by X ′ the Köthe dual of X, i.e. the Banach function space of all integrals in
X∗. For some particular results, we will consider quasi-Banach function spaces,
i.e. lattices of measurable functions whose topology is provided by a quasi-norm
instead of a norm. The same definitions that in the case of Banach function
spaces make sense. Recall that a Banach function space is order continuous if
and only if X∗ = X ′, and has the Fatou property if and only if it is perfect, i.e.
if X ′′ = X. We mainly refer to [12, 15] for definitions and basic results regarding
Banach function spaces; some aspects of these spaces that are used in this paper
can also be found in [1, 14, 17]. A Banach function space is p-convex if there is
a constant K > 0 such that for every finite set of functions f1, · · · , fn ∈ X, the
following inequality holds.

∥∥∥(
n∑

i=1

|fi|p)1/p
∥∥∥

X
≤ K

( n∑
i=1

‖fi‖p
X

)1/p

.

If T : X → E is an operator we write T ∗ for its adjoint and T ′ for its Köthe
adjoint, i.e. for the restriction of T ∗ to the Köthe dual X ′.

Let X(µ) and Y (µ) be a couple of Banach function spaces over the same mea-
sure µ. Following the notation of [13] (see also [2]), the space of multiplication
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operators from X to Y is defined as

XY := {g ∈ L0(µ) : g ·X ⊆ Y } .

The expression ‖f‖XY := supg∈BX
‖gf‖Y is a norm when XY is a Banach space.

Note that X ′ = XL1(µ). This space can be trivial, depending on the properties
of the spaces involved. In other case, it is a Banach function space over µ. More
information on these spaces, including sufficient conditions to assure that they
are Banach function spaces can be found in [3], [13] and [15, Ch.2]. Notice that
the definition still make sense if Y is a Banach function space over ν, where ν is
absolutely continuous with respect to µ.

If X(µ) is a Banach function space, its p-th power can be defined as

X[p] := {f ∈ L0(µ) : |f |1/p ∈ X}
that is a quasi-Banach function space over µ when endowed with the seminorm
‖f‖X[p]

:= ‖|f |1/p‖p
X . In fact it is a Banach space and the above expression defines

a norm if and only if X is p-convex with p-convexity constant 1. For example,
(Lp[0, 1])[p] = L1[0, 1] isometrically. We use the symbol i[p] to denote the inclusion
map i[p] : X ↪→ X[p]. Following this definition of p-th power of a Banach function
space, in the case that XY is a Banach function space, it is easy to see that
(XY )[p] = X[p]

Y[p] . An operator T : X(µ) → E is p-th power factorable if there is

a constant K > 0 such that ‖T (f)‖ ≤ K‖|f |1/p‖p for all f ∈ X.
Regarding vector measures, we consider in this paper spaces Lp(m) of p in-

tegrable functions with respect to a vector measure m : Σ → E, where Σ is a
σ-algebra and E a Banach space. The main reference for vector measures is
[9], and [15] for integration with respect to vector measures and the properties
of the integration map. If m is a vector measure, we write ‖m‖ for its semi-
variation and |m| for its variation. Consider the space L0(‖m‖) of equivalence
classes of measurable functions which differ only in a ‖m‖-null set, i.e. in a set
of null m-semivariation. An element f ∈ L0(‖m‖) is integrable with respect
to m if it is integrable for each scalar measure 〈m, e′〉, e′ ∈ E ′ (that are de-
fined as 〈m, e′〉(A) := 〈m(A), e′〉, A ∈ Σ), and for each A ∈ Σ there is a vector∫

A
fdm ∈ E such that

∫
A

fd〈m, e′〉 = 〈
∫

A
fdm, e′〉 for each e′ ∈ E∗. Such a

function is p-integrable with respect to m if |f |p is integrable with respect to m,
1 ≤ p < ∞. The expression

‖f‖Lp(m) := sup
e′∈BE′

( ∫
|f |p d|〈m, e′〉|

)1/p

,

that is well defined for each integrable function f , defines in fact a function norm
on the linear space of classes of measurable functions. It is equivalent to the
expression

|‖f‖|Lp(m) := sup
A∈Σ

∥∥∥∫
A

|f |p dm
∥∥∥1/p

.

The space (Lp(m), ‖·‖Lp(m)) is a p-convex order continuous Banach function space
over each Rybakov measure for m; recall that a Rybakov measure is a scalar
measure as |〈m, e′〉| with the same null sets that ‖m‖ (see [9]). The integration
map f  

∫
fdm ∈ E is always continuous.



