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A VERSION OF THE HERMITE-HADAMARD INEQUALITY
IN A NONPOSITVE CURVATURE SPACE
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ABSTRACT. We obtain some Hermite-Hadamard type inequalities for convex
functions in a global non-positive curvature space.

1. INTRODUCTION

Convex functions play an important role in many areas of mathematics. They
are especially important in the study of optimization problems where they are
distinguished by a number of convenient properties. For instance, a (strictly)
convex function on an open set has no more than one minimum. Even in infinite-
dimensional spaces, under suitable additional hypotheses, convex functions con-
tinue to satisfy such properties and, as a result, they are the most well-understood
functionals in the calculus of variations. In particular, if f is a convex function
defined on I = [a, b] we have that

; (a;b) SUESU) "

One of the most important inequalities, that has attracted many inequality
experts in the last few decades, is the famous Hermite-Hadamard inequality
which establishes a refinement of (1.1) and it involves the notions of convexity
and geodesic (see Section 3).

Date: Received: 9 April 2012; Accepted: 2 May 2012.
2010 Mathematics Subject Classification. Primary 39B62; Secondary 32F17, 54E50, 58 B20.
Key words and phrases. Hermite-Hadamard inequality, non-positive curvature metric space,
geodesic convexity, short geodesic.
159



160 C. CONDE

On the other hand, the study of non-positively curved spaces began with the
work of Hadamard in the early years of the last century, and the work of Cartan
about twenty years later. But the foundations of the theory of metric spaces with
upper curvature bounds were laid in the 50’s with the work of Alexandrov and
Busemann [1, 2, 6], who actually coined the term “non-positively curved space”.

Non-positive curvature in the sense of Alexandrov (NPC) states that sufficiently
small geodesic triangles in the inner metric space (N,d) are at least as thin
as corresponding Euclidean triangles, or equivalently, if the metric space (N, d)
verifies the so-called CN-inequality of Bruhat and Tits [5]: for any x € X and
any geodesic segment 7 € X,

1 1
1L < 5(d(@70)" + d(z,m)%) = d(w,7)2)%,

provided 7 is sufficiently close to  and L(7) denotes the length of ~.

The aim of this paper is to discuss an analogue of the Hermite-Hadamard
inequality for convex functions defined on a space with curved geometry, more
precisely on a metric space with global non-positive curvature. The NPC space
theory offers a considerable insight into this matter, based on the fact that (a +
b)/2 is the midpoint of the line segment which connects a with b, the mean value
of f is the integral on the interval [0, 1] of f o ay, (see Lemma 3.1) and in these
spaces there is a notion of convex function.

2. GLoBAaL NPC

We highlight here some of the results, terminology and definitions that we shall
need in this paper.

Definition 2.1. Let (IV,d) be a complete metric space, which is also a geodesic
length space in the sense that the distance of N can be computed via the infimum
of the length of the rectifiable arcs joining given endpoints in N (see [1 1, Section
2.2]). A geodesic length space is globally non-positively curved in the sense of
Busemann if for given geodesic arcs «, § starting at x € X, the distance map
t— d(af(t), 5(t)) is a convex function.

We say that (N, d) is a global NPC space if for x1, 25 € N there exists a point
z € N such that for each z € N we have

d(x,2)* < %d(m, z1)? + %d(x,x2)2 - id(ml,xg)z.

Global NPC spaces are also called Hadamard spaces. If (IV, d) is a global NPC
space, then it is globally non-positively curved in the sense of Busemann. In a
global NPC space each pair of points z1, x5 € N can be connected by a geodesic
(that is, by a rectifiable curve v : [0,1] — N such that the length of |y, 4, is
d(y(t1),7(t2)) for all 0 < t; <ty < 1). Moreover, this geodesic is unique. Finally,
note that the point z occuring in the preceding definition plays the role of a
midpoint between x; and x».

The following classes of spaces are NPC: complete Riemannian manifolds with
non-positive sectional curvature, Hilbert spaces, Bruhat Tits buildings, in partic-
ular metric trees.
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Definition 2.2. A subset C' C N is called convex if for each geodesic 7y : [0, 1] —
N joining two arbitrary points in C' holds that ([0, 1]) C C.

