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THE REFINED SOBOLEV SCALE,
INTERPOLATION, AND ELLIPTIC PROBLEMS

VLADIMIR A. MIKHAILETS1 AND ALEKSANDR A. MURACH2∗

Abstract. The paper gives a detailed survey of recent results on elliptic prob-
lems in Hilbert spaces of generalized smoothness. The latter are the isotropic
Hörmander spaces Hs,ϕ := B2,µ, with µ(ξ) = 〈ξ〉sϕ(〈ξ〉) for ξ ∈ Rn. They are
parametrized by both the real number s and the positive function ϕ varying
slowly at +∞ in the Karamata sense. These spaces form the refined Sobolev
scale, which is much finer than the Sobolev scale {Hs} ≡ {Hs,1} and is closed
with respect to the interpolation with a function parameter. The Fredholm
property of elliptic operators and elliptic boundary-value problems is preserved
for this new scale. Theorems of various type about a solvability of elliptic
problems are given. A local refined smoothness is investigated for solutions to
elliptic equations. New sufficient conditions for the solutions to have continu-
ous derivatives are found. Some applications to the spectral theory of elliptic
operators are given.

1. Introduction

In the theory of partial differential equations, the questions concerning the exis-
tence, uniqueness, and regularity of solutions are in the focus of investigations.
Note that the regularity properties are usually formulated in terms of the belong-
ing of solutions to some standard classes of function spaces. Thus, the finer a
used scale of spaces is calibrated, the sharper and more informative results will
be.

In contrast to the ordinary differential equations with smooth coefficients, the
above questions are complicated enough. Indeed, some linear partial differential
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equations with smooth coefficients and right-hand sides are known to have no
solutions in a neighbourhood of a given point, even in the class of distributions
[58], [43, Sec. 6.0 and 7.3], [45, Sec. 13.3]. Next, certain homogeneous equations
(specifically, of elliptic type) with smooth but not analytic coefficients have non-
trivial solutions supported on a compact set [110], [45, Theorem 13.6.15]. Hence,
the nontrivial null-space of this equation cannot be removed by any homogeneous
boundary-value conditions; i.e., the operator of an arbitrary boundary-value prob-
lem is not injective. Finally, the question about the regularity of solutions is not
simple either. For example, it is known [32, Ch. 4, Notes] that

4u = f ∈ C(Ω) ; u ∈ C 2(Ω),

with 4 being the Laplace operator, and Ω being an arbitrary Euclidean domain.
These questions have been investigated most completely for the elliptic equa-

tions, systems, and boundary-value problems. This was done in the 1950s and
1960s by S. Agmon, A. Douglis, L. Nirenberg, M.S. Agranovich, A.C. Dynin,
Yu.M. Berezansky, S.G. Krein, Ya.A. Roitberg, F. Browder, L. Hermander, J.-
L. Lions, E. Magenes, M. Schechter, L.N. Slobodetsky, V.A. Solonnikov, L.R. Vo-
levich and some others (see, e.g., M.S. Agranovich’s surveys [7, 8] and the ref-
erences given therein). Note that the elliptic equations and problems have been
investigated in the classical scales of Hölder spaces (of noninteger order) and
Sobolev spaces (both of positive and negative orders).

The fundamental result of the theory of elliptic equations consists in that they
generate bounded and Fredholm operators (i.e., the operators with finite index)
between appropriate function spaces. For instance, let Au = f be an elliptic
linear differential equation of order m given a closed smooth manifold Γ. Then
the operator

A : Hs+m(Γ)→ Hs(Γ), s ∈ R,
is bounded and Fredholm. Moreover, the finite-dimensional spaces formed by
solutions to homogeneous equations Au = 0 and A+v = 0 both lie in C∞(Γ).
Here A+ is the formally adjoint operator to A, whereas Hs+m(Γ) and Hs(Γ) are
inner product Sobolev spaces over Γ and of the orders s + m and s respectively.
It follows from this that the solution u have an important regularity property on
the Sobolev scale, namely

(f ∈ Hs(Γ) for some s ∈ R) ⇒ u ∈ Hs+m(Γ). (1.1)

If the manifold has a boundary, then the Fredholm operator is generated by
an elliptic boundary-value problem for the equation Au = f , specifically, by the
Dirichlet problem.

Some of these results were extended by H. Triebel [133, 134] and the sec-
ond author [92, 93] of the survey to finer scales of function spaces, namely the
Nikolsky–Besov, Zygmund, and Lizorkin–Triebel scales.

The results mentioned above have various applications in the theory of differen-
tial equations, mathematical physics, the spectral theory of differential operators;
see M.S. Agranovich’s surveys [7, 8] and the references therein.

As for applications, especially to the spectral theory, the case of Hilbert spaces
is of the most interest. Until recently, the Sobolev scale had been a unique scale
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of Hilbert spaces in which the properties of elliptic operators were investigated
systematically. However, it turns out that this scale is not fine enough for a
number of important problems.

We will give two representative examples. The first of them concerns with
the smoothness properties of solutions to the elliptic equation Au = f on the
manifold Γ. According to Sobolev’s Imbedding Theorem, we have

Hσ(Γ) ⊂ Cr(Γ) ⇔ σ > r + n/2, (1.2)

where the integer r ≥ 0 and n := dim Γ. This result and property (1.1) allow
us to investigate the classical regularity of the solution u. Indeed, if f ∈ Hs(Γ)
for some s > r − m + n/2, then u ∈ Hs+m(Γ) ⊂ Cr(Γ). However, this is not
true for s = r − m + n/2; i.e., the Sobolev scale cannot be used to express
unimprovable sufficient conditions for belonging of the solution u to the class
Cr(Γ). An analogous situation occurs in the theory of elliptic boundary-value
problems too.

The second demonstrative example is related to the spectral theory. Suppose
that the differential operator A is of order m > 0, elliptic on Γ, and self-adjoint
on the space L2(Γ). Given a function f ∈ L2(Γ), consider the spectral expansion

f =
∞∑
j=1

cj(f)hj, (1.3)

where (hj)
∞
j=1 is a complete orthonormal system of eigenfunctions of A, and cj(f)

is the Fourier coefficient of f with respect to hj. The eigenfunctions are enumer-
ated so that the absolute values of the corresponding eigenvalues form a (non-
strictly) increasing sequence. According to the Menshov–Rademacher theorem,
which are valid for the general orthonormal series too, the expansion (1.3) con-
verges almost everywhere on Γ provided that

∞∑
j=1

|cj(f)|2 log2(j + 1) <∞. (1.4)

This hypotheses cannot be reformulated in equivalent manner in terms of the
belonging of f to Sobolev spaces because

‖f‖2
Hs(Γ) �

∞∑
j=1

|cj(f)|2 j2s

for every s > 0. We may state only that the condition f ∈ Hs(Γ) for some s > 0
implies convergence of the series (1.3) almost everywhere on Γ. This condition
does not adequately express the hypotheses (1.4) of the Menshov–Rademacher
theorem.

In 1963 L. Hörmander [43, Sec. 2.2] proposed a broad and informative gen-
eralization of the Sobolev spaces in the category of Hilbert spaces (also see [45,
Sec. 10.1]). He introduced spaces that are parametrized by a general enough
weight function, which serves as an analog of the differentiation order or smooth-
ness index used for the Sobolev spaces. In particular, Hörmander considered the
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following Hilbert spaces

B2,µ(Rn) :=
{
u : µFu ∈ L2(Rn)

}
, (1.5)

‖u‖B2,µ(Rn) := ‖µFu‖L2(Rn).

Here Fu is the Fourier transform of a tempered distribution u given on Rn, and
µ is a weight function of n arguments.

In the case where

µ(ξ) = 〈ξ〉s, 〈ξ〉 := (1 + |ξ|2)1/2, ξ ∈ Rn, s ∈ R,
we have the Sobolev space B2,µ(Rn) = Hs(Rn) of differentiation order s.

The Hörmander spaces occupy a central position among the spaces of general-
ized smoothness, which is characterized by a function parameter, rather than a
number. These spaces are under various and profound investigations; a good deal
of the work was done in the last decades. We refer to G.A. Kalyabin and P.I. Li-
zorkin’s survey [48], H. Triebel’s monograph [135, Sec. 22], the recent papers by
A.M. Caetano and H.-G. Leopold [17], W. Farkas, N. Jacob, and R.L. Schilling
[27], W. Farkas and H.-G. Leopold [28], P. Gurka and B. Opic [36], D.D. Haroske
and S.D. Moura [38, 39], S.D. Moura [91], B. Opic and W. Trebels [104], and
references given therein. Various classes of spaces of generalized smoothness ap-
pear naturally in embedding theorems for function spaces, the theory of inter-
polation of function spaces, approximation theory, the theory of differential and
pseudodifferential operators, theory of stochastic processes; see the monographs
by D.D. Haroske [37], N. Jacob [47], V.G. Maz’ya and T.O. Shaposhnikova [66,
Sec. 16], F. Nicola and L. Rodino [101], B.P. Paneah [106], A.I. Stepanets [130,
Part I, Ch. 3, Sec. 7.1], and also the papers by F. Cobos and D.L. Fernandez
[18], C. Merucci [69], M. Schechter [123] devoted to the interpolation of function
spaces, and the papers by D.E. Edmunds and H. Triebel [23, 24], V.A. Mikhailets
and V.M. Molyboga [72, 73, 74] on spectral theory of some elliptic operators
appearing in mathematical physics.

Already in 1963 L. Hörmander applied the spaces (1.5) and more general Ba-
nach spaces Bp,µ(Rn), with 1 ≤ p ≤ ∞, to an investigation of regularity properties
of solutions to the partial differential equations with constant coefficients and to
some classes of equations with varying coefficients. However, as distinct from the
Sobolev spaces, the Hörmander spaces have not got a broad application to the
general elliptic equations on manifolds and to the elliptic boundary-value prob-
lems. This is due to the lack of a reasonable definition of the Hörmander spaces
on smooth manifolds (the definition should be independent of a choice of local
charts covering the manifold) an on the absence of analytic tools fit to use these
spaces effectively.

Such a tool exists in the Sobolev spaces case; this is the interpolation of spaces.
Namely, an arbitrary fractional order Sobolev space can be obtained by the inter-
polation of a certain couple of integer order Sobolev spaces. This fact essentially
facilitates both the investigation of these spaces and proofs of various theorems
of the theory of elliptic equations because the boundedness and the Fredholm
property (if the defect is invariant) preserve for linear operators under the inter-
polation.
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Therefore it seems reasonable to distinguish the Hörmander spaces that are
obtained by the interpolation (with a function parameter) of couples of Sobolev
spaces; we will consider only inner product spaces. For this purpose we introduce
the following class of isotropic spaces

Hs,ϕ(Rn) := B2,µ(Rn) for µ(ξ) = 〈ξ〉sϕ(〈ξ〉). (1.6)

Here the number parameter s is real, whereas the positive function parameter ϕ
varies slowly at +∞ in the Karamata sense [15, 126]. (We may assume that ϕ is
constant outside of a neighbourhood of +∞.) For example, ϕ is admitted to be
the logarithmic function, its arbitrary iteration, their real power, and a product
of these functions.

The class of spaces (1.6) contains the Sobolev Hilbert scale {Hs} ≡ {Hs,1}, is
attached to it by the number parameter, but is calibrated much finer than the
Sobolev scale. Indeed,

Hs+ε(Rn) ⊂ Hs,ϕ(Rn) ⊂ Hs−ε(Rn) for every ε > 0.

Therefore the number parameter s defines the main (power) smoothness, whereas
the function parameter ϕ determines an additional (subpower) smoothness on the
class of spaces (1.6). Specifically, if ϕ(t) → ∞ (or ϕ(t) → 0) as t → ∞, then ϕ
determines an additional positive (or negative) smoothness. Thus, the parameter
ϕ refines the main smoothness s. Therefore the class of spaces (1.6) is naturally
called the refined Sobolev scale.

This scale possesses the following important property: every space Hs,ϕ(Rn)
is a result of the interpolation, with an appropriate function parameter, of the
couple of Sobolev spaces Hs−ε(Rn) and Hs+δ(Rn), with ε, δ > 0. The parameter
of the interpolation is a function that varies regularly (in the Karamata sense) of
index θ ∈ (0, 1) at +∞; namely θ := ε/(ε + δ). Moreover, the refined Sobolev
scale proves to be closed with respect to this interpolation.

Thus, every Hörmander space Hs,ϕ(Rn) possesses the interpolation property
with respect to the Sobolev Hilbert scale. This means that each linear operator
bounded on both the spaces Hs−ε(Rn) and Hs+δ(Rn) is also bounded on Hs,ϕ(Rn).
The interpolation property plays a decisive role here; namely, it permits us to
establish some important properties of the refined Sobolev scale. They enable
this scale to be applied in the theory of elliptic equations. Thus, we can prove
with the help of the interpolation that each space Hs,ϕ(Rn), as the Sobolev spaces,
is invariant with respect to diffeomorphic transformations of Rn. This permits
the space Hs,ϕ(Γ) to be well defined over a smooth closed manifold Γ because the
set of distributions and the topology in this space does not depend on a choice of
local charts covering Γ. The spaces Hs,ϕ(Rn) and Hs,ϕ(Γ) are useful in the theory
of elliptic operators on manifolds and in the theory of elliptic boundary-value
problems; these spaces are present implicitly in a number of problems appearing
in calculus.

Let us dwell on some results that demonstrate advantages of the introduced
scale as compared with the Sobolev scale. These results deal with the examples
considered above. As before, let A be an elliptic differential operator given on Γ,
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with m := ordA. Then A sets the bounded and Fredholm operators

A : Hs+m,ϕ(Γ)→ Hs,ϕ(Γ) for all s ∈ R, ϕ ∈M.

Here M is the class of slowly varying function parameters ϕ used in (1.6). Note
that the differential operator A leaves invariant the function parameter ϕ, which
refines the main smoothness s. Besides, we have the following regularity property
of a solution to the elliptic equation Au = f :

(f ∈ Hs,ϕ(Γ) for some s ∈ R, ϕ ∈M) ⇒ u ∈ Hs+m,ϕ(Γ).