64 O. GALDAMES, E.A. SÁNCHEZ PÉREZ

In this paper we will consider what we call a inclusion/quotient maps that
appears in the following context. If X(µ) is an order continuous Banach function
space and T : X → E an operator, the expression mT (A) := T (χA) always defines
a vector measure. Then, if mT has the same null sets that µ, the space X(µ) is
included in L1(mT ) (in Lp(mT ) for the case of p-th power factorable operators,
see [15, Ch. 5]) and the operator T can be extended to X. In this case it is said
that T is µ-determined, which is equivalent to [i] to be injective (see [15, Ch.4]).
However, it is not needed for getting a factorization of T through L1(mT ), since
the map [i] : X → L1(mT ) (to Lp(mT )), given by f  [i](f) = [f ] (where
[f ] denotes the equivalence class of f with respect to ‖mT‖) is still well defined
and continuous. We call such a map a inclusion/quotient map. Notice that the
Köthe adjoint map [i]′ is injective, since ‖mT‖ is always absolutely continuous
with respect to µ. The reader can find this general point of view in [3], where
it is shown that the same factorization technique works without the injectivity
assumption. In this case, the definition of the map [i]′ depends on the Rybakov
measure ν that is taken for considering Lp(mT ) as a Banach function space over ν.
For the aim of simplicity, we will assume that we have fixed a Rybakov measure
when we consider the map [i]′, and no explicit reference to this measure will be
done in the notation of [i]′. In general, and specially in the case that the measure
µ of X(µ) is not equivalent to ‖mT‖, the injective map [i]′ is not defining an
inclusion, in the sense that it is not sending a function g in (Lp(mT ))′ to the
same function g in X(µ)′. If ν is the fixed Rybakov measure for mT and dν/dµ
is the Radon-Nikodým derivative of ν with respect to µ, the equalities〈

f, [i]′(g)
〉

=

∫
f [i]′(g)dµ =

∫
[i](f) gdν =

∫
[i](f) g

(dν

dµ

)
dµ,

(where f ∈ X(µ) and g ∈ (Lp(mT ))′) that are given by the duality relation, do not
provide a proper inclusion map. However, this is the “inclusion” map that allows
to prove an optimal range theorem, in the sense that for every Banach function
space Z(µ) ⊆ X(µ) and to which the range of the operator T can be restricted,
the map [i]′ take its values in Z(µ). We will denote that special “inclusion”
relation by means of the symbol (Lp(mT ′))′ b Z(µ). Notice that if [i] is injective
(in other words, µ is equivalent to ‖mT‖), then [i]′(g) = (dν/dµ) · g, i.e. [i] is a
multiplication map.

2. The Köthe p-adjoint of an operator

In this section we define and characterize a concrete extension (in the range) of
an operator on Banach function spaces that will provide in a sense the canonical
example of operator satisfying that its adjoint is p-th power factorable. In order
to do it, some properties of the spaces of multiplication operators will be given for
the particular case that the space where the functions take values are Lp-spaces.
Some references where these results can be found are [13] and [2] (see also [15,
Ch.2]).

The following equality will be useful in what follows. For a p-convex Banach
function space X(µ), (X[p])

′ = (XLp(µ))[p] for all 0 < p < ∞. The next calculations
using elementary properties of the p-th power of Banach function spaces proves
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it; it can be also obtained as a direct consequence of Proposition 2.29(ii),(iv) in
[15].

(XLp(µ))[p] = (X[p])
(Lp(µ))[p] = (X[p])

(L1(µ)[1/p])[p]

= (X[p])
L1(µ) = (X[p])

′ .

The central role that plays the space X[p] in the paper and the representation
for the dual that provides the formula above motivates the following definition.

Definition 2.1. If X is a quasi-Banach space of measurable functions, we define
its Köthe p-dual Xp by

Xp := X(µ)Lp(µ).

Notice that X1 = X ′ and also that Xp can be the trivial space, or just a quasi-
Banach space. However, it is a Banach function space whenever X is p-convex
(see for instance [2]). A direct computation shows that Xp is always p-convex
(see Lemma 5.1 in [2]).