A function f : C' — R is called convex if the function fo~ : [0,1] — R is
convex whenever 7 : [0, 1] — C' is geodesic, that is, for all ¢ € [0, 1]

FOy(@8) < (=) f(7(0)) + £ (7(1)).

Now, we state a lemma which is interesting on his own right and contains some
basic properties of geodesics and convex functions in a NPC which we use in the
sequel.

Lemma 2.3. Let (N,d) be a global NPC space, C C N a convex set and -y :
[0,1] = C a geodesic connecting v(0) with v(1). Then

(1) For ti,ty € [0,1] the curve |, t.)(A) = Y((1 — ANty + Mo) is the unique
geodesic connecting y(t1) with (ts).
(2) For any ty € [0,1] the midpoint between (ty) and (1 — to) is given by

(1/2). 1
(3) If f: C — R is conver, then/ f(y(v))dv _/o F(v(1T = A)dA.

Proof. (1) For A € [0,1] we get

A2 (N), 7 (1)) = d(v((1 = A)ta + o), y(t))
= [tr = (1= Aty — Ma|d(+(0), (1))
= Aty — 1ad(7(0),7(1)) = Md(v(t1), 7(t2)),

and

AV (N); y(t2)) = d(y((1 = Nty + Atz),7(t2))

= |ta — (1 — Aty — Ato|d(7(0),v(1))

= (1 =Ntz = t1]d(v(0),v(1)) = (1 = N)d(v(t1),7(t2))-
(2) Clear.
(3) With the change of variables v = 1 — A we obtain the equality desired.

O

3. HERMITE-HADAMARD INEQUALITY

For a convex function f on I = [a,b], the double inequality:

1(57) = 5 [ s < 1T, &y

is known as the Hermite-Hadarmad (H-H) inequality. This inequality was pub-
lished by Hermite in 1883 and was independently proved by Hadamard in 1893
and it gives us an estimation of the mean value of a convex function f and it
is important to note that (3.1) provides a refinement to the Jensen inequality.
The interested reader is referred to [3, 9, 13, 14] and references therein for more
information and other extensions of H-H inequality.
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In order to prove that a H-H inequality in NPC, we shall need the follow-
ing lemma which describes the mean value of f in the interval [a,b] using the
“geodesic” connecting a to b.

Lemma 3.1. Let f be an integrable function on I. Then
1 b 1 1
b / f@)dr = / FOa+ (1= A)b)dr = / FOb + (1= Na)dA.
—QJg 0 0
Thus the H-H inequality can be written as follows
1
f (“ ; b) < / Fha+ (1= \b)dA < M (3.2)
0
Let X be a vector space, a,b € X;a # b. We denote by
agp = {(1—ANa+ b, X € [0,1]}

the line segment connecting a to b and v, ,(Ao) = (1 — Ao)a + Agb. We consider
function f : oy — R and the associated function

ga,b . [O, 1] —R ga,b()\) = f(aa,b()‘»?

then f is convex on a, if and only if g, is convex on [0, 1]. Then for any convex
function defined on a segment o, € X, we have the Hermite-Hadamard integral
inequality (see [3])

f (@an(1/2)) < / F(ap(M)AA < gy s (1/2).

Remark 3.2. Let (X, ||.||) be a normed space, x,y € X and f a convex function
defined on the segment o, , C X. Therefore, we obtain as a consequence of (3.2)
the following norm inequality for 1 < p < oo

]l + llyll”

p 1
U< [ v ey < T (33)
0

2
by considering f(x) = ||z||P. This example has been obtained by Dragomir in [%].

For p = 1, we improve a refinement of the triangle inequality. The right hand
side of (3.3) resembles the p-norm of the pair (z,y) € X?, see [12].

From the previous statement, we conclude that the necessary notions to obtain
an analogue of the H-H inequality in a global NPC space N are: the existence
of a unique geodesic connecting two points given, the notion of convex function
associated with this privileged curve and convexity. Since these concepts exist in
the context of global NPC spaces, we obtain a generalization of the H-H inequality
to such spaces.