For the refined Sobolev scale, we have the following sharpening of Sobolev’s
Imbedding Theorem: given an integer r ≥ 0 and function ϕ ∈M, the embedding
Hr+n/2,ϕ(Γ) ⊂ Cr(Γ) is equivalent to that

∞∫
1

dt

t ϕ2(t)
<∞. (1.7)

Therefore, if f ∈ Hr−m+n/2,ϕ(Γ) for some parameter ϕ ∈M satisfying (1.7), then
the solution u ∈ Cr(Γ).

Similar results are also valid for the elliptic systems and elliptic boundary-value
problems.

Now let us pass to the analysis of the spectral expansion (1.3) convergence.
We additionally suppose that the operator A is of order m > 0 and is unbounded
and self-adjoint on the space L2(Γ). Condition (1.4) for the convergence of (1.3)
almost everywhere on Γ is equivalent to the inclusion

f ∈ H0,ϕ(Γ), with ϕ(t) := max{1, log t}.

The latter is much wider than the condition f ∈ Hs(Γ) for some s > 0. We can
also similarly represent conditions for unconditional convergence almost every-
where or convergence in the Hölder space Cr(Γ), with integral r ≥ 0.

The above and some other results show that the refined Sobolev scale is helpful
and convenient. This scale can be used in different topics of the modern analysis
as well; see, e.g., the articles by M. Hegland [40, 41], P. Mathé and U. Tautenhahn
[65].

This paper is a detailed survey of our recent articles [75–87, 94–100], which
are summed up in the monograph [85] published in Russian in 2010. In them,
we have built a theory of general elliptic (both scalar and matrix) operators and
elliptic boundary-value problems on the refined Sobolev scales of function spaces.

Let us describe the survey contents in greater detail. The paper consists of 13
sections.

Section 1 is Introduction, which we are presenting now.
Section 2 is preliminary and contains a necessary information about regularly

varying functions and about the interpolation with a function parameter. Here we
distinguish important Theorem 2.12, which gives a description of all interpolation
parameters for the category of separable Hilbert spaces.

In Section 3, we consider the Hörmander spaces, give a definition of the refined
Sobolev scale, and study its properties. Among them, we especially note the
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interpolation properties of this scale, formulated as Theorems 3.8 and 3.9. They
are very important for applications.

Section 4 deals with uniformly elliptic pseudodifferential operators that are
studied on the refined Sobolev scale over Rn. We get an a priory estimate for
a solution of the elliptic equation and investigate an interior smoothness of the
solution. As an application, we obtain a sufficient condition for the existence of
continuous bounded derivatives of the solution.

Next in Section 5, we define a class of Hörmander spaces, the refined Sobolev
scale, over a smooth closed manifold. We give three equivalent definitions of these
spaces: local (in terms of local properties of distributions), interpolational (by
means of the interpolation of Sobolev spaces with an appropriate function param-
eter), and operational (via the completion of the set of infinitely smooth functions
with respect to the norm generated by a certain function of the Beltrami–Laplace
operator). These definitions are similar to those used for the Sobolev spaces. We
study properties of the refined Sobolev scale over the closed manifold. Important
applications of these results are given in Sections 6 and 7.

Section 6 deals with elliptic pseudodifferential operators on a closed manifold.
We show that they are Fredholm (i.e. have a finite index) on appropriate cou-
ples of Hörmander spaces. As in Section 4, a priory estimates for solutions of
the elliptic equations are obtained, and the solutions regularity is investigated.
Using elliptic operators, we give equivalent norms on Hörmander spaces over the
manifold.

In Section 7, we investigate a convergence of spectral expansions correspond-
ing to elliptic normal operators given on the closed manifold. We find sufficient
conditions for the following types of the convergence: almost everywhere, uncon-
ditionally almost everywhere, and in the space Ck, with integral k ≥ 0. These
conditions are formulated in constructive terms of the convergence on some func-
tion classes, which are Hörmander spaces.

Section 8 deals with the classes of Hörmander spaces that relate to the refined
Sobolev scale and are given over Euclidean domains being open or closed. For
these classes, we study interpolation properties, embeddings, traces, and riggings
of the space of square integrable functions with Hörmander spaces. The results of
this section are applied in next Sections 9–12, where a regular elliptic boundary-
value problem is investigated in appropriate Hörmander spaces.

In Section 9, this problem is studied on the one-sided refined Sobolev scale. We
show that the problem generates a Fredholm operator on this scale. We investi-
gate some properties of the problem; namely, a priory estimates for solutions and
local regularity are given. Moreover, a sufficient condition for the weak solution
to be classical is found in terms of Hörmander spaces.

Section 10 deals with semihomogeneous elliptic boundary-value problems. They
are considered on Hörmander spaces which form an appropriate two-sided re-
fined Sobolev scale. We show that the operator corresponding to the problem is
bounded and Fredholm on this scale.
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In Sections 11–12, we give various theorems about a solvability of nonhomoge-
neous regular elliptic boundary-value problems in Hörmander spaces of an arbi-
trary real main smoothness. Developing the methods suggested by Ya.A. Roit-
berg [118] and J.-L. Lions, E. Magenes [61], we establish a certain generic theorem
and a wide class of individual theorems on the solvability. The generic theorem
is featured by that the domain of the elliptic operator does not depend on the co-
efficients of the elliptic equation and is common for all boundary-value problems
of the same order. Conversely, the individual theorems are characterized by that
the domain depends essentially on the coefficients, even of the lower order deriva-
tives. In Section 11, we elaborate on Roitberg’s approach in connection with
Hörmander spaces and then deduce the generic theorem about the solvability of
elliptic boundary-value problems on the two-sided refined Sobolev scale modified
in the Roitberg sense.

Section 12 is devoted to J.-L. Lions and E. Magenes’ approach, which we de-
velop for various Hilbert scales consisting of Sobolev or Hörmander spaces. For
the space of right-hand sides of an elliptic equation, we find a sufficiently general
condition under which the operator of the problem is bounded and Fredholm (see
key Theorems 12.6 and 12.16). As a consequence, we obtain new various individ-
ual theorems on the solvability of elliptic boundary-value problems considered in
Sobolev or Hörmander spaces, both nonweighted and weighted.

In final Section 13, we indicate application of Hörmander spaces to other impor-
tant classes of elliptic problems. They are nonregular boundary-value problems,
parameter-elliptic problems, certain mixed elliptic problems, elliptic systems and
corresponding boundary-value problems.

It is necessary to note that some results given in the survey are new even for
the Sobolev spaces. These results are Theorem 10.1 in the case of half-integer s
and individual Theorems 12.6, 12.10, and 12.14.

In addition, note that we have also investigated a certain class of Hörmander
spaces, which is wider than the refined Sobolev scale. Interpolation properties of
this class are studied and then applied to elliptic operators [85, 87, 99, 140]. It
is remarkable that this class consists of all the Hilbert spaces which possess the
interpolation property with respect to the Sobolev Hilbert scale. These results
fall beyond the limits of our survey.

2. Preliminaries

In this section we recall some important results concerning the regularly varying
functions and the interpolation with a function parameter of couples of Hilbert
spaces. These results will be necessary for us in the sequel.

2.1. Regularly varying functions. We recall the following notion.

Definition 2.1. A positive function ψ defined on a semiaxis [b,+∞) is said to
be regularly varying of index θ ∈ R at +∞ if ψ is Borel measurable on [b0,+∞)
for some number b0 ≥ b and

lim
t→+∞

ψ(λ t)

ψ(t)
= λθ for each λ > 0.
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A function regularly varying of the index θ = 0 at +∞ is called slowly varying
at +∞.

The theory of regularly varying functions was founded by Jovan Karamata
[49, 50] in the 1930s. These functions are closely related to the power functions
and have numerous applications, mainly due to their special role in Tauberian-
type theorems (see the monographs [15, 64, 113, 126] and references therein).

Example 2.2. The well-known standard case of functions regularly varying of
the index θ at +∞ is

ψ(t) := tθ (log t)r1 (log log t)r2 . . . (log . . . log t)rk for t� 1 (2.1)

with arbitrary parameters k ∈ Z+ and r1, r2, . . . , rk ∈ R. In the case where
θ = 0 these functions form the logarithmic multiscale, which has a number of
applications in the theory of function spaces.

We denote by SV the set of all functions slowly varying at +∞. It is evident
that ψ is a function regularly varying at +∞ of index θ if and only if ψ(t) = tθϕ(t),
t � 1, for some function ϕ ∈ SV. Thus, the investigation of regularly varying
functions is reduced to the case of slowly varying functions.

The study and application of regularly varying functions are based on two
fundamental theorems: the Uniform Convergence Theorem and Representation
Theorem. They were proved by Karamata [49] in the case of continuous functions
and, in general, by a number of authors later (see the monographs cited above).

Theorem 2.3 (Uniform Convergence Theorem). Suppose that ϕ ∈ SV; then
ϕ(λt)/ϕ(t)→ 1 as t→ +∞ uniformly on each compact λ-set in (0,∞).

Theorem 2.4 (Representation Theorem). A function ϕ belongs to SV if and
only if it can be written in the form

ϕ(t) = exp

(
β(t) +

t∫
b

α(τ)

τ
dτ

)
, t ≥ b, (2.2)

for some number b > 0, continuous function α : [b,∞) → R approaching zero
at ∞, and Borel measurable bounded function β : [b,∞) → R that has the finite
limit at ∞.

The Representation Theorem implies the following sufficient condition for a
function to be slowly varying at infinity [126, Sec. 1.2].

Theorem 2.5. Suppose that a function ϕ : (b,∞) → (0,∞) has a continuous
derivative and satisfies the condition tϕ ′(t)/ϕ(t)→ 0 as t→∞. Then ϕ ∈ SV.

Using Theorem 2.5 one can give many interesting examples of slowly varying
functions. Among them we mention the following.

Example 2.6. Let ϕ(t) := expψ(t), with ψ being defined according to (2.1),
where θ = 0 and r1 < 1. Then ϕ ∈ SV.

Example 2.7. Let α, β, γ ∈ R, β 6= 0, and 0 < γ < 1. We set ω(t) := α +
β sin logγ t and ϕ(t) := (log t)ω(t) for t > 1. Then ϕ ∈ SV.
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Example 2.8. Let α, β, γ ∈ R, α 6= 0, 0 < γ < β < 1, and

ϕ(t) := exp(α(log t)1−β sin logγ t) for t > 1.

Then ϕ ∈ SV.

The last two examples show that a function ϕ varying slowly at +∞ may
exhibit infinite oscillation, that is

lim inf
t→+∞

ϕ(t) = 0 and lim sup
t→+∞

ϕ(t) = +∞.

We will use regularly varying functions as parameters when we define certain
Hilbert spaces. If the function parameters are equivalent in a neighbourhood of
+∞, we get the same space up to equivalence of norms. Therefore it is useful to
introduced the following notion [81, p. 90].

Definition 2.9. We say that a positive function ψ defined on a semiaxis [b,+∞)
is quasiregularly varying of index θ ∈ R at +∞ if there exist a number b1 ≥ b and
a function ψ1 : [b1,+∞) → (0,+∞) regularly varying of the same index θ ∈ R
at +∞ such that ψ � ψ1 on [b1,+∞). A function quasiregularly varying of the
index θ = 0 at +∞ is called quasislowly varying at +∞.

As usual, the notation ψ � ψ1 on [b1,+∞) means that the functions ψ and ψ1

are equivalent there, that is both the functions ψ/ψ1 and ψ1/ψ are bounded on
[b1,+∞).

We denote by QSV the set of all functions varying quasislowly at +∞. It
is evident that ψ is quasiregularly varying of the index θ at +∞ if and only if
ψ(t) = tθϕ(t), t� 1, for some function ϕ ∈ QSV.

We note the following properties of the class QSV.

Theorem 2.10. Let ϕ, χ ∈ QSV. The next assertions are true:

i) There is a function ϕ1 ∈ C∞((0; +∞)) ∩ SV such that ϕ � ϕ1 in a
neighbourhood of +∞.

ii) If θ > 0, then both t−θϕ(t)→ 0 and tθϕ(t)→ +∞ as t→ +∞.
iii) All the functions ϕ+ χ, ϕχ, ϕ/χ and ϕσ, with σ ∈ R, belong to QSV.
iv) Let θ ≥ 0, and in the case where θ = 0 suppose that ϕ(t) → +∞ as

t→ +∞. Then the composite function χ(tθϕ(t)) of t belongs to QSV.

Theorem 2.10 are known for slowly varying functions, even with the strong
equivalence ϕ(t) ∼ ϕ1(t) as t→ +∞ being in assertion i); see, e.g., [15, Sec. 1.3]
and [126, Sec. 1.5]. This implies the case when ϕ, χ ∈ QSV [81, p. 91].

2.2. The interpolation with a function parameter of Hilbert spaces. It
is a natural generalization of the classical interpolation method by J.-L. Lions
and S.G. Krein (see, e.g., [30, Ch. IV, § 9] and [61, Ch. 1, Sec. 2 and 5]) to
the case when a general enough function is used as an interpolation parameter
instead of a number parameter. The generalization appeared in the paper by
C. Foiaş and J.-L. Lions [29, p. 278] and then was studied by W.F. Donoghue
[21], E.I. Pustyl‘nik [111], V.I. Ovchinnikov [105, Sec. 11.4], and the authors [81].

We recall the definition of this interpolation. For our purposes, it is sufficient
to restrict ourselves to the case of separable Hilbert spaces.
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Let an ordered couple X := [X0, X1] of complex Hilbert spaces X0 and X1 be
such that these spaces are separable and that the continuous dense embedding
X1 ↪→ X0 holds true. We call this couple admissible. For the couple X there
exists an isometric isomorphism J : X1 ↔ X0 such that J is a self-adjoint positive
operator on the space X0 with the domain X1 (see [61, Ch. 1, Sec. 2.1] and [30,
Ch. IV, Sec. 9.1]). The operator J is said to be generating for the couple X and
is uniquely determined by X.

We denote by B the set of all functions ψ : (0,∞)→ (0,∞) such that:

a) ψ is Borel measurable on the semiaxis (0,+∞);
b) ψ is bounded on each compact interval [a, b] with 0 < a < b < +∞;
c) 1/ψ is bounded on each set [r,+∞) with r > 0.

Let ψ ∈ B. Generally, the unbounded operator ψ(J) is defined in the space
X0 as a function of J . We denote by [X0, X1]ψ or simply by Xψ the domain of
the operator ψ(J) endowed with the inner product (u, v)Xψ := (ψ(J)u, ψ(J)v)X0

and the corresponding norm ‖u‖Xψ := (u, u)
1/2
Xψ

. The space Xψ is Hilbert and

separable.