If T : E → X is an operator, we can define the operator

Tp := i[p] ◦ T : E
T→ X

i[p]

↪→ X[p] ,

Its adjoint map (that is a continuous operator between Banach function spaces
whenever X[p] is a Banach function space, equivalently, X is p-convex) is then
given by

(Tp)
∗ = T ∗ ◦ i∗[p] : (X[p])

∗
i∗
[p]

↪→ X∗ T ∗
→ E∗ ,

and so its Köthe adjoint is

(Tp)
′ := T ∗ ◦ i∗[p] ◦ ι : (X[p])

′ ι
↪→ (X[p])

∗
i∗
[p]

↪→ X∗ T ∗
→ E∗ .

Note also that the inclusion map ip,1 : Xp ↪→ (XLp
)[p] is well defined and take

values in (X[p])
′ whenever X is p-convex. This motivates the following definition.

If X is a Banach function space, E is a Banach space and T : X → E is an
operator, we define the Köthe p-adjoint operator T p of T by

T p := (Tp)
′|Xp : Xp → X∗ → E∗.

The following scheme shows the factorizations for T p. All the arrows as “↪→”
denote canonical inclusion maps.

(Xp)[p] (X[p])
′ � � //

� _

��

(X[p])
∗ � � //

X∗ T ∗
−→ E∗

Xp
?�

OO

� � // X ′ '
�

44iiiiiiiiiiiiiiiiiiiii

The next result gives sufficient conditions for an operator to satisfy that its
Köthe p-adjoint is p-th power factorable. This is the main result of this section,
since it provides what is in a sense the canonical example of operators satisfying
such property.

Proposition 2.2. Let T : E → X(µ) be an operator, where X(µ) is a σ-order
continuous p-convex Banach function space. Then for p ≥ 1, the Köthe p-adjoint
operator T p is p-th power factorable.
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Proof. Let f ′ ∈ Xp ⊆ X ′ and T p = T ′|Xp . Then

‖T ′(f ′)‖E∗ = sup
e∈BE

|〈e, T ′(f ′)〉| = sup
e∈BE

|〈T (e), f ′〉| .

We know that T
‖T‖(BE) ⊆ BX and since µ is finite, X ⊆ X[p] and by the equality

(X[p])
′ =

(
Xp

)
[p]

we obtain

sup
e∈BE

|〈T (e), f ′〉| ≤ ‖T‖ sup
h∈BX

|〈h, f ′〉| ≤ ‖T‖ sup
h∈BX[p]

|〈h, f ′〉|

≤ ‖T‖
(
‖f ′‖(X[p])

′
)

= ‖T‖‖f ′‖(Xp)[p]
.

Since X[p] is σ-o.c., we obtain that T p : Xp → E∗ is p-th power factorable.
�

3. Optimal range for operators with p-th power factorable
adjoint

Consider an operator T : E → X(µ) from a Banach space to a Banach function
space X(µ) with the Fatou property and with order continuous dual, such that
T ′ is p-th power factorable. In this section we obtain a representation of the
optimal Fatou Banach function space Y in which the range of T is included, in
the sense that for each Banach function space Z(µ) with the Fatou property and
with order continuous dual in which T (E) is continuously contained, the relation
Y b Z holds, whenever the restriction satisfy the p-th factorability property.
Notice that for p = 1, this result will provide an optimal range theorem, since in
this case this condition is just continuity of the adjoint map.

Let us start by showing in the following examples that some relevant operators
satisfy that their adjoint maps are p-th power factorable for some p > 1.

Example 3.1. (A Hardy type operator). Let s > 0 and consider the kernel
operator Hs with kernel function

K(x, y) :=
1

xs
χ[0,x](y) .

If Hs : Lu[ 0, 1] → Lv[ 0, 1] (u ≥ v ≥ 1), the operator is clearly well defined and
continuous when s < 1

v
(in other case it is also sometimes continuous, for instance

in the case of the Hardy operator, see [1, Theorem 3.10]). We have that

Hs(f)(x) =

∫ 1

0

K(x, y)f(y) dy =

∫ 1

0

1

xs
f(y)χ[0,x](y) dy =

1

xs

∫ x

0

f(y) dy .

Since for x, y ∈ [0, 1], χ[0,x](y) = χ[y,1](x) the adjoint map H ′
s : Lv′ [ 0, 1] → Lu′

[ 0, 1]
is given by

H ′
s(g)(y) =

∫ 1

0

1

xs
χ[0,x](y)g(x) dx =

∫ 1

0

1

xs
g(x)χ[y,1](x) dy =

∫ 1

y

1

xs
g(x) dx .