Theorem 3.3. Let (N,d) be a global NPC space, C C N a convex set and
f:C —= R a conver function. Then

f((1/2)) < /0 FOr(N) dX < g0, 110 (1/2) (3.4)

for all geodesic v : [0,1] — C.
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Proof. Since f is convex, we have

FG/2) < ST + 37601 =X) < 3760) +5f6M)  (33)
for all A € [0, 1]. Integrating (3.5) over [0, 1] and using Lemma 2.3 we get (3.4). O

Remark 3.4. (1) Note that the first inequality, in (3.4), is stronger than the
second, i.e.

0< / FOO) dA = £ (1(1/2)) < agomsoa(1/2) - / e

Indeed, if we suppose that ~ is the unique geodesic connecting a to b and
m = m(a, b) denotes the unique midpoint between a and b, then

1

2 / Fas(N) dA = / P 42 [ ua00)

:/f%m dA+/fvmb ) dA

S Vam(0)) + f(Yam(1)) | f(4mp(0)) + f(Vmp(1))

< 5 + 5
— f('ya,b(l/2)) + f(/ya,b(o)) —; f(r)/a,b(l)) )

(2) If (N,d) is a global NPC space and z € N, the distance from a point z,
d.(x) = d(z, z), provides a basic example of a convex function. Moreover,
its square is strictly convex and as a consequence, the balls in a global NPC
space are convex sets. For more details, see [1]. Then, given z,z9, 21 € N
and p > 1, we get that f,(t) = dP(2, Vuyz, (t)), With ¢ € [0, 1], is a convex
function. Hence

' dp pia
d”(2, Y901 (1/2)) < / (2700 (V) dr < LT T (E 1)
0

2

(3.6)

This inequality is analogous to (3.3) in the context of global NPC spaces.

On the other hand, using the convexity of the function ¢ : [0,1] — R, g(t) =
d?(y(t),n(t)) with v,n geodesics we obtain the following refinement of (3.6) for
p=2.

Corollary 3.5. Let (N,d) be a global NPC' space and Yuy zy, Nyoyy tWO geodesics
m N. Then

(10 (1/2), 4 (1/2)) < / (g (V). o (V) dA

d2 , L + d2 y & 1
(o, o) 2 ) Gldo y1) = d(wo, z1)]?
d*(yo, xo) + d*(y1, 1)

2

IN

IN
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In particular, if ny, ., (t) = z for all t € [0, 1] we get

P (24w (1/2)) stéd%a%wx»wu

d*(z, o) + d*(z, 1)
- 2
< d*(z, o) + d*(z, 1)
- 2
Proof. We recall the called geodesic comparison (see [15]) which establishes that
in any global NPC and A € [0, 1] holds

d2(ny0,y1 ()‘)7 Vao,21 ()‘>> < (1 - /\)d2(y07 130) + )‘dz(ylv xl)
o )‘(1 - A)[d(ym y1> - d(l’o, 5131)]2. (38)

Then the inequality (3.7) is consequence of the H-H inequality for global NPC
spaces and (3.8).

1
— édQ(l’O? .%'1)

OJ

Remark 3.6. It is well-known that in a Hilbert space H one has
11 =Nz +Ayl* = (1= Nll2]* + Alyll* = A1 = Nz =yl

with ,y € H and A € [0,1]. In a p-uniformly convex Banach space E (with
p > 1) or equivalently in a Banach space where the following inequality holds

(see [10])
1L =Nz + Ay[[” < (1= N[f][” + Ally[|” = Wp(Mellz = yll”,

forallz,y € E, XA € [0,1], W,(A) = A(1=A)P+N(1—)) and ¢ a positive constant,
we obtain the following refinement of (3.3) for all p > 1,

x+yllf ! z||P + [ly||P 2c
< /HO—AM+AWMA§”H Il _ -
2 0 2 (p+1)(p+2)
< ol b

From now on, we obtain different refinements of (3.4).
Proposition 3.7. Let (N,d) be a global NPC space, C C N a convex set and
f:C — R a conver function, then