Definition 2.11. We say that a function ψ ∈ B is an interpolation parameter
if the following property is fulfilled for all admissible couples X = [X0, X1], Y =
[Y0, Y1] of Hilbert spaces and an arbitrary linear mapping T given on X0. If the
restriction of the mapping T to the space Xj is a bounded operator T : Xj → Yj
for each j = 0, 1, then the restriction of the mapping T to the space Xψ is also
a bounded operator T : Xψ → Yψ.

Otherwise speaking, ψ is an interpolation parameter if and only if the mapping
X 7→ Xψ is an interpolation functor given on the category of all admissible couples
X of Hilbert spaces. (For the notion of interpolation functor, see, e.g., [14, Sec.
2.4] and [133, Sec. 1.2.2]) In the case where ψ is an interpolation parameter,
we say that the space Xψ is obtained by the interpolation with the function
parameter ψ of the admissible couple X. Then the continuous dense embeddings
X1 ↪→ Xψ ↪→ X0 are fulfilled.

The classical result by J.-L. Lions and S.G. Krein consists in the fact that the
power function ψ(t) := tθ is an interpolation parameter whenever 0 < θ < 1; see
[30, Ch. IV, § 9, Sec. 3] and [61, Ch. 1, Sec. 5.1].

We have the following criterion for a function to be an interpolation parameter.

Theorem 2.12. A function ψ ∈ B is an interpolation parameter if and only if
ψ is pseudoconcave in a neighbourhood of +∞, i.e. ψ � ψ1 for some concave
positive function ψ1

This theorem follows from Peetre’s results [108] on interpolations functions (see
also the monograph [14, Sec. 5.4]). The corresponding proof is given in [81, Sec.
2.7].

For us, it is important the next consequence of Theorem 2.12.

Corollary 2.13. Suppose a function ψ ∈ B to be quasiregularly varying of index
θ at +∞, with 0 < θ < 1. Then ψ is an interpolation parameter.

The direct proof of this assertion is given in [76, Sec. 2].
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3. Hörmander spaces

In 1963 Lars Hörmander [43, Sec. 2.2] introduced the spaces Bp,µ(Rn), which
consist of distributions in Rn and are parametrized by a number p ∈ [1,∞] and a
general enough weight function µ of argument ξ ∈ Rn; see also [45, Sec. 10.1]. The
number parameter p characterizes integrability properties of the distributions,
whereas the function parameter µ describes their smoothness properties. In this
section, we recall the definition of the spaces Bp,µ(Rn), some their properties, and
an application to constant-coefficient partial differential equations. Further we
consider the important case where the Hörmander space Bp,µ(Rn) is Hilbert, i.e.
p = 2, and µ is a quasiregularly varying function of (1 + |ξ|2)1/2 at infinity.

3.1. The spaces Bp,µ(Rn). Let an integer n ≥ 1 and a parameter p ∈ [1,∞].
We use the following conventional designations, where Ω is an nonempty open
set in Rn, in particular Ω = Rn:

a) Lp(Ω) := Lp(Ω, dξ) is the Banach space of complex-valued functions f(ξ)
of ξ ∈ Ω such that |f |p is integrable over Ω (if p =∞, then f is essentially
bounded in Ω);

b) Ck
b(Ω) is the Banach space of functions u : Ω→ C having continuous and

bounded derivatives of order ≤ k on Ω;
c) C∞0 (Ω) is the linear topological space of infinitely differentiable functions
u : Rn → C such that their supports are compact and belong to Ω; we
will identify functions from C∞0 (Ω) with their restrictions to Ω;

d) D′(Ω) is the linear topological space of all distributions given in Ω; we
always suppose that distributions are antilinear complex-valued function-
als;

e) S ′(Rn) is the linear topological Schwartz space of tempered distributions
given in Rn;

f) û := Fu is the Fourier transform of a distribution u ∈ S ′(Rn); F−1f is
the inverse Fourier transform of f ∈ S ′(Rn);

g) 〈ξ〉 := (1 + |ξ|2)1/2 is a smoothed modulus of ξ ∈ Rn.

Suppose a continuous function µ : Rn → (0,∞) to be such that, for some
numbers c ≥ 1 and l > 0, we have

µ(ξ)

µ(η)
≤ c (1 + |ξ − η|)l for all ξ, η ∈ Rn. (3.1)

The function µ is called a weight function.

Definition 3.1. The Hörmander space Bp,µ(Rn) is a linear space of the distribu-
tions u ∈ S ′(Rn) such that the Fourier transform û is locally Lebesgue integrable
on Rn and, moreover, µ û ∈ Lp(Rn). The space Bp,µ(Rn) is endowed with the
norm ‖u‖Bp,µ(Rn) := ‖µ û‖Lp(Rn).

The space Bp,µ(Rn) is complete and continuously embedded in S ′(Rn). If 1 ≤
p < ∞, then this space is separable, and the set C∞0 (Rn) is complete in it [43,
Sec. 2.2]. Of special interest is the p = 2 case, when Bp,µ(Rn) becomes a Hilbert
space.
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Remark 3.2. Hörmander assumes initially that µ satisfies a stronger condition
than (3.1); namely, there exist some positive numbers c and l such that

µ(ξ)

µ(η)
≤ (1 + c |ξ − η|)l for all ξ, η ∈ Rn. (3.2)

But he notices that two sets of functions satisfying either (3.1) or (3.2) lead to
the same class of spaces Bp,µ(Rn) [43, the remark at the end of Sec. 2.1].

The term ‘Hörmander space’ was suggested by H. Triebel in [133, Sec. 4.11.4].
The following Hörmander’s theorem establishes an important relation between

the spaces Bp,µ(Rn) and Ck
b(Rn) [43, Sec. 2.2, Theorem 2.2.7].

Theorem 3.3 (Hörmander’s Embedding Theorem). Let p, q ∈ [1,∞], 1/p +
1/q = 1, and an integer k ≥ 0. Then the condition

〈ξ〉k µ−1(ξ) ∈ Lq(Rn, dξ) (3.3)

entails the continuous embedding Bp,µ(Rn) ↪→ Ck
b(Rn). Conversely, if

{u ∈ Bp,µ(Rn) : suppu ⊂ V } ⊂ Ck(Rn)

for some nonempty open set V ⊆ Rn, then (3.3) is valid.

The spaces Bp,µ(Rn) were applied by Hörmander to investigation of regularity
properties of solutions to some partial differential equations (see [43, Ch. IV, VII]
and [45, Ch. 11, 13]). We state one of his results relating to elliptic equations
[43, Sec 7.4].

Let Ω be a nonempty open set in Rn. In Ω, consider a partial differential equa-
tion P (x,D)u = f of an order r with coefficients belonging to C∞(Ω). Introduce
the local Hörmander space over Ω:

Bloc
p,µ(Ω) := {f ∈ D′(Ω) : χf ∈ Bp,µ(Ω) ∀ χ ∈ C∞0 (Ω)}.

Here Bp,µ(Ω) is the space of restrictions of all the distributions u ∈ Bp,µ(Rn) to Ω.

Theorem 3.4 (Hörmander’s Regularity Theorem). Let the operator P (x,D) be
elliptic in Ω, and u ∈ D′(Ω). If P (x,D)u ∈ Bloc

p,µ(Ω) for some p ∈ [1,∞] and

weight function µ, then u ∈ Bloc
p,µr(Ω) with µr(ξ) := 〈ξ〉rµ(ξ).

For applications of the spaces Bp,µ(Rn), the Hilbert case of p = 2 is the most
interesting. This case was investigated by B. Malgrange [63] and L.R. Volevich,
B.P. Paneah [138] (see also Paneah’s monograph [106, Sec. 1.4]). Specifically, if
µ(ξ) = 〈ξ〉s for all ξ ∈ Rn with some s ∈ R, then B2,µ(Rn) becomes the Sobolev
inner product space Hs(Rn) of order s.

In what follows we consider the isotropic Hörmander inner product spaces
B2,µ(Rn), with µ(ξ) being a radial function, i.e. depending only on 〈ξ〉.

3.2. The refined Sobolev scale. It useful to have a class of the Hörmander
inner product spaces B2,µ(Rn) that are close to the Sobolev spaces Hs(Rn) with
s ∈ R. For this purpose we choose µ(ξ) := 〈ξ〉sϕ(〈ξ〉) for some functions ϕ ∈ QSV;
then µ is a quasiregularly varying function of 〈ξ〉 at infinity of index s. In this
case it is naturally to rename the Hörmander space B2,µ(Rn) by Hs,ϕ(Rn). Let
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us formulate the corresponding definitions. First we introduce the following set
M⊂ QSV of function parameters ϕ.

By M we denote the set of all functions ϕ : [1; +∞)→ (0; +∞) such that:

a) ϕ is Borel measurable on [1; +∞);
b) ϕ and 1/ϕ are bounded on every compact interval [1; b], where 1 < b <

+∞;
c) ϕ ∈ QSV.

It follows from Theorem 2.4 that ϕ ∈M if and only if ϕ can be written in the
form (2.2) with b = 1 for some continuous function α : [1,∞) → R approaching
zero at +∞ and Borel measurable bounded function β : [1,∞)→ R.

Let s ∈ R and ϕ ∈M.

Definition 3.5. The space Hs,ϕ(Rn) is the Hörmander inner product space
B2,µ(Rn) with µ(ξ) := 〈ξ〉sϕ(ξ) for ξ ∈ Rn.

Thus Hs,ϕ(Rn) consists of the distributions u ∈ S ′(Rn) such that the Fourier
transform û is a function locally Lebesgue integrable on Rn and∫

Rn

〈ξ〉2sϕ2(〈ξ〉) |û(ξ)|2 dξ <∞.

The inner product in the space Hs,ϕ(Rn) is defined by the formula

(u1, u2)Hs,ϕ(Rn) :=

∫
Rn

〈ξ〉2sϕ2(〈ξ〉) û1(ξ) û2(ξ) dξ

and induces the norm in the usual way, Hs,ϕ(Rn) being a Hilbert space.
The function µ used in Definition 3.5 is a weight function that follows from

the integral representation of the set M given above. We consider the Borel
measurable weight functions µ, rather than continuous as Hörmander does. By
Theorem 2.10 i) we do not obtain the spaces different from those considered by
Hörmander.

In the simplest case where ϕ(·) ≡ 1, the space Hs,ϕ(Rn) = Hs,1(Rn) coincides
with the Sobolev space Hs(Rn).

By Theorem 2.10 (ii), for each ε > 0 there exist a number cε ≥ 1 such that

c−1
ε t−ε ≤ ϕ(t) ≤ cεt

ε for all t ≥ 1.

This implies the inclusions⋃
ε>0

Hs+ε(Rn) =: Hs+(Rn) ⊂ Hs,ϕ(Rn) ⊂ Hs−(Rn) :=
⋂
ε>0

Hs−ε(Rn). (3.4)

They show that in the class of spaces{
Hs,ϕ(Rn) : s ∈ R, ϕ ∈M

}
(3.5)

the functional parameter ϕ defines a supplementary (subpower) smoothness to
the basic (power) s-smoothness. If ϕ(t) → ∞ [ϕ(t) → 0] as t → ∞, then ϕ
defines a positive [negative] supplementary smoothness. Otherwise speaking, ϕ
refines the power smoothness s. Therefore, it is naturally to give
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Definition 3.6. The class of spaces (3.5) is called the refined Sobolev scale
over Rn.

Obviously, the scale (3.5) is much finer than the Hilbert scale of Sobolev spaces.
The scale (3.5) was considered by the authors in [75, 77, 81]. Let us formulate
some important properties of it.

Theorem 3.7. Let s ∈ R and ϕ, ϕ1 ∈M. The following assertions are true:

i) The dense continuous embedding Hs+ε,ϕ1(Rn) ↪→ Hs,ϕ(Rn) is valid for
each ε > 0.

ii) The function ϕ/ϕ1 is bounded in a neighbourhood of +∞ if and only if
Hs,ϕ1(Rn) ↪→ Hs,ϕ(Rn). This embedding is continuous and dense.

iii) Let an integer k ≥ 0 be given. The inequality
∞∫

1

dt

t ϕ 2(t)
<∞ (3.6)

is equivalent to the embedding

Hk+n/2,ϕ(Rn) ↪→ Ck
b(Rn). (3.7)

The embedding is continuous.
iv) The spaces Hs,ϕ(Rn) and H−s,1/ϕ(Rn) are mutually dual with respect to

the inner product in L2(Rn).

Assertion i) of this theorem follows from (3.4), whereas assertions ii) – iv) are
inherited from the Hörmander spaces properties [43, Sec. 2.2], in particular, iii)
from Theorem 3.3. Note that ϕ ∈ M ⇔ 1/ϕ ∈ M, so the space H−s,1/ϕ(Rn) in
assertion iv) is defined as an element of the refined Sobolev scale.

The refined Sobolev scale possesses the interpolation property with respect to
the Sobolev scale because every space Hs,ϕ(Rn) is obtained by the interpolation,
with an appropriate function parameter, of a couple of inner product Sobolev
spaces.

Theorem 3.8. Let a function ϕ ∈M and positive numbers ε, δ be given. We set

ψ(t) :=

{
t ε/(ε+δ) ϕ(t1/(ε+δ)) for t ≥ 1,

ϕ(1) for 0 < t < 1.
(3.8)

Then the following assertions are true:

i) The function ψ belongs to the set B and is an interpolation parameter.
ii) For an arbitrary s ∈ R, we have

[Hs−ε(Rn), Hs+δ(Rn)]ψ = Hs,ϕ(Rn) (3.9)

with equality of norms in the spaces.

Assertion i) holds true by Corollary 2.13 because the function (3.8) is quasireg-
ularly varying of index θ := ε/(ε + δ) ∈ (0, 1) at +∞. Assertion ii) is directly
verified if we note that the operator J : u 7→ F−1(〈ξ〉ε+δ û(ξ)) is generating for the
couple on the left of (3.9). Then the operator ψ(J) : u 7→ F−1(〈ξ〉εϕ(〈ξ〉) û(ξ))
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maps Hs,ϕ(Rn) onto Hs−ε(Rn) that means (3.9); for details, see [77, Sec. 3] or
[81, Sec. 3.2].