If g ∈ Lv′ [ 0, 1], using Minkowski’s integral inequality and Hölder’s inequality, we
have that
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‖H ′
s(g)‖Lu′ =

(∫ 1

0

∣∣∣∫ 1

y

g(x)

xs
dx

∣∣∣u′

dy
)1/u′

≤
∫ 1

0

(∫ 1

0

∣∣∣g(x)

xs

∣∣∣u′

dy
)1/u′

dx

=

∫ 1

0

|g(x)||x−s| dx ≤ ‖x−s‖L(v′/q)′‖g‖Lv′/q = ‖x−s‖L(v′/q)′‖g‖(Lv′ )[q]
.

Thus, H ′
s is q-th power factorable if s(v′/q)′ < 1, i.e. s < 1− q/v′.

The case H0 gives the Volterra operator. It is well-known when this operator is
p-th power factorable (see Example 5.9 in [15]); we have shown in this Example
when this condition holds for the adjoint map H ′

0. We will come back to this
operator in the last section of the paper.

Example 3.2. (Convolution operators). Let G be a compact Hausdorff abelian
group with normalized Haar measure µ defined on the Borelian sets of G (B(G)).
Let λ be a regular measure on B(G). We say that λ is Lq-improving (q ≥ 1) if
there exists r ∈ (q,∞) such that f ∗λ ∈ Lr(G) for all f ∈ Lq(G). It is well known
that there is a direct relation between Lq-improving measures and p-th power
factorable convolution operators (see [15, Ch.7]). If h ∈ L1(G) we can always
consider the measure µh(A) :=

∫
A

h dµ. For this kind of measures, the fact that
h belongs to a particular Ls(G)-space determines if it is Lq-improving, and also
that the corresponding convolution operator is p-th power factorable for a certain
p.

Let 1 < p < ∞ and consider the convolution operator C
(p)
h : Lp(G) → Lp(G)

given by C
(p)
h (f) := f ∗ µh, that is continuous, and the reflection measure of

λ defined as Rλ(A) := λ(−A). Note that for measures λ(A) :=
∫

A
h(x) dµ we

always have Rλ(A) =
∫

A
h(−x) dµ. Using Fubini’s Theorem, we obtain that the

adjoint operator (C
(p)
h )′ : Lp′(G) → Lp′(G) is given by (C

(p)
h )′(g) = g ∗ Rµh.

Thus, we can apply Proposition 7.96 in [15] taking into account that all Ls(G)
are rearrangement invariant: for h ∈ Lr(G) \ Lp′(G) (where 1 < r < p′) and

u ∈ (1, p′) such that 1
u

+ 1
r

= 1
p′

+ 1, (C
(p)
h )′ is (p′/u)-th power factorable.

Let us show now the main result of this section. The assumption on T is the
following: T ′ must be p-th power factorable, i.e. there is a constant K > 0 such
that for every e ∈ E,

|〈T (e), x′〉| ≤ K‖e‖E‖x′‖(X(µ)′)[p]

for all e ∈ E and x′ ∈ X ′. For order continuous spaces X(µ)′, this implies that
the (Köthe) adjoint map T ′ factorizes as

X(µ)′
T ′

//
� r

i[p] $$HH
HH

HH
HH

H
E∗

(X ′)[p]

T ′
[p]

<<yyyyyyyyy

where i[p] is the natural continuous inclusion and T ′
[p] the extension of T ′. The

order continuity of X ′ gives also that the expression mT ′(A) = T ′(χA), A ∈ Σ,
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defines a vector measure. An application of the optimal domain theorem for p-th
power factorable operators gives that it factorizes also as

X(µ)′
T ′

//
� r

[i] %%JJJJJJJJJ
E∗

Lp(mT ′)

ImT ′

;;vvvvvvvvv

where [i] is the inclusion/quotient map and ImT ′ is the integration map (see
Ch.5 in [15], see also [3] for the case when [i] is not injective). Dualizing the
factorization scheme again and taking into account that X has the Fatou property
we obtain

E ↪→ E∗∗ (T ′)∗
//

� t

(ImT ′ )
′ ''OOOOOOOOOOOO X(µ) .