FOL/2) < SR + F3))] <

: F((1/4) + F(7(3/4))
SQAfw&Dﬁ
1
3

N | —

<

Foaj + OIHIOOD o o) 2,

for all geodesic v : [0,1] — C.
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Proof. To prove the first and the second inequality, we use the convexity of f and

ine i itieg: L =L1(2 1y 1 _51,13 2_ 11,53
the following inequalities: 2—2(3+3), s=¢1Tepand 3=¢1+5%

On the other hand, utilizing the Hermite-Hadamard inequahty (3.4) we can
write

1
f((1/4) < /0 J(Y0,1721(A) AN < g0y, £(v(172)) (1/2),

and

f((3/4)) / SOz (M)A < apiyay2)), 1001 (1/2),

which by a change of variable in the integrals, sumation and division by two we
get the third and fourth desired inequalities. Finally, the last inequality is clear
by (3.4). O

We generalize the previous result as follows:

Theorem 3.8. Let (N,d) a global NPC space, C' C N a convex set, f:C — R
a convex function and k,p are positive integers, then

Fo1/2) < kizf ((B54) < [ s

< w2 10 (5)) - ((5))]

< g6 (1/2), (3.9)
for all geodesic v : [0,1] — C.

Proof. Utilizing the Hermite-Hadamard inequality, we get

(o (2E0)) < [ 1 FOGE) +1 D)

i it (t)) dt <

il 5
Summation of the above inequalities over ¢ = 0,1,--- kP — 1 yields
kP—1 . 1 kP — 1 7 +1
2141 kP f( ( ))
< kP dt < (5 :
;f<’y(2kp >)_ /Of(v Z
Hence
kP—1 . kP—1 i i+1
Z (o (21 / £ _ 1N F0G)) + (G
2kP k , 2 '

(3.10)
By the convexity of f o~ we have

kizf (%)) = 7 [7 (ki (2221))] = 7 (1/2)) .11
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and
%E f () ;f (&) _ 2%})21 [f (7 (Z;rpl)) +f (v (é))]
< f(v(O));rf(v(l))_ (3.12)

Now (3.10), (3.11) and (3.12) yield the whole inequalities (3.9) as desired. O]

We remark, that for k? = 2 in the previous Theorem we obtain the Proposition
3.7. The following statement was motivated by [10].

Theorem 3.9. Let (N, d) a global NPC space, C C N a convez set and f : C' — R
a convex function, then

FO0/2) <100 < [ TG0 < L) < g saan(1/2)
for all geodesic v : [0,1] — C and X € [0, 1], where

a1 () o (1)

L(A) = %[f(’y()\)) +Af(4(0)) + (1 = X f(v ()]

Proof. Let f a convex function on C, applying (3.4) to the geodesic which con-
nects (0) to y(A), with A # 0, we get

and

((2)= [ sty < L0 SO0 5.13)
and
(152 < [ oty < FOOVTIOW

Multiplying (3.13) by A, (3.14) by (1 —\) and adding the resulting inequalities
we obtain

<)\/f7\[0A] ))dt + (1 — X /f’y]M] ))dt = /f ))dt < L(N).

On the other hand, using the fact that f is convex we get

s = 1 (7 (35 +0-nED)) <0y < [ saes oy

< Qp((0)). 1 (1)) (1/2).

From the last result, we can conclude under the same hypothesis that

f(v(1/2)) < sup I(A / fOy@)dt < inf LX) < g0, £61) (1/2).

Ae€[0,1] A€[0,1]



H-H INEQUALITY IN GLOBAL NPC SPACE 167

Remark 3.10. The different results of this paper remain valid in the context of
Alezandrov p-space, i.e. if (N,d) is a geodesic length space that verifies the
following geodesic curvature condition: given xi,25, € N there exists a point
z € N and a constant K > 0 such that for each x € N we have

p 1 p p 1 p
d(xz,z)P < i(d(x,:cl) + d(z, z2)P) — (2K)pd(:c1,x2) :

A reference for this subject is [7].
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