The refined Sobolev scale is closed with respect to the interpolation with the
functions parameters that are quasiregularly varying at +∞.

Theorem 3.9. Let s0, s1 ∈ R, s0 ≤ s1, and ϕ0, ϕ1 ∈ M. In the case where
s0 = s1 we suppose that the function ϕ0/ϕ1 is bounded in a neighbourhood of ∞.
Let ψ ∈ B be a quasiregularly varying function of an index θ ∈ (0, 1) at ∞. We
represent ψ(t) = tθχ(t) with χ ∈ QSV and set s := (1− θ)s0 + θs1,

ϕ(t) := ϕ1−θ
0 (t)ϕθ1(t)χ

(
ts1−s0

ϕ1(t)

ϕ0(t)

)
for t ≥ 1.

Then ϕ ∈M, and

[Hs0,ϕ0(Rn), Hs1,ϕ1(Rn)]ψ = Hs,ϕ(Rn) (3.10)

with equality of norms in the spaces.

This theorem can be proved by means of the repeated application of Theorem
3.8 if we employ the reiteration formula [Xf , Xg]ψ = Xω, where X is an admissible
couple of Hilbert spaces, f, g, ψ ∈ B, f/g is bounded in a neighbourhood of ∞,
and ω(t) := f(t)ψ(g(t)/f(t)) for t > 0; see [81, Sec. 2.3]. Besides, it is possible
to give the direct proof, which is similar to that used for Theorem 3.8.

Remark 3.10. The interpolation of the Hörmander spaces Bp,µ(Rn), with 1 ≤ p ≤
∞, was studied by M. Schechter [123] with the help of the complex method of
interpolation. C. Merucci [69] and F. Cobos, D.L. Fernandez [18] considered the
interpolation of various Banach spaces of generalized smoothness by means of the
real method involving a function parameter.

4. Elliptic operators in Rn

In this section we consider an arbitrary uniformly elliptic classical pseudodif-
ferential operator (PsDO) A on the scale (3.5). We establish an a priory estimate
for a solution to the equation Au = f and investigate the solution smoothness in
this scale. Our results refine the classical theorems on elliptic operators on the
Sobolev scale; see, e.g., [7, Sec. 1.8] or [46, Sec. 18.1].

Following [7, Sec. 1.1], we denote by Ψr(Rn) with r ∈ R the class of all
the PsDOs A in Rn (generally, not classical) such that their symbols a(x, ξ) are
complex-valued infinitely smooth functions satisfying the following condition. For
arbitrary multi-indexes α and β, there exist a number cα,β > 0 such that

| ∂αx ∂
β
ξ a(x, ξ) | ≤ cα,β 〈ξ〉r−|β| for every x, ξ ∈ Rn.

Lemma 4.1. Let A ∈ Ψr(Rn) with r ∈ R. Then the restriction of the mapping
u 7→ Au, u ∈ S ′(Rn), to the space Hs,ϕ(Rn) is a bounded linear operator

A : Hs,ϕ(Rn)→ Hs−r, ϕ(Rn)

for each s ∈ R and ϕ ∈M.
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This lemma follows from the Sobolev ϕ ≡ 1 case [7, Sec. 1.1, Theorem 1.1.2]
by the interpolation formula (3.9).

By Ψr
ph(Rn) we denote the subset in Ψr(Rn) that consists of all the classical

(polyhomogeneous) PsDOs of the order r; see [7, Sec. 1.5]. An important example
of PsDO from Ψr

ph(Rn) is given by a partial differential operator of order r with
coefficients belonging to C∞b (Rn).

Definition 4.2. A PsDO A ∈ Ψr
ph(Rn) is called uniformly elliptic in Rn if there

exists a number c > 0 such that |a0(x, ξ)| ≥ c for each x, ξ ∈ Rn with |ξ| = 1.
Here a0(x, ξ) is the principal symbol of A.

Let r ∈ R. Suppose a PsDO A ∈ Ψr
ph(Rn) to be uniformly elliptic in Rn.

Theorem 4.3. Let s ∈ R, ϕ ∈ M, and σ < s. The following a priori estimate
holds true:

‖u‖Hs,ϕ(Rn) ≤ c
(
‖Au‖Hs−r,ϕ(Rn) + ‖u‖Hσ,ϕ(Rn)

)
for all u ∈ Hs,ϕ(Rn). (4.1)

Here c = c(s, ϕ, σ) is a positive number not depending on u.

We prove this theorem with the help of the left parametrix of A if we apply
Lemma 4.1. As knows [7, Sec. 1.8, Theorem 1.8.3] there exists a PsDO B ∈
Ψ−rph (Rn) such that BA = I + T , where I is identical operator and T ∈ Ψ−∞ :=⋂
m∈R Ψm(Rn). The operator B is called the left parametrix of A. Writing

u = BAu− Tu, we easily get (4.1) by Lemma 4.1.
Let Ω be an arbitrary nonempty open subset in Rn. We study an interior

smoothness of a solution to the equation Au = f in Ω.
Let us introduce some relevant spaces. By H−∞(Rn) we denote the union of

all the spaces Hs,ϕ(Rn) with s ∈ R and ϕ ∈ M. The linear space H−∞(Rn) is
endowed with the inductive limit topology. We set

Hs,ϕ
int (Ω) :=

{
f ∈ H−∞(Rn) : χ f ∈ Hs,ϕ(Rn)

for all χ ∈ C∞b (Rn), suppχ ⊂ Ω, dist(suppχ, ∂Ω) > 0
}
. (4.2)

A topology in Hs,ϕ
int (Ω) is defined by the seminorms f 7→ ‖χ f‖Hs,ϕ(Rn) with χ

being the same as in (4.2).

Theorem 4.4. Let u ∈ H−∞(Rn) be a solution to the equation Au = f in Ω with
f ∈ Hs,ϕ

int (Ω) for some s ∈ R and ϕ ∈M. Then u ∈ Hs+r,ϕ
int (Ω).

The special case when Ω = Rn (global smoothness) follows at once from the
equality u = Bf − Tu, with B being the left parametrix, and Lemma 4.1. In
general, we deduce Theorem 4.4 from this case if we rearrange A and the operator
of multiplication by a function χ satisfying (4.2). Then we write

Aχu = Aχηu = χAηu+ A′ηu = χf + χA(η − 1)u+ A′ηu, (4.3)

where A′ ∈ Ψr−1(Rn), and the function η has the same properties as χ and is

equal to 1 in a neighbourhood of suppχ. Now, if u ∈ Hs+r−k,ϕ
int (Ω) for some

integer k ≥ 1, then the right-hand side of (4.3) belongs to Hs−k+1,ϕ(Rn) that

implies χu ∈ Hs+r−k+1,ϕ(Rn), i.e. u ∈ Hs+r−k+1,ϕ
int (Ω). By induction in k we have

u ∈ Hs+r,ϕ
int (Ω).
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It is useful to compare Theorem 4.4 with Hörmander’s Regularity Theorem.
If A is a partial differential operator, and Ω is bounded, then Theorem 4.4 is a
consequence of the Hörmander theorem.

Applying Theorems 4.4 and 3.7 iii) we get the following sufficient condition
for the solution u to have continuous and bounded derivatives of the prescribed
order.

Theorem 4.5. Let u ∈ H−∞(Rn) be a solution to the equation Au = f in Ω,

with f ∈ Hk−r+n/2,ϕ
int (Ω) for some integer k ≥ 0 and function parameter ϕ ∈ M.

Suppose that ϕ satisfies (3.6). Then u has the continuous partial derivatives on Ω
up to the order k, and they are bounded on every set Ω0 ⊂ Ω with dist(Ω0, ∂Ω) > 0.
In particular, if Ω = Rn, then u ∈ Ck

b(Rn).

This theorem shows an advantage of the refined Sobolev scale over the Sobolev
scale when a classical smoothness of a solution is under investigation. Indeed, if
we restrict ourselves to the Sobolev case of ϕ ≡ 1, then we have to replace the

condition f ∈ H
k−r+n/2,ϕ
int (Ω) with the condition f ∈ H

k−r+ε+n/2,1
int (Ω) for some

ε > 0. The last condition is far stronger than previous one.
Note that the condition (3.6) not only is sufficient in Theorem 3.3 but also is

necessary on the class of all the considered solutions u. Namely, (3.6) is equivalent
to the implication(

u ∈ H−∞(Rn), f := Au ∈ Hk−r+n/2,ϕ
int (Ω)

)
⇒ u ∈ Ck(Ω). (4.4)

Indeed, if u ∈ Hk+n/2,ϕ
int (Ω), then f = Au ∈ Hk−r+n/2,ϕ

int (Ω), whence u ∈ Ck(Ω) if
(4.4) holds. Thus (4.4) entails (3.6) in view of Hörmander’s Theorem 3.3.

The analogs of Theorems 4.3–4.5 were proved in [98] for uniformly elliptic
matrix PsDOs.

5. Hörmander spaces over a closed manifold

In this section we introduce a certain class of Hörmander spaces over a closed
(compact) smooth manifold. Namely, using the spaces Hs,ϕ(Rn) with s ∈ R and
ϕ ∈M we construct their analogs for the manifold. We give three equivalent def-
initions of the analogs; these definitions are similar to those used for the Sobolev
spaces (see, e.g., [132, Ch. 1, Sec. 5]).

5.1. The equivalent definitions. In what follows except Subsection 7.1, Γ is
a closed (i.e. compact and without a boundary) infinitely smooth oriented man-
ifold of an arbitrary dimension n ≥ 1. We suppose that a certain C∞-density
dx is defined on Γ. As usual, D′(Γ) denotes the linear topological space of all
distributions on Γ. The space D′(Γ) is antidual to the space C∞(Γ) with respect
to the natural extension of the scalar product in L2(Γ) := L2(Γ, dx) by continuity.
This extension is denoted by (f, w)Γ for f ∈ D′(Γ) and w ∈ C∞(Γ).

Let s ∈ R and ϕ ∈ M. We give the following three equivalent definitions of
the Hörmander space Hs,ϕ(Γ).

The first definition exhibits the local properties of those distributions f ∈ D′(Γ)
that form Hs,ϕ(Γ). From the C∞-structure on Γ, we arbitrarily choose a finite
collection of the local charts αj : Rn ↔ Γj, j = 1, . . . ,κ, such that the open sets
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Γj form the finite covering of Γ. Let functions χj ∈ C∞(Γ), j = 1, . . . ,κ, form a
partition of unity on Γ satisfying the condition suppχj ⊂ Γj.

Definition 5.1. The linear space Hs,ϕ(Γ) is defined by the formula

Hs,ϕ(Γ) :=
{
f ∈ D′(Γ) : (χjf) ◦ αj ∈ Hs,ϕ(Rn) ∀ j = 1, . . .κ

}
.

Here (χjf) ◦αj is the representation of the distribution χjf in the local chart αj.
The inner product in the space Hs,ϕ(Γ) is introduced by the formula

(f1, f2)Hs,ϕ(Γ) :=
κ∑
j=1

((χjf1) ◦ αj, (χj f2) ◦ αj)Hs,ϕ(Rn)

and induces the norm in the usual way.

In the special case where ϕ ≡ 1 the space Hs,ϕ(Γ) coincides with the inner
product Sobolev space Hs(Γ) of order s. The Sobolev spaces on Γ are known to
be complete and independent (up to equivalence of norms) of the choice of the
local charts and the partition of unity.

The second definition connects the space Hs,ϕ(Γ) with the Sobolev scale by
means of the interpolation.

Definition 5.2. Let two integers k0 and k1 be such that k0 < s < k1. We define

Hs,ϕ(Γ) := [Hk0(Γ), Hk1(Γ)]ψ, (5.1)

where the interpolation parameter ψ is given by the formula (3.8) with ε := s−k0

and δ := k1 − s.

It is useful in the spectral theory to have the third definition of Hs,ϕ(Γ) that
connects the norm in Hs,ϕ(Γ) with a certain function of 1−∆Γ. As usual, ∆Γ is
the Beltrami-Laplace operator on the manifold Γ endowed with the Riemannian
metric that induces the density dx; see, e.g., [127, Sec. 22.1].

Definition 5.3. The space Hs,ϕ(Γ) is defined to be the completion of C∞(Γ)
with respect to the Hilbert norm

f 7→ ‖(1−∆Γ)s/2ϕ((1−∆Γ)1/2) f‖L2(Γ), f ∈ C∞(Γ). (5.2)

Theorem 5.4. Definitions 5.1, 5.2, and 5.3 are mutually equivalent, that is they
define the same Hilbert space Hs,ϕ(Γ) up to equivalence of norms.

Let us explain how to prove this fundamental theorem.
The equivalence of Definitions 5.1 and 5.2. We use Definition 5.1 as a starting

point and show that the equality (5.1) holds true up to equivalence of norms.
We apply the Rn-analog of (5.1), due to Theorem 3.8, and pass to local coordi-
nates on Γ. Namely, let the mapping T take each f ∈ D′(Γ) to the vector with
components (χjf) ◦ αj, j = 1, . . . ,κ. We get the bounded linear operator

T : Hs,ϕ(Γ)→ (Hs,ϕ(Rn))κ. (5.3)

It has the right inverse bounded linear operator

K : (Hs,ϕ(Rn))κ → Hs,ϕ(Γ), (5.4)
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where the mapping K can be constructed with the help of the local charts and is
independent of parameters s and ϕ. If we consider these operators in the Sobolev
case of ϕ ≡ 1 and use the Rn-analog of (5.1), then we get the bounded operators

T : [Hk0(Γ), Hk1(Γ)]ψ → (Hs,ϕ(Rn))κ, (5.5)

K : (Hs,ϕ(Rn))κ → [Hk0(Γ), Hk1(Γ)]ψ. (5.6)

Now it follows from (5.3) and (5.6) that the identity mapping KT establishes
the continuous embedding of the space Hs,ϕ(Γ) into the interpolation space
[Hk0(Γ), Hk1(Γ)]ψ, whereas the inverse continuous embedding is valid by (5.4)
and (5.5). Thus the equality (5.1) holds true up to equivalence of norms (for
details, see [77, Sec. 3] or [81, Sec. 3.3]).

By equivalence of Definitions 5.1 and 5.2, the space Hs,ϕ(Γ) is complete and
independent (up to equivalence of norms) of the choice of the local charts and
the partition of unity on Γ. Moreover, the set C∞(Γ) is dense in Hs,ϕ(Γ).