(Lp(mT ′))′
[i]′

88rrrrrrrrrr

Theorem 3.3. Let X(µ) be a Banach function space over (Ω, Σ, µ) with the Fatou
property such that X ′ is order continuous. Let T : E → X(µ) be an operator from
a Banach space E to X(µ) with p-th power factorable adjoint. Then T factorizes
through (Lp(mT ′))′, and if the range of T lies into a Banach function space Z(µ)
where Z(µ) ⊆ X(µ) and

(i) Z ′ is order continuous and Z has the Fatou property, and
(ii) the (range) restriction S : E → Z of T has p-th power factorable adjoint,

then (Lp(mT ′))′ b Z.

Proof. The arguments before the theorem give the factorization through (Lp(mT ′))′.
For the optimality of this space, suppose that the range of T lies in Z(µ) ⊆ X(µ).
Then T ′ factorizes through Z ′ and by hypothesis S ′ is p-th power factorable. This
implies that S ′ factorizes through Lp(mS′). But note that mS′ = mT ′ . Conse-
quently, by the optimal domain theorem for p-th power factorable operators (see
[15, Ch.5] and [3]), [i](Z ′) ⊆ Lp(mT ′), and so (Lp(mT ′))′ b Z ′′ = Z. �

The following result provides some structure information for the space (Lp(mT ′))′

without any assumption on the p-th power factorability of T ′.

Corollary 3.4. Assume that X is an order continuous p-convex Banach function
space and Xp has the Fatou property. Consider an operator T : E → X. Then
(Lp(mT ′))′ b (Xp)′. Moreover, the optimal range in the sense of Theorem 3.3 of
the extension T0 : E → X ↪→ (Xp)′ of T is the space (Lp(mT ′))′.

For the proof just use Proposition 2.2 and Theorem 3.3, taking into account
that mT ′ = mT ′

0
. Notice that the requirement of Xp being a Banach function

space is fulfilled if X is p-convex (see the comments after Definition 2.1).

Remark 3.5. Let us write Theorem 3.3 for the case p = 1, i.e. when there is
no restriction on the adjoint map. In this case, we obtain the optimal range
for continuous operators. Let X(µ) be a Banach function space with the Fatou
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property such that X ′ is order continuous. Let T : E → X(µ). Then T factor-
izes through (L1(mT ′))′, and if the range of T lies into a Banach function space
Z(µ) ⊆ X(µ) such that Z has the Fatou property and Z ′ is order continuous then
(L1(mT ′))′ b Z.

For instance, if µ is a Rybakov measure for mT ′ then we obtain directly
that (L1(mT ′))′ ⊆ Z. In the case that µ is equivalent to ‖mT ′‖ (i.e. if T ′ is
µ-determined) then [i] is an inclusion map and then the formulas of the duality
given at the end of Section 1 gives that there is a measurable function h (the
Radon-Nikodým derivative dν/dµ of a Rybakov measure ν for mT ′) such that
h · (L1(mT ′))′ ⊆ Z.

4. Applications and examples

4.1. Operators from L∞(µ). We will show in this section that the optimal
range of an operator from an AM-space into a Banach function space which
adjoint operator is p-th factorable can be described in reasonable terms.

In this paper we will say that a Banach function space X(µ) is almost an
Lp-space if for every ε > 0 there is a measurable set Aε ∈ Σ such that µ(Aε) < ε
and the restriction X(µ|Ω\Aε) is order isomorphic to an Lp-space.

Theorem 4.1. Let p > 1. Consider a finite measure space (Ω, Σ, ν), a Banach
function space F (ν) and an operator T : L∞(µ) → F , where µ is a σ-finite
measure. Suppose that F has the Fatou property and F ′ is order continuous, T ′

is positive, ν-determined, p-th power factorable and T ′(F ′) ⊆ L1(µ). Then the
optimal range (Lp(mT ′))′ of T is almost an Lp′-space.

Proof. Under the requirements above, the Köthe adjoint map can be written as
T ′ : F ′ → L1(µ) and so mT ′ is a countably additive vector measure. Since F ′ is
order continuous and T ′ is p-th power factorable, it can be extended to the space
Lp(mT ′) by means of a inclusion/quotient map [i] (see the explanation at the end
of Section 1, [15, Ch.5] and [3]) as follows

F ′ T ′
//� q

[i] ##GGGGGGGGG L1(µ)

Lp(mT ′)

ImT ′

99ttttttttt

Step 1. The integration operator ImT ′ that appears in the factorization above is
a positive map (since [i](F ′) is dense in the p-convex space Lp(mT ′)) and L1(µ) is
p-concave for every p ≥ 1, we have that T ′ can be extended to Lp(ν0) as T ′ = S0◦i
where ν0 is a Rybakov measure for mT ′ and S0 is the extension of the integration
map (see the variant of the Maurey-Rosenthal Theorem given by Theorem 6.41
in [15, Ch.6]). Thus this gives an extension of ImT ′ as

Lp(mT ′)
ImT ′ //

� s

i %%KKKKKKKKK
L1(µ)

Lp(ν0)

S0

::uuuuuuuuu
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Step 2. Let us show that a restriction of S0 to a set as small in measure as we want
is p-th power factorable. For doing this, just take into account that the vector
measure mS0 coincides with mT ′ . In particular, it is positive and 1-concave. Again
the variant of the Maurey-Rosenthal Theorem quoted above gives (for p = 1) that
S0 : Lp(ν0) → L1(µ) can be extended to the space L1(η), where η is a Rybakov
measure for mS0 and so for mT ′ . More precisely, it can be factorized through the
inclusion map L1(mS0) ↪→ L1(η). Consequently there is a constant 0 < Q1 and a
Radon-Nikodým derivative v = dη/dν0 such that for every f ∈ Lp(ν0)

‖S0(f)‖L1(µ) ≤ Q1

∫
|f |dη = Q1‖|f |1/p‖p

Lp(η) ≤ Q1‖|v|1/p|f |1/p‖p
Lp(ν0).

The function |v| is integrable with respect to ν0 and since this measure is a
Rybakov measure for mT ′ , it is equivalent to the semivariation ‖mT ′‖. Fix ε > 0.
Thus by the ν0-integrability of |v| we have that there is a constant Kε such that
‖mT ′‖(Aε) < ε, where Aε := {|v| > Kε}. Then

‖|v|1/p|f |1/p‖p
Lp(ν0|Ac

ε
) ≤ Kε‖|f |1/p‖p

Lp(ν0|Ac
ε
),

where Ac
ε = Ω \ Aε, i.e. the restriction of S0 to this set is p-th power factorable

(notice that ‖mT ′‖ is equivalent to ν, so the condition ‖mT ′‖(Aε) < ε can be
written in terms of ν). The arguments in Theorem 3.3 on the optimal domain
for T ′ can then be applied. As we said, mT ′ = mS0 and so

Lp(mT ′|Ac
ε
) ⊆ Lp(ν0|Ac

ε
) ⊆ Lp(mS0|Ac

ε
) = Lp(mT ′|Ac

ε
).

The optimal range space given by Theorem 3.3 for the restricted operator

Pε ◦ T : L∞(µ) → F → F |Ac
ε
(ν|Ac

ε
)

(where Pε is the band projection of F onto F |Ac
ε
), gives then

(Lp(mT ′|Ac
ε
))′ = Lp′(ν0|Ac

ε
).

The result is obtained.
�

The next result shows that for the case p = 1 (i.e. no restriction on the adjoint
map, which provides the limit case), the optimal range is exactly an L∞-space.

Theorem 4.2. Consider a finite measure space (Ω, Σ, ν), a Banach function
space F (ν) and an operator T : L∞(µ) → F , where µ is a σ-finite measure.
Suppose that F has the Fatou property, F ′ is order continuous, T ′ is positive,
ν-determined and T ′(F ′) ⊆ L1(µ). Then the optimal range of T is L∞(ν).

Proof. The proof is the same that in the previous theorem, but the second step
in the proof is not needed. In this case we obtain

L1(mT ′) ⊆ L1(ν0) ⊆ L1(mS0) = L1(mT ′) .

Taking into account that ν and ν0 are equivalent, the optimal range (L1(mT ′))′

given by Theorem 3.3 coincides with L∞(ν). �
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4.2. Optimal range of operators with compact associated integration
map. Consider an operator T : X(µ) → Y (ν) between Banach function spaces
X(µ) and Y (ν), where Y ′ is order continuous. Suppose that

R :=
{
T ′(f) : sup

A∈Σ
‖T ′(fχA)‖ ≤ 1

}
is a relatively compact set. Let us show that the corresponding optimal range
satisfying that the Köthe adjoint of the (range) restricted map is p-th power
factorable is order isomorphic to an Lp′-space.