The equivalence of Definitions 5.2 and 5.3. Let us use Definition 5.2 as a
starting point. If s > 0, then we choose k0 := 0 and k1 := 2k > s for some
integer k in (5.1). By Λk(Γ) we denote the Sobolev space H2k(Γ) endowed with
the equivalent norm ‖(1−∆Γ)kf‖L2(Γ) of f . We have

‖f‖Hs,ϕ(Γ) = ‖f‖[H0(Γ),H2k(Γ)]ψ � ‖f‖[L2(Γ),Λk(Γ)]ψ = ‖ψ((1−∆Γ)k)f‖L2(Γ)

= ‖(1−∆Γ)s/2ϕ((1−∆Γ)1/2) f‖L2(Γ),

with f ∈ C∞(Γ), because (1 − ∆Γ)k is the generating operator for the couple
[L2(Γ),Λk(Γ)]. Thus the norm (5.2) is equivalent to the norm in Hs,ϕ(Γ) on the
dense set C∞(Γ) if s > 0. The case of s ≤ 0 can be reduced to the previous one
with the help of the homeomorphism

(1−∆Γ)k : Hs+2k,ϕ(Γ)↔ Hs,ϕ(Γ),

with s + 2k > 0 for some integer k ≥ 1. This homeomorphism follows from the
Sobolev case of ϕ ≡ 1 by the interpolation formula (5.1) (for details, see [81, Sec.
3.4]).

Now we can give

Definition 5.5. The class of Hilbert spaces{
Hs,ϕ(Γ) : s ∈ R, ϕ ∈M

}
(5.7)

is called the refined Sobolev scale over the manifold Γ.

5.2. The properties. We consider some important properties of the scale (5.7).
They are inherited from the refined Sobolev scale over Rn.

Theorem 5.6. Let s ∈ R and ϕ, ϕ1 ∈M. The following assertions are true:

i) The dense compact embedding Hs+ε,ϕ1(Γ) ↪→ Hs,ϕ(Γ) is valid for each
ε > 0.

ii) The function ϕ/ϕ1 is bounded in a neighbourhood of +∞ if and only if
Hs,ϕ1(Γ) ↪→ Hs,ϕ(Γ). This embedding is continuous and dense. It is
compact if and only if ϕ(t)/ϕ1(t)→ 0 as t→ +∞.
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iii) Let integer k ≥ 0 be given. Inequality (3.6) is equivalent to the embedding
Hk+n/2,ϕ(Γ) ↪→ Ck(Γ). The embedding is compact.

iv) The spaces Hs,ϕ(Γ) and H−s,1/ϕ(Γ) are mutually dual (up to equivalence
of norms) with respect to the inner product in L2(Rn).

This theorem except the statements on compactness follows from Theorem 3.7
in view of Definition 5.1. The compactness of the embeddings is a consequence
of the compactness of Γ. Namely, the statements in assertions i) and ii) follow
from the next proposition. For each number r > 0, the embedding

{u ∈ Hs,ϕ1(Rn) : dist(0, suppu) ≤ r} ↪→ Hs,ϕ(Rn)

is compact if and only if ϕ(t)/ϕ1(t) → 0 as t → ∞. This proposition is a
special case of Hörmander’s result [43, Sec. 2, Theorem 2.2.3]. Now we get the
compactness of the embedding in assertion iii) if we write

Hk+n/2,ϕ(Γ) ↪→ Hk+n/2,ϕ1(Γ) ↪→ Ck(Γ)

for a function ϕ1 such that the first embedding is compact.

Theorem 5.7. Theorems 3.8 and 3.9 remain true if we replace the designation
Rn with Γ, and the phrase ‘equality of norms’ with ‘equivalence of norms’.

Theorem 5.7 can be proved by means of a repeated application of the interpo-
lation formula (5.1). We can also deduce this theorem from its Rn-analogs with
the help of operators T and K used above.

6. Elliptic operators on a closed manifold

Recall that Γ is a closed infinitely smooth oriented manifold. In this section we
study an arbitrary elliptic classical PsDO A on the refined Sobolev scale over Γ.
We prove that A is a bounded and Fredholm operator on the respective pairs of
Hörmander spaces, and investigate the smoothness of a solution to the equation
Au = f . Our results [96, Sec. 4 and 5] refine the classical theorems on elliptic
operators on the Sobolev scale over a closed smooth manifold (see, e.g., [7, Sec. 2],
[46, Sec. 19], and [127, § 8]). We also use some elliptic PsDOs to get an important
class of equivalent norms in Hs,ϕ(Γ) [81, Sec. 3.4].

6.1. The main properties. By Ψr(Γ) with r ∈ R we denote the class of all the
PsDOs A on Γ (generally, not classical) such that the image of A in each local
chart on Γ belongs to Ψr(Rn); see [7, Sec. 2.1].

Lemma 6.1. Let A ∈ Ψr(Γ), with r ∈ R. Then the restriction of the mapping
u 7→ Au, u ∈ D′(Γ), to the space Hs,ϕ(Γ) is the bounded linear operator

A : Hs,ϕ(Γ)→ Hs−r,ϕ(Γ) (6.1)

for each s ∈ R and ϕ ∈M.

This lemma follows from the Sobolev ϕ ≡ 1 case [7, Sec. 2.1, Theorem 2.1.2]
by the interpolation in view of Theorem 5.7.

By Ψr
ph(Γ) we denote the subset in Ψr(Γ) that consists of all classical PsDOs

of the order r; see [7, Sec. 2.1]. The image of PsDO A ∈ Ψr
ph(Γ) in every local

chart on Γ belongs to Ψr
ph(Rn).
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Definition 6.2. A PsDO A ∈ Ψr
ph(Rn) is called elliptic on Γ if a0(x, ξ) 6= 0 for

each point x ∈ Γ and covector ξ ∈ T ∗xΓ\{0}. Here a0(x, ξ) is the principal symbol
of A, and T ∗xΓ is the cotangent space to Γ at x.

Let r ∈ R. Suppose a PsDO A ∈ Ψr
ph(Γ) to be elliptic on Γ.

By A+ we denote the PsDO formally adjoint to A with respect to the sesquilin-
ear form (·, ·)Γ. Since both A and A+ are elliptic on Γ, both the spaces

N := {u ∈ C∞(Γ) : Au = 0 on Γ },
N+ := { v ∈ C∞(Γ) : A+v = 0 on Γ }

are finite-dimensional [127, Sec. 8.2, Theorem 8.1].
Recall the following definition.

Definition 6.3. Let X and Y be Banach spaces. The bounded linear operator
T : X → Y is said to be Fredholm if its kernel kerT and co-kernel cokerT :=
Y/ T (X) are finite-dimensional. The number indT := dim kerT − dim cokerT is
called the index of the Fredholm operator T .

If the operator T : X → Y is Fredholm, then its range T (X) is closed in Y ;
see, e.g., [46, Sec. 19.1, Lemma 19.1.1].

Theorem 6.4. Let s ∈ R and ϕ ∈ M. For the elliptic PsDO A, the operator
(6.1) is Fredholm, has the kernel N and the range

A(Hs,ϕ(Γ)) =
{
f ∈ Hs−r,ϕ(Γ) : (f, v)Γ = 0 for all v ∈ N+

}
. (6.2)

The index of the operator (6.1) is equal to dimN − dimN+ and independent of
s and ϕ.

Theorem 6.4 is well known in the Sobolev case of ϕ ≡ 1; see, e.g., [46, Sec.
19.2, Theorem 19.2.1]. For an arbitrary ϕ ∈M, we deduce this theorem from the
Sobolev case with the help of the interpolation. Indeed, consider the bounded
Fredholm operators A : Hs∓1(Γ) → Hs∓1−r(Γ). By applying Theorem 5.7, we
have the bounded operator

A : Hs,ϕ(Γ) = [Hs−1(Γ), Hs+1(Γ)]ψ → [Hs−1−r(Γ), Hs+1−r(Γ)]ψ = Hs−r,ϕ(Γ).

Here ψ is the interpolation parameter defined by the formula (3.8) with ε =
δ = 1. This operator has the properties stated in Theorem 6.4 because of the
next proposition.

Proposition 6.5. Let X = [X0, X1] and Y = [Y0, Y1] be admissible couples of
Hilbert spaces, and a linear mapping T be given on X0. Suppose we have the
Fredholm bounded operators T : Xj → Yj, with j = 0, 1, that possess the common
kernel and the common index. Then, for an arbitrary interpolation parameter
ψ ∈ B, the bounded operator T : Xψ → Yψ is Fredholm, has the same kernel and
the same index, moreover its range T (Xψ) = Yψ ∩ T (X 0).

This proposition was proved by G. Geymonat [31, p. 280, Proposition 5.2]
for arbitrary interpolation functors given on the category of couples of Banach
spaces. The proof for Hilbert spaces is analogous.
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If both the spaces N and N+ are trivial, then the operator (6.1) is a homeo-
morphism. Generally, the index of (6.1) is equal to zero provided that dim Γ ≥ 2
(see [10] and [7, Sec. 2.3 f]). In the case where dim Γ = 1, the index can be
nonzero. If A is a differential operator, then the index is always zero.

The Fredholm property of A implies the following a priory estimate.

Theorem 6.6. Let s ∈ R, ϕ ∈M, and σ < s. Then

‖u‖Hs,ϕ(Γ) ≤ c
(
‖Au‖Hs−r,ϕ(Γ) + ‖u‖Hσ,ϕ(Γ)

)
for all u ∈ Hs,ϕ(Γ);

here the number c > 0 is independent of u.

We get the above implication if we use the compactness of the embedding
Hs,ϕ(Γ) ↪→ Hσ,ϕ(Γ) for σ < s and apply the following proposition [7, Sec. 2.3,
Theorem 2.3.4].

Proposition 6.7. Let X, Y , and Z be Banach spaces. Suppose that the compact
embedding X ↪→ Z is valid, and a bounded linear operator T : X → Y is given.
Then kerT is finite-dimensional and T (X) is closed in Y if and only if there
exists a number c > 0 such that

‖u‖X ≤ c ( ‖Tu‖Y + ‖u‖Z ) for all u ∈ X.

Now we study a local smoothness of a solution to the elliptic equation Au = f .
Let Γ0 be an nonempty open set on the manifold Γ, and define

Hs,ϕ
loc (Γ0) :=

{
f ∈ D′(Γ) : χ f ∈ Hs,ϕ(Γ), ∀ χ ∈ C∞(Γ), suppχ ⊆ Γ0

}
. (6.3)

Theorem 6.8. Let u ∈ D′(Γ) be a solution to the equation Au = f on Γ0 with
f ∈ Hs,ϕ

loc (Γ0) for some s ∈ R and ϕ ∈M. Then u ∈ Hs+r,ϕ
loc (Γ0).

The special case when Γ0 = Γ (global smoothness) follows from Theorem 6.4.
Indeed, using (6.2) we can write f = Av for some v ∈ Hs+r,ϕ(Γ), whence u−v ∈ N
and u ∈ Hs+r,ϕ(Γ). In general, we deduce Theorem 6.8 from this case reasoning
similar to the proof of Theorem 4.4.

If we bring Theorems 6.8 and 5.6 iii) together, then we get the following suffi-
cient condition for the solution u to have continuous derivatives of the prescribed
order on Γ0. Recall that n := dim Γ.

Theorem 6.9. Let u ∈ D′(Γ) be a solution to the equation Au = f on Γ0, with

f ∈ Hk−r+n/2,ϕ
loc (Γ0) for some integer k ≥ 0 and function parameter ϕ ∈ M. If ϕ

satisfies (3.6), then u ∈ Ck(Γ0).

Here it is important that the condition (3.6) not only is sufficient for u to
belong to Ck(Γ0) but also is necessary on the class of all the considered solutions
u.

6.2. The equivalent norms induced by elliptic operators. Let r > 0, and
a PsDO A ∈ Ψr

ph(Γ) be elliptic on Γ. We may consider A as a closed unbounded
operator on L2(Γ) with the domain Hr(Γ); see, e.g., [7, Sec. 2.3, Theorem 2.3.5].
Suppose the operator A to be positive in L2(Γ). Then A is self-adjoint in L2(Γ)
[7, Sec. 2.3, Theorem 2.3.7].
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For s ∈ R and ϕ ∈M, we set

ϕs,r(t) := ts/rϕ(t1/r) for t ≥ 1, and ϕs,r(t) := ϕ(1) for 0 < t < 1.

The operator ϕs,r(A) is regarded as the Borel function ϕs,r of the positive self-
adjoint operator A in L2(Γ). Consider the norm

f 7→ ‖ϕs,r(A)f‖L2(Γ), f ∈ C∞(Γ). (6.4)

Theorem 6.10. Let s ∈ R and ϕ ∈ M. The norm in the space Hs,ϕ(Γ) is
equivalent to the norm (6.4) on the set C∞(Γ). Thus Hs,ϕ(Γ) is the completion
of C∞(Γ) with respect to the norm (6.4).

The proof of this theorem is quite similar to the reasoning we did to demon-
strate the equivalence of Definitions 5.2 and 5.3.

If Hs,ϕ(Γ) ↪→ L2(Γ), then Theorem 6.10 entails the following.

Corollary 6.11. Let s ≥ 0 and ϕ ∈M. In the case where s = 0 we suppose that
the function 1/ϕ is bounded in a neighbourhood of ∞. Then the space Hs,ϕ(Γ)
coincides with the domain of the operator ϕs,r(A), and the norm in the space
Hs,ϕ(Γ) is equivalent to the graphics norm of ϕs,r(A).

It is useful to have an analog of Theorem 6.10 formulated in terms of sequences.
For this purpose, we recall some spectral properties of the operator A; see, e.g.,
[7, Sec. 6.1] or [127, Sec. 8.3 and 15.2].

There is an orthonormal basis (hj)
∞
j=1 of L2(Γ) formed by eigenfunctions hj ∈

C∞(Γ) of the operator A. Let λj > 0 is the eigenvalue corresponding to hj; the
enumeration is such that λj ≤ λj+1. Then the spectrum of A coincides with the
set {λ1, λ2, λ3, . . .} of all eigenvalues of A, and the asymptotics formula holds:
λj ∼ c j r/n as j →∞. Each distribution f ∈ D′(Γ) is expanded into the Fourier
series

f =
∞∑
j=1

cj(f)hj (6.5)

convergent in D′(Γ); here cj(f) := (f, hj)Γ are the Fourier coefficients of f .

Theorem 6.12. Let s ∈ R and ϕ ∈ M. Then the next equality of spaces with
equivalence of norms in them holds:

Hs,ϕ(Γ) =
{
f ∈ D′(Γ) :

∞∑
j=1

j 2s/n ϕ2(j 1/n) |cj(f)|2 <∞
}
, (6.6)

‖f‖Hs,ϕ(Γ) �
( ∞∑

j=1

j 2s/n ϕ2(j 1/n) |cj(f)|2
)1/2

. (6.7)

This theorem follows from Theorem 6.10 since

ϕs,r(A) f =
∞∑
j=1

ϕs,r(λj) cj(f)hj (convergence in L2(Γ))

for each function f from the domain of the operator ϕs,r(A). Here ϕs,r(λj) �
j s/nϕ(j 1/n) with integers j ≥ 1 in view of the asymptotics formula mentioned
above. By applying Parseval’s equality we get (6.7) and then can deduce (6.6).
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Corollary 6.13. Suppose f ∈ Hs,ϕ(Γ), then the series (6.5) converges to f in
the space Hs,ϕ(Γ).

This is a simple consequence of (6.7).

Example 6.14. Let Γ be a unit circle and A := 1 − d2/dt2, where t sets the
natural parametrization on Γ. The eigenfunctions hj(t) := (2π)−1eijt, j ∈ Z, of
A form an orthonormal basis in L2(Γ), with λj := 1 + j 2 being the corresponding
eigenvalues. Therefore the equivalence (6.7) becomes

‖f‖Hs,ϕ(Γ) � ‖ϕs,2(A)f‖L2(Γ) =
( ∞∑
j=−∞

(1 + j 2)s ϕ2((1 + j 2)1/2) |cj(f)|2
)1/2

.

Note that we can chose the basis formed by the real-valued eigenfunctions h0(t) :=
(2π)−1, hj(t) := π−1 cos jt, and h−j(t) := π−1 sin jt, with integral j ≥ 1. Then

‖f‖2
Hs,ϕ(Γ) � |a0(f)|2 +

∞∑
j=1

j 2s ϕ2(j)
(
|aj(f)|2 + |bj(f)|2

)
,

where a0(f), aj(f), and bj(f) are the Fourier coefficients of f with respect to
these eigenfunctions. In the considered case, Hs,ϕ(Γ) is closely related to the
spaces of periodic functions considered by A.I. Stepanets [130, Part I, Ch. 3, Sec.
7.1].

7. Applications to spectral expansions

In this section, we investigate the convergence of expansions in eigenfunctions
of normal (in particular, self-adjoint) elliptic PsDOs given on a compact smooth
manifold. Using the refined Sobolev scale, we find new sufficient conditions for
the convergence almost everywhere; they are expressed in constructive terms of
regularity of functions. We also give a criterion for convergence in the metrics of
Ck on the classes being Hörmander spaces. Beforehand let us recall some classical
results concerning the convergence almost everywhere of arbitrary orthogonal
series. The results will be used below.

7.1. The classical results. In this subsection, Γ is an arbitrary set with a fi-
nite measure µ. Suppose that (hj)

∞
j=1 is an orthonormal system of functions in

L2(Γ) := L2(Γ, dµ), generally, complex-valued. The following proposition is a
general version of the well-known Menshov-Rademacher convergence theorem.

Theorem 7.1. Let a sequence of complex numbers (aj)
∞
j=1 be such that

∞∑
j=2

|aj|2 log2 j <∞. (7.1)

Then the series
∞∑
j=1

aj hj(x) (7.2)

converges almost everywhere on Γ.



236 V.A. MIKHAILETS, A.A. MURACH

This theorem was proved independently by D.E. Menshov [68] and H. Rad-
emacher [112] in the classical case where Γ is a bounded interval on R, µ is
the Lebesgue measure, and the functions hj are real-valued. The proof of the
Menshov–Rademacher theorem given in [51, Ch. 8, § 1] remains valid in the
general situation that we consider (apparently, the most general case is treated
in [89]).

It is important that the Menshov–Rademacher theorem is precise. Menshov
[68] gave an example of an orthonormal system (hj)

∞
j=1 in L2((0, 1)) for which

Theorem 7.1 will not be true if one replaces, in (7.1), the sequence (log2 j)∞j=1 by

any increasing sequence of positive numbers ωj = o(log2 j) with j → ∞. This
result is set forth, e.g., in the monograph [51, Ch. 8, § 1, Theorem 2].

Note that, for series (7.2) with coefficients subject to (7.1), the convergence al-
most everywhere need not be unconditional; see, e.g., [51, Ch. 8, § 2]. Recall that
a series of functions is said to be unconditionally convergent almost everywhere
on a set if it remains convergent almost everywhere on the set after arbitrary
permutation of its terms (the null measure set of divergence may vary.) The
following proposition is a general version of the Orlicz theorem on unconditional
convergence of orthogonal series of functions.

Theorem 7.2. Let a sequence of complex numbers (aj)
∞
j=1 and increasing se-

quence of positive numbers (ωj)
∞
j=1 satisfy the conditions

∞∑
j=2

|aj|2 (log2 j)ωj <∞,
∞∑
j=2

1

j (log j)ωj
<∞.

Then the series (7.2) converges unconditionally almost everywhere on Γ.

This equivalent statement of W. Orlicz’ theorem [103] was given by P.L. Ulya-
nov [136, § 4]; they considered the classical case mentioned above. In our (more
general) case, Theorem 6.2 follows from K. Tandori’s theorem [131], which re-
mains valid for arbitrary measure space [88, 89]. As Tandori proved [131], the
Orlicz theorem is the best possible in the sense that its condition on the sequence
(ωj)

∞
j=1 cannot be weaken.

7.2. The convergence of spectral expansions. Further, Γ is a closed infin-
itely smooth oriented manifold, and n = dim Γ. A C∞-density dx is given on Γ
and defines the finite measure there. Let a PsDO A ∈ Ψr

ph(Γ), with r > 0, be ellip-
tic on Γ. Suppose that A is a normal (unbounded) operator on L2(Γ) = L2(Γ, dx).
Let (hj)

∞
j=1 be a complete orthonormal system of eigenfunctions of this operator.

They are enumerated so that |λj| ≤ |λj+1| for j = 1, 2, 3, . . ., where Ahj = λjhj.
For an arbitrary function f ∈ L2(Γ), we consider its expansion into the Fourier
series (6.5) with respect to the system (hj)

∞
j=1.

We say that the series (6.5) converges on a function class X(Γ) in the indicated
sense if, for every function f ∈ X(Γ), the series converges to f in the indicated
manner.

We investigate the convergence almost everywhere of the spectral expansion
(6.5) with the help of Theorems 6.12, 7.1, and 7.2. Let log∗ t := max{1, log t} for
t ≥ 1.



REFINED SOBOLEV SCALE, INTERPOLATION, AND ELLIPTIC PROBLEMS 237

Theorem 7.3. The series (6.5) converges almost everywhere on Γ on the class
H0,log∗(Γ).

Indeed, if A is a positive operator on L2(Γ), then by Theorem 6.12 we have

|c1(f)|2 +
∞∑
j=2

|cj(f)|2 log2 j � ‖f‖2
H0,log∗ (Γ) <∞ for f ∈ H0,log∗(Γ).

This and Theorem 7.1 yields Theorem 7.3. In general, if A is a normal operator,
we should exchange A for the positive elliptic PsDO B := 1 + A∗A in our con-
sideration and use the fact that (hj)

∞
j=1 is a complete system of eigenfunctions of

B.
Similarly, if we bring together Theorems 6.12 and 7.2, we will get the following

result.

Theorem 7.4. Let an increasing function ϕ ∈M be such that
∞∫

2

dt

t (log t)ϕ2(t)
<∞.

Then the series (6.5) converges unconditionally almost everywhere on Γ on the
class H0,ϕ log∗(Γ).

Note that the applying of Hörmander spaces permits us to use the conditions
of Theorems 7.1 and 7.2 in an exhaustive manner. If we remain in the framework
of the Sobolev scale, we deduce that the series (6.5) converges (unconditionally)
almost everywhere on Γ on the class H0+(Γ) :=

⋃
ε>0H

ε(Γ). The result is far
rougher than those formulated in Theorems 7.3 and 7.4. In the special case of
A = ∆Γ, this result was proved by C. Meaney [67]. (As Meaney noted, it has ”all
the qualities of a folk theorem”.)

To compete this section we give a criterion for the convergence of the spectral
expansions in the metrics of Ck(Γ) on the classes Hs,ϕ(Γ).

Theorem 7.5. Let an integer k ≥ 0 and function ϕ ∈ M be given. The series
(6.5) converges in Ck(Γ) on the class Hk+n/2,ϕ(Γ) if and only if ϕ satisfies (3.6).

This theorem results from Corollary 6.13 and Theorem 5.6 iii).
Note that the convergence conditions in Theorems 7.3, 7.4, and 7.5 are given

in constructive terms of regularity of functions. The regularity properties can be
determined locally on Γ according to Definition 5.1.

8. Hörmander spaces over Euclidean domains

In the next sections, we will consider some applications of Hörmander spaces
to elliptic boundary problems in a bounded domain Ω ⊂ Rn. For this purpose we
need the Hörmander spaces that consists of distributions given in Ω. The spaces
of distributions supported on the closure Ω of the domain Ω is also of use. These
spaces are constructed from the Hörmander spaces over Rn in the standard way
[138, Ch. 1, § 3]. We are interested in the Hörmander spaces that form the refined
Sobolev scales over Ω and Ω. In this section, we give the definitions of these spaces
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and consider their properties, among them the interpolation properties being of
great importance for us. We also study a connection between the refined Sobolev
scales over Ω and its boundary (the trace theorems) and introduce riggings of
L2(Ω) with some Hörmander spaces.

8.1. The definitions. Let s ∈ R and ϕ ∈M.

Definition 8.1. Suppose that Q is a nonempty closed set in Rn. The linear
space Hs,ϕ

Q (Rn) is defined to consist of the distributions u ∈ Hs,ϕ(Rn) such that
suppu ⊆ Q. The space Hs,ϕ

Q (Rn) is endowed with the inner product and norm
from Hs,ϕ(Rn).

The space Hs,ϕ
Q (Rn) is complete (i.e., Hilbert) because of the continuous em-

bedding of the Hilbert space Hs,ϕ(Rn) into S ′(Rn).

Definition 8.2. Suppose that Ω is a nonempty open set in Rn. The linear space
Hs,ϕ(Ω) is defined to consist of the restrictions v = u �Ω of all the distributions
u ∈ Hs,ϕ(Rn) to Ω. The space Hs,ϕ(Ω) is endowed with the norm

‖v‖Hs,ϕ(Ω) := inf
{
‖u‖Hs,ϕ(Rn) : u ∈ Hs,ϕ(Rn), v = u in Ω

}
. (8.1)

By Definition 8.2, Hs,ϕ(Ω) is a factor space Hs,ϕ(Rn)/Hs,ϕ

Ω̂
(Rn), where Ω̂ :=

Rn \Ω. Hence, the space Hs,ϕ(Ω) is Hilbert; the norm 8.1 is induced by the inner
product (

v1, v2

)
Hs,ϕ(Ω)

:=
(
u1 − Πu1, u2 − Πu2

)
Hs,ϕ(Rn)

.

Here uj ∈ Hs,ϕ(Rn), uj = vj in Ω for j = 1, 2, and Π is the orthogonal projector
of the space Hs,ϕ(Rn) onto the subspace Hs,ϕ

Ω̂
(Rn).

Both the spaces Hs,ϕ
Q (Rn) and Hs,ϕ(Ω) are separable. In the Sobolev case of

ϕ ≡ 1 we will omit the index ϕ in the designations of these and other Hs,ϕ-type
spaces.

In what follows, we suppose that Ω is a bounded domain in Rn with n ≥ 2, and
its boundary ∂Ω is an infinitely smooth closed manifold of the dimension n− 1.
(Note that domains are defined to be an open and connected sets.) Consider the
classes of Hörmander spaces{

Hs,ϕ(Ω) : s ∈ R, ϕ ∈M
}

and
{
Hs,ϕ

Ω
(Rn) : s ∈ R, ϕ ∈M

}
. (8.2)

The spaceHs,ϕ(Ω) consists of distributions given in Ω, whereas the spaceHs,ϕ

Ω
(Rn)

consists of distributions supported on Ω.

Definition 8.3. The classes appearing in (8.2) are called the refined Sobolev
scales over Ω and Ω respectively.

8.2. The interpolation properties. The scales (8.2) have the interpolation
properties analogous to those the refined Sobolev scale over Rn possesses.

Theorem 8.4. Let a function ϕ ∈M and positive numbers ε, δ be given, and let
the interpolation parameter ψ ∈ B be defined by (3.8). Then, for each s ∈ R, the
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following equalities of spaces with equivalence of norms in them hold:[
Hs−ε(Ω), Hs+δ(Ω)

]
ψ
= Hs,ϕ(Ω) (8.3)[

Hs−ε
Ω

(Rn), Hs+δ

Ω
(Rn)

]
ψ

= Hs,ϕ

Ω
(Rn). (8.4)

We will deduce this theorem from Theorem 3.8 with the help of the following
result concerning the interpolation of subspaces and factor spaces.

Proposition 8.5. Let X = [X0, X1] be an admissible couple of Hilbert spaces, and
Y0 be a subspace in X0. Then Y1 := X1∩Y0 is a subspace in X1. Suppose that there
exists a linear mapping P which is a projector of Xj onto Yj for j = 0, 1. Then
the couples [Y0, Y1] and [X0/Y0, X1/Y1] are admissible, and, for each interpolation
parameter ψ ∈ B, the following equalities of spaces up to equivalence of norms in
them hold:

[Y0, Y1]ψ = Xψ ∩ Y0, [X0/Y0, X1/Y1]ψ = Xψ/(Xψ ∩ Y0).

Here Xψ ∩ Y0 is a subspace in Xψ.

Recall that, by definition, subspaces of a Hilbert space are closed, and projec-
tors on subspaces are, generally, nonorthogonal. Proposition 8.5 was proved in
H. Triebel’s monograph [133, Sec. 1.17] for arbitrary interpolation functors given
on the category of couples of Banach spaces. The proof for Hilbert spaces is quite
similar.

Let us explain how to prove Theorem 8.4. It is known [133, Sec. 2.10.4,
Theorem 2] that, for each integer k > 0, there exists a linear mapping Pk,Q which
is a projector of every space Hσ(Rn), with |σ| < k, onto the subspace Hσ

Q(Rn),
where Q is a closed half-space in Rn. Using the local coordinates methods and
Pk,Q, we can construct a linear mapping that projects Hσ(Rn) onto Hσ

Ω̂
(Rn) (or

onto Hσ
Ω

(Rn)) with |σ| < k. Now Theorem 8.4 follows from Theorem 3.8 and
Proposition 8.5.

Reasoning as above we can also deduce analogs of Theorem 3.9 (on interpo-
lation) for the refined Sobolev scale given over Ω or Ω. We will not formulate
them.

8.3. Embeddings and other properties. Let us consider some other impor-
tant properties of scales (8.2). Among these properties, there are the following
embeddings.

Theorem 8.6. Let s ∈ R and ϕ, ϕ1 ∈M. The next assertions are true:

i) The set C∞( Ω ) is dense in Hs,ϕ(Ω), whereas the set C∞0 (Ω) is dense in
Hs,ϕ

Ω
(Rn).

ii) For each ε > 0, the dense compact embeddings hold:

Hs+ε, ϕ1(Ω) ↪→ Hs,ϕ(Ω), Hs+ε, ϕ1

Ω
(Rn) ↪→ Hs,ϕ

Ω
(Rn). (8.5)

iii) The function ϕ/ϕ1 is bounded in a neighbourhood of +∞ if and only if
the embeddings (8.5) are valid for ε = 0. The embeddings are continuous
and dense. They are compact if and only if ϕ(t)/ϕ1(t)→ 0 as t→ +∞.
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iv) For every fixed integer k ≥ 0, the inequality (3.6) is equivalent to the
embedding Hk+n/2,ϕ(Ω) ↪→ Ck( Ω ). This embedding is compact.

Assertion i) can be deduced directly from the Sobolev case of ϕ ≡ 1 with the
help of the interpolation Theorem 8.4. Assertions ii)–iv) follow from Theorem
3.7 with the exception of the statements on compactness. The compactness of
the embeddings is a consequences of the boundedness of Ω and can be proved
similarly to the argument of Theorem 5.6. The general analogs of assertions
i)–iv) for the Hörmander inner product spaces parametrized by arbitrary weight
functions were proved by L.R. Volevich and B.P. Paneach in [138, § 3, 7, and 8].

Further we examine the properties that exhibit a relation between the refined
Sobolev scales over Ω and Ω. Denote by Hs,ϕ

0 (Ω) the closure of C∞0 (Ω) in Hs,ϕ(Ω).
We consider Hs,ϕ

0 (Ω) as a Hilbert space with respect to the inner product in
Hs,ϕ(Ω).

Theorem 8.7. Let s ∈ R and ϕ ∈M. The following assertions are true:

i) If s < 1/2, then C∞0 (Ω) is dense in Hs,ϕ(Ω), and therefore Hs,ϕ(Ω) =
Hs,ϕ

0 (Ω).
ii) If s > −1/2 and s + 1/2 /∈ Z, then the restriction mapping u → u � Ω,

u ∈ D′(Rn), establishes a homeomorphism of Hs,ϕ

Ω
(Rn) onto Hs,ϕ

0 (Ω).

iii) The spaces Hs,ϕ(Ω) and H
−s,1/ϕ
Ω

(Rn) are mutually dual with respect to the

inner product in L2(Ω).
iv) Suppose that s < 1/2 and s − 1/2 /∈ Z. Then the spaces Hs,ϕ(Ω) and

H
−s,1/ϕ
0 (Ω) are mutually dual, up to equivalence of norms, with respect to

the inner product in L2(Ω). Therefore the space Hs,ϕ(Ω) coincides, up
to equivalence of norms, with the factor space Hs,ϕ

Ω
(Rn)/Hs,ϕ

∂Ω (Rn) dual to

H
−s,1/ϕ
0 (Ω); i.e., Hs,ϕ(Ω) = {u�Ω : u ∈ Hs,ϕ

Ω
(Rn)}.

This theorem is known in the Sobolev case of ϕ ≡ 1; see, e.g., [133, Sec.
4.3.2 and 4.8]. In general, assertion i) follows from the Sobolev case in view of
Theorem 8.6 ii), where ϕ1 ≡ 1; assertion ii) is deduced with the help of the
interpolation Theorem 8.4; assertion iii) results from Theorem 3.7 iv); finally,
assertion iv) follows from ii) and iii). To deduce assertion ii) we need, besides
(8.4), the interpolation formula[

Hs−ε
0 (Ω), Hs+δ

0 (Ω)
]
ψ
= Hs,ϕ(Ω) ∩Hs−ε

0 (Ω) = Hs,ϕ
0 (Ω). (8.6)

Here ε, δ are positive numbers such that [s − ε, s + δ] is disjoint from Z − 1/2,
and ψ is the interpolation parameter defined by (3.8). Formula (8.6) follows
from (8.3) and Proposition 8.5 (interpolation of subspaces) because there exist a
linear mapping that projects Hσ(Ω) onto Hσ

0 (Ω) if σ runs over [s− ε, s+ δ]. The
mapping is constructed in [133, Lemma 5.4.4 with regard for Theorem 4.7.1].

Note that if s is half-integer, then assertions ii) and iv) fail to hold at least for
ϕ ≡ 1 [133, Sec. 4.3.2, Remark 2].

Remark 8.8. In the literature, there are three different definitions of the Sobolev
space of negative order s over Ω. The first of them coincides with Definition 8.2
for ϕ ≡ 1 ([35, Sec. A.4] and [133, Sec. 4.2.1]). The second defines this space as
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the dual of H−s0 (Ω) ([30, Ch. II, § 1, Sec. 5] and [61, Ch. 1, Sec. 12.1]), whereas
the third defines it as the dual of H−s(Ω) ([13, Ch. XIV, § 3] and [118, Sec. 1.10]),
the both duality being with respect to the inner product in L2(Ω). By Theorem
8.7 iii) and iv), the first and second definitions are tantamount if (and only if)
s−1/2 /∈ Z, but the third gives Hs

Ω
(Rn) and, therefore, are not equivalent to them

for s < −1/2. If −1/2 < s < 0, then all the three definitions are tantamount in
view of Theorem 8.7 i) and ii). They are suitable in various situations appearing
in the theory of elliptic boundary problems. The situations will occur below
when we will investigate these problems in the refined Sobolev scale. We chose
Definition 8.2 to introduce the Hörmander spaces over Ω because it is universal;
i.e., it allows us to define the space X(Ω) ↪→ D′(Ω) if we have an arbitrary
function Banach space X(Rn) ↪→ D′(Rn) instead of Hs,ϕ(Rn) (embeddings being
continuous).

8.4. Traces. We now study the traces of functions f ∈ Hs,ϕ(Ω) and their normal
derivatives on the boundary ∂Ω. The traces belong to certain spaces from the
refined Sobolev scale on ∂Ω. This scale was defined in Section 5.1 because ∂Ω is
a closed infinitely smooth oriented manifold (of dimension n−1). Further we use
the notation Dν := i ∂/∂ν, where ν is the field of unit vectors of inner normals
to the boundary ∂Ω; this field is given in a neighbourhood of ∂Ω. (For us it will
be more suitable to use Dν instead of ∂/∂ν; see Sec. 11 below.)

Theorem 8.9. Let an integer r ≥ 1, real number s > r − 1/2, and function
ϕ ∈M be given. Then the mapping

Rr : u 7→
(
(Dk−1

ν u)�∂Ω : k = 1, . . . , r
)
, u ∈ C∞( Ω), (8.7)

extends uniquely to a continuous linear operator

Rr : Hs,ϕ(Ω)→
r⊕

k=1

Hs−k+1/2, ϕ(∂Ω) =: Hr
s,ϕ(∂Ω).

The operator (8.7) has a right inverse continuous linear operator Υr : Hr
s,ϕ(∂Ω)→

Hs,ϕ(Ω) such that the mapping Υr does not depend on s and ϕ.

Theorem 8.9 is known in the Sobolev case of ϕ ≡ 1; see, e.g., [61, Ch. 1, Sec.
9.2] or [133, Sec. 4.7.1]. For arbitrary ϕ ∈M, the theorem follows from this case
by the interpolation Theorems 5.7 and 8.4.

It useful to note that

Hs,ϕ
0 (Ω) =

{
u ∈ Hs,ϕ(Ω) : Rru = 0

}
if r − 1/2 < s < r + 1/2; (8.8)

here the integer r ≥ 1. This formula is known in the ϕ ≡ 1 case, the equality
r+ 1/2 = s being possible; see, e.g., [61, Ch. 1, Sec. 11.4] or [133, Sec. 4.7.1]. In
general, (8.8) follows from the Sobolev case by (8.6).

If s > 1/2 and ϕ ∈ M, then, by Theorem 8.9, a trace u � ∂Ω := R1u of
each function u ∈ Hs,ϕ(Ω) on the boundary ∂Ω exists and belongs to the space
Hs−1/2,ϕ(∂Ω). Moreover, we get the following description of this space in terms
of traces. Put σ := s− 1/2.
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Corollary 8.10. Let σ > 0 and ϕ ∈M. Then

Hσ,ϕ(∂Ω) = {g := u�∂Ω : u ∈ Hσ+1/2,ϕ(Ω)},
‖g‖Hσ,ϕ(∂Ω) � inf

{
‖u‖Hσ+1/2,ϕ(Ω) : u�∂Ω = g

}
.

If s < 1/2 and ϕ ∈M, then the trace mapping

R1 : u 7→ u�∂Ω, u ∈ C∞( Ω), (8.9)

has not a continuous extension R1 : Hs,ϕ(Ω)→ D′(∂Ω). Indeed, if this extension
existed, we would get, by Theorem 8.7 i), the equality R1u = 0 on ∂Ω for each
u ∈ Hs,ϕ(Ω). But this equality fails to hold, e.g., for the function u ≡ 1.

In the limiting case of s = 1/2, we have the next criterion for the trace operator
R1 to be well defined on H1/2,ϕ(Ω).

Theorem 8.11. Let ϕ ∈M. The following assertions are true:

i) The function ϕ satisfies (3.6) if an only if the mapping (8.9) is a continu-
ous operator from the space C∞( Ω) endowed with the topology of H1/2,ϕ(Ω)
to the space D′(∂Ω).

ii) Moreover, if ϕ satisfies (3.6), then the mapping (8.9) extends uniquely to
a continuous linear operator R1 : H1/2,ϕ(Ω)→ H0,ϕ0(∂Ω), where ϕ0 ∈M
is given by the formula

ϕ0(τ) :=

( ∞∫
τ

d t

t ϕ2(t)

)−1/2

for τ ≥ 1. (8.10)

This operator has a right inverse continuous linear operator

Υ1,ϕ : H0,ϕ0(∂Ω)→ H1/2,ϕ(Ω),

the map Υ1,ϕ depending on ϕ.

Theorem 8.11 follows from the trace theorems proved by L. Hörmander [43,
Sec. 2.2, Theorem 2.2.8] and L.R. Volevich, B.P. Paneah [138, § 6, Theorems 6.1
and 6.2]. Indeed, consider a Hörmander space Bp,µ(Rn) for some weight function
µ, and let U be a neighbourhood of the origin in Rn. We write points x ∈ Rn as
x = (x′, xn) with x′ ∈ Rn−1 and xn ∈ R. According to the trace theorems, the
condition

ν−2(ξ ′) :=

∞∫
−∞

µ−2(ξ′, ξn) dξn <∞ for all ξ′ ∈ Rn−1 (8.11)

holds true if and only if the mapping u(x′, xn) → u(x′, 0) is a continuous opera-
tor from the space C∞0 (U) endowed with the topology of B2,µ(Rn) to the space
D′(Rn−1). (In (8.11) the phrase ‘for all’ can be replaced with ‘for a certain’.)
Moreover, if (8.11) holds and U = Rn, then this mapping extends by continuity
to a bounded operator from B2,µ(Rn) to B2,ν(Rn−1); the operator has a linear
bounded right-inverse. Whence, by setting µ(ξ) := 〈ξ〉1/2ϕ(〈ξ〉) and observing
that (8.11) ⇔ (3.6) with ν(ξ′) � ϕ0(〈ξ′〉), we can deduce Theorem 8.11 with the
help of the local coordinates method.



REFINED SOBOLEV SCALE, INTERPOLATION, AND ELLIPTIC PROBLEMS 243

Let us note that the domain Ω is a special case of an infinitely smooth com-
pact manifold with boundary. The refined Sobolev scale over such a manifold
was introduced and investigated by authors in [77, Sec. 3]. Specifically, the in-
terpolation Theorem 8.4 and the traces Theorems 8.9 (for r = 1) and 8.11 were
proved.

8.5. Riggings. We recall the important notion of a Hilbert rigging, which has
various applications, specifically, in the theory of elliptic operators; see, e.g., [11,
Ch. I, § 1] and [13, Ch. XIV, § 1]. Let H and H+ be Hilbert spaces such that the
dense continuous embedding H+ ↪→ H holds. Denote by H− the completion of
H with respect to the norm

‖f‖H− := sup

{
|(f, u)H |
‖u‖H+

: u ∈ H+

}
, f ∈ H.

It is known the following: this norm and the space H− are Hilbert; the spaces
H+ and H− are mutually dual with respect to the inner product in H; the dense
continuous embeddings H+ ↪→ H ↪→ H− hold.

Definition 8.12. The chain H− ←↩ H ←↩ H+ is said to be a (Hilbert) rigging
of H with H+ and H−. In this rigging, H−, H and H+ are called negative, zero,
and positive spaces respectively.

According to Theorem 8.7 iii) we have the following rigging of L2(Ω) with some
Hörmander spaces:

H
−s,1/ϕ
Ω

(Rn)←↩ L2(Ω)←↩ Hs,ϕ(Ω), s > 0, ϕ ∈M. (8.12)

Here we naturally identify L2(Ω) withH0
Ω

(Rn) (extending the functions f ∈ L2(Ω)
by zero).

In some applications to elliptic problems, it is useful to have a scale consisting
of both negative and positive spaces in (8.12). For this purpose we introduce the
uniform notation

Hs,ϕ,(0)(Ω) :=

{
Hs,ϕ(Ω) for s ≥ 0,

Hs,ϕ

Ω
(Rn) for s < 0,

(8.13)

with ϕ ∈M, and form the scale of Hilbert spaces{
Hs,ϕ,(0)(Ω) : s ∈ R, ϕ ∈M

}
. (8.14)

In the Sobolev case of ϕ ≡ 1 the rigging (8.12) and the scale of spaces
Hs,(0)(Ω) := Hs,1,(0)(Ω), s ∈ R, were used by Yu.M. Berezansky, S.G. Krein,
Ya.A. Roitberg [11, 12, 13, 114] and M. Schechter [122] in the elliptic theory.
(They also considered the Banach Lp-analogs of these spaces with 1 < p < ∞
and denoted negative spaces in the same manner as positive ones but with nega-
tive index s, e.g. Hs(Ω); see Remark 8.8 above.)

Properties of the scale (8.14) are inherited from the refined Sobolev scales over
Ω and Ω. Now we dwell on the properties that link negative and positive spaces
to each other.
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When dealing with the scale (8.14), it is suitable to identify each function
f ∈ C∞( Ω ) with its extension by zero

Of(x) :=

{
f(x) for x ∈ Ω,

0 for x ∈ Rn \ Ω.
(8.15)

The extension is a regular distribution belonging to Hs,ϕ

Ω
(Rn) for s < 0. Now the

set C∞( Ω ) is dense in every space Hs,ϕ,(0)(Ω) from (8.14) in view of Theorem 8.6
i). This allow us to consider the continuous embeddings of spaces pertaining to
(8.14) and viewed as the completions of the same linear manifold, C∞( Ω ), with
respect to different norms. (The general theory of such embeddings is in [13, Ch.
XIV, § 7]). So, by Theorem 8.6 ii) and formula (8.17) given below, we have the
dense compact embeddings in the scale (8.14):

Hs1,ϕ1,(0)(Ω) ↪→ Hs,ϕ,(0)(Ω), −∞ < s < s1 <∞ and ϕ, ϕ1 ∈M. (8.16)

Note that in the |s| < 1/2 case the spaces Hs,ϕ(Ω) and Hs,ϕ

Ω
(Rn) can be con-

sidered as completions of C∞0 (Ω) with respect to equivalent norms in view of
Theorem 8.7 i) and ii). Hence, up to equivalence of norms,

Hs,ϕ

Ω
(Rn) = Hs,ϕ,(0)(Ω) = Hs,ϕ(Ω) for |s| < 1/2, ϕ ∈M. (8.17)

It follows from this result and Theorem 8.7 iii) that the spaces Hs,ϕ,(0)(Ω) and
H−s,1/ϕ,(0)(Ω) are mutually dual with respect to the inner product in L2(Ω) for
every s ∈ R and ϕ ∈M, the duality being up to equivalence of norms if s = 0.

The scale (8.14) has an interpolation property analogous to that stated in
Theorem 8.4.

Theorem 8.13. Under the conditions of Theorem 8.4 we have[
Hs−ε,(0)(Ω), Hs+δ,(0)(Ω)

]
ψ
= Hs,ϕ,(0)(Ω) for all s ∈ R (8.18)

up to equivalence of norms in the spaces.

If s−ε > −1/2 or s+ δ < 1/2, then (8.18) holds by Theorem 8.4 and (8.17). If
ϕ ≡ 1, then (8.18) is proved in [61, Ch. 1, Sec. 12.5, Theorem 12.5]. The general
case can be reduced to the previous ones by the reiterated interpolation.

9. Elliptic boundary-value problems on the one-sided scale

In Sections 9–12, we will investigate regular elliptic boundary-value problems
on various scales of Hörmander spaces. We begin with the one-sided refined
Sobolev scale consisting of the spaces Hs,ϕ(Ω) for sufficiently large s.

9.1. The statement of the boundary-value problem. Recall that Ω is a
bounded domain in Rn with n ≥ 2, and its boundary ∂Ω is an infinitely smooth
closed manifold of the dimension n − 1. Let ν(x) denote the unit vector of the
inner normal to ∂Ω at a point x ∈ ∂Ω.
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We consider the following boundary-value problem in Ω:

Lu ≡
∑
|µ|≤2q

lµ(x)Dµu = f in Ω, (9.1)

Bj u ≡
∑
|µ|≤mj

bj,µ(x)Dµu = gj on ∂Ω, j = 1, . . . , q. (9.2)

Here L = L(x,D), x ∈ Ω, and Bj = Bj(x,D), x ∈ ∂Ω, are linear partial differen-
tial expressions with complex-valued coefficients lµ ∈ C∞( Ω ) and bj,µ ∈ C∞(∂Ω).
We suppose that ordL = 2q is an even positive number and ordBj = mj ≤ 2q−1
for all j = 1, . . . , q. Set B := (B1, . . . , Bq) and m := max {m1, . . . ,mq}.

Note that we use the standard notation in 9.1 and 9.2; namely, for a multi-
index µ = (µ1, . . . , µn) we let |µ| := µ1 + . . . + µn and Dµ := Dµ1

1 . . . Dµn
n , with

Dk := i ∂/∂xk for k = 1, . . . , n and x = (x1, . . . , xn) ∈ Rn.

Lemma 9.1. Let s > m+ 1/2 and ϕ ∈M. Then the mapping

(L,B) : u→ (Lu,B1u, . . . , Bqu), u ∈ C∞( Ω ), (9.3)

extends uniquely to a continuous linear operator

(L,B) : Hs,ϕ(Ω)→ Hs−2q, ϕ(Ω)⊕
q⊕
j=1

Hs−mj−1/2, ϕ(∂Ω) =: Hs,ϕ(Ω, ∂Ω). (9.4)

Note the differential operator L maps Hs,ϕ(Ω) continuously into Hs−2g,ϕ(Ω)
for each real s, whereas the boundary differential operator Bj maps Hs,ϕ(Ω)
continuously into Hs−mj−1/2,ϕ(∂Ω) provided that s > mj + 1/2. This is well
known in the Sobolev case of ϕ ≡ 1 (see, e.g., [46, Sec. B.2]), whence the case
of an arbitrary ϕ ∈ M is got by the interpolation in view of Theorems 5.7 and
8.4. The mentioned continuity of Bj also results from the trace Theorem 8.9 (the
r = 1 case). If s ≤ m + 1/2, then Lemma 9.1 fails to hold (see Section 8.4). In
the limiting case of s = m + 1/2 an analog of the lemma is valid provided the
function ϕ satisfies (3.6) and we exchange the space Hs,ϕ(Ω, ∂Ω) for another (see
Section 9.3 below).

We will investigate properties of the operator (9.4) under the assumption that
the boundary-value problem (9.1), (9.2) is regular elliptic in Ω. Recall some
relevant notions; see, e.g., [30, Ch. III, § 6] or [61, Ch. 2, Sec. 1 and 2].

The principal symbols of the partial differential expressions L(x,D), with x ∈
Ω, and Bj(x,D), with x ∈ ∂Ω, are defined as follows:

L(0)(x, ξ) :=
∑
|µ|=2q

lµ(x) ξµ, B
(0)
j (x, ξ) :=

∑
|µ|=mj

bj,µ(x) ξµ.

They are homogeneous polynomials in ξ = (ξ1, . . . , ξn) ∈ Cn; here as usual ξµ :=
ξµ11 . . . ξµnn .

Definition 9.2. The boundary-value problem (9.1), (9.2) is said to be regular
(or normal) elliptic in Ω if the following conditions are satisfied:
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i) The expression L is proper elliptic on Ω; i.e., for each point x ∈ Ω and for
all linearly independent vectors ξ′, ξ′′ ∈ Rn, the polynomial L(0)(x, ξ′+τξ′′)
in τ ∈ C has q roots τ+

j (x; ξ′, ξ′′), j = 1, . . . , q, with positive imaginary
part and q roots with negative imaginary part, each root being taken the
number of times equal to its multiplicity.

ii) The system {B1, . . . , Bq} satisfies the Lopatinsky condition with respect
to L on ∂Ω; i.e., for an arbitrary point x ∈ ∂Ω and for each vector ξ 6= 0

tangent to ∂Ω at x, the polynomials B
(0)
j (x, ξ + τν(x)), j = 1, . . . , q, in τ

are linearly independent modulo
∏q

j=1

(
τ − τ+

j (x; ξ, ν(x))
)
.

iii) The system {B1, . . . , Bq} is normal; i.e., the orders mj are pairwise dis-

tinct, and B
(0)
j (x, ν(x)) 6= 0 for each x ∈ ∂Ω.

Remark 9.3. It follows from condition i) that L(0)(x, ξ) 6= 0 for each point x ∈ Ω
and nonzero vector ξ ∈ Rn, i.e. L is elliptic on Ω. If n ≥ 3, then the ellipticity
condition is equivalent to i). The equivalence also holds if n = 2 and all coefficients
of L are real-valued. Not more that there are various equivalent statements of
the Lopatinsky condition; see [8, Sec. 1.2 and 1.3].

Example 9.4. Let L satisfy condition i), and let Bju := ∂k+j−1u/∂νk+j−1, with
j = 1, . . . , q, for some k ∈ Z, 0 ≤ k ≤ q. Then the boundary-value problem (9.1),
(9.2) is regular elliptic. If k = 0, we have the Dirichlet boundary-value problem.

In what follows the boundary-value problem (9.1), (9.2) is supposed to be
regular elliptic in Ω.

To describe the range of the operator (9.4) we consider the boundary-value
problem

L+v ≡
∑
|µ|≤ 2q

Dµ(lµ(x) v) = ω in Ω, (9.5)

B+
j v = hj on ∂Ω, j = 1, . . . , q, (9.6)

that is formally adjoint to the problem (9.1), (9.2) with respect to the Green
formula

(Lu, v)Ω +

q∑
j=1

(Bju, C
+
j v)∂Ω = (u, L+v)Ω +

q∑
j=1

(Cju, B
+
j v)∂Ω, (9.7)

where u, v ∈ C∞( Ω ). Here {B+
j }, {Cj}, {C+

j } are some normal systems of
linear partial differential boundary expressions with coefficients from C∞(∂Ω);
the orders of expressions B±j , C±j , j = 1, . . . , q, run over the set {0, 1, . . . , 2q− 1}
and satisfy the equality

ordBj + ordC+
j = ordCj + ordB+

j = 2q − 1.

We denote m+
j := ordB+

j . In (9.7) and bellow, the notations (·, ·)Ω and (·, ·)∂Ω

stand for the inner products in the spaces L2(Ω) and L2(∂Ω) respectively, and
for extensions by continuity of these products as well.



REFINED SOBOLEV SCALE, INTERPOLATION, AND ELLIPTIC PROBLEMS 247

The expression L+ is said to be formally adjoint to L, whereas the system
{B+

j } is said to be adjoint to {Bj} with respect to L. Note that {B+
j } is not

uniquely defined.
We set

N := {u ∈ C∞( Ω ) : Lu = 0 in Ω, Bju = 0 on ∂Ω for all j = 1, . . . , q},
N+ := {v ∈ C∞( Ω ) : L+v = 0 in Ω, B+

j v = 0 on ∂Ω for all j = 1, . . . , q}.

Since both the problems (9.1), (9.2) and (9.5), (9.6) are regular elliptic, both the
spaces N and N+ are finite dimensional. Note that the space N+ does not not
depend on the choice of the system {B+

j } adjoint to {Bj}.

Example 9.5. If the boundary-value problem (9.1), (9.2) is Dirichlet, then the
formally adjoint problem is also Dirichlet, with dimN = dimN+.

9.2. The operator properties. Now we investigate properties of the operator
(9.4) corresponding to the regular elliptic boundary-value problem (9.1), (9.2).

Theorem 9.6. Let s > m + 1/2 and ϕ ∈ M. Then the bounded linear operator
(9.4) is Fredholm, its kernel coincides with N , and its range consists of all the
vectors (f, g1, . . . , gq) ∈ Hs,ϕ(Ω, ∂Ω) such that

(f, v)Ω +

q∑
j=1

(gj, C
+
j v)∂Ω = 0 for all v ∈ N+. (9.8)

The index of (9.4) is dimN − dimN+ and does not depend on s and ϕ.

In the Sobolev case of ϕ ≡ 1 Theorem 9.6 is a classical result if s ≥ 2q; see,
e.g., [30, Ch. III, § 6, Subsec. 4] or [61, Ch. 2, Sec. 5.4]. If m + 1/2 < s < 2q,
then this theorem is also true [25, Ch. III, Sec. 2.2]. For an arbitrary ϕ ∈ M
the theorem can be deduced from the Sobolev case by the interpolation with a
function parameter if we apply Proposition 6.5 and Theorems 5.7 and 8.4.

Remark 9.7. G. Slenzak [129] proved an analog of Theorem 9.6 for a different scale
of Hörmander inner product spaces. These spaces are not attached to Sobolev
spaces with the number parameter; the class of the weight functions used by
Slenzak is not described constructively.

Theorem 9.8. Let s > m+ 1/2, ϕ ∈M, and σ < s. Then the following a priori
estimate holds:

‖u‖Hs,ϕ(Ω) ≤ c
(
‖(L,B)u‖Hs,ϕ(Ω,∂Ω) + ‖u‖Hσ,ϕ(Ω)

)
for all u ∈ Hs,ϕ(Ω);

here the number c > 0 is independent of u.

This theorem follows from the Fredholm property of the operator (9.4) in view
of Proposition 6.7 and the compactness of the embedding Hs,ϕ(Ω) ↪→ Hσ,ϕ(Ω)
for σ < s.

Now we study a local smoothness of a solution u to the boundary-value problem
(9.1), (9.2) in the refined Sobolev scale. The relevant property will be formulated
as a theorem on the local increase in smoothness.
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Let U be an open set in Rn; we put Ω0 := U ∩ Ω 6= ∅ and Γ0 := U ∩ ∂Ω (the
case were Γ0 = ∅ is possible). We introduce the following local analog of the
space Hs,ϕ(Ω) with s ∈ R and ϕ ∈M:

Hs,ϕ
loc (Ω0,Γ0) :=

{
u ∈ D′(Ω) : χu ∈ Hs