Since Y ′ is order continuous, the operator T ′ defines a countably additive vector
measure by mT ′(A) := T ′(χA), A ∈ Σ, and simple functions are dense in both Y ′

and L1(mT ′). This, together with the condition on R implies that the integration
map ImT ′ : L1(mT ′) → X ′ is compact (recall the equivalent norm |‖ · ‖|Lp(m) for
the spaces Lp(m) given in the Introduction). In this case, it is well-known that
the space L1(mT ′) is order isomorphic to the space L1(|mT ′|) (see Proposition
3.48 in [15] and the references therein), where |mT ′| is the variation of mT ′ , that
is a scalar measure. Since by Theorem 3.3 the optimal range of T with the p-th
power requirement for the dual of the restricted map is the space (Lp(mT ′))′, we
obtain that the optimal range is order isomorphic to Lp′(|mT ′|). Examples of this
situation (i.e. compact integration maps) can be found for instance in Example
3.49 in [15] and the comments after it on the Volterra operator.

4.3. Optimal range for the Volterra operator. The spaces of (classes of)
p-integrable functions with respect to the Volterra measure (i.e. the one defined
by the Volterra operator) are nowadays well known. The reader can find infor-
mation about in [15, Ch.3] (see for instance Example 3.76 in this book and the
references therein). It provides the optimal domain space for this operator. In
this section we analyze the structure of the optimal range for this operator. Let
V : Lp[0, 1] → Lq[0, 1] be the Volterra operator for 1 < q ≤ p ≤ 2 which ad-
joint operator is r-th power factorable, r ≥ 1. Note that V = H0 in Example
3.1, so this condition holds for r < q′. From Theorem 3.3 we have the following
factorization diagram

Lp[0, 1]
V //

(ImV ′ )
′ &&NNNNNNNNNNN

Lq[0, 1] .

(Lq′/r(mV ′))′
* 
 [i]′

77ppppppppppp

Let µ be Lebesgue measure. Let us write the Rybakov measure ν for mV ′ that is
defined by the element χ[0,1] ∈ Lp′ [0, 1].

ν(A) := 〈χ[0,1], V
′(χA)〉 =

∫ 1

0

µ([x, 1] ∩ A) dµ, A ∈ Σ.

(See Example 6.46 in [15] for the corresponding Rybakov measure for the case
of the Volterra operator). We denote by h the Radon-Nikodým derivative dν

dµ
.

Recall that Lq′/r(mV ′) is a Banach function space over the measure ν (and so
(Lq′/r(mV ′))′ is too). The measure ν has the same null sets that µ. In this case,
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as was said in the Introduction, [i]′ is given by [i]′(g)(x) := h(x) · g(x) ∈ Lq[0, 1],
where g ∈ (Lq′/r(mV ′))′ and x ∈ [0, 1]. This allows to write the inclusions

V (Lp[0, 1]) ⊆ h · (Lq′/r(mV ′))′ ⊆ Lq[0, 1],

and (Lq′/r(mV ′))′ is the optimal range space, in the sense that was explained in
the previous sections. Let us give more information about this space.

We know that (Lq′/r(mV ′))′ is (q′/r)′-concave, since Lq′/r(mV ′) is q′/r-convex
(see [15, Ch.2]). On the other hand, assume that r ≥ 1 satisfies that (q′/r)′ ≤ p.
Note that in this case (ImV ′ )

′ is (q′/r)′-convex, since Lp[0, 1] is p-convex and thus
(q′/r)′-convex (see [12, Ch.2]), and (ImV ′ )

′ is positive; to see that, just take into
account that the integration map associated to the Volterra operator is again
given by the same kernel, and the adjoint map is given by the dual kernel of the
Volterra kernel. Using the instance of the Maurey-Rosenthal Theorem given in
[6, Corollary 2], we have the following factorization diagram

Lp[0, 1]
(ImV ′ )

′

//

R %%LLLLLLLLLL
(Lq′/r(mV ′))′ ,

L(q′/r)′(ν)

Mg0

77ooooooooooo

where R is a continuous operator and 0 < g0 ∈
[
L(q′/r)′(ν)

](Lq′/r(mV ′ ))′
(see [2,

Lemma 3.7]). Therefore,

V (Lp[0, 1]) ⊆ h · g0 ·R(Lp[0, 1]) ⊆ h · (Lq′/r(mV ′))′,

and h · (Lq′/r(mV ′))′ is the optimal range satisfying the r-th power factorability
requirement on the adjoint operator. In the case r = 1 we obtain a complete
description of the optimal range without assumptions on the adjoint map.
Acknowledgement. 2 Support of the Ministerio de Ciencia e Innovación under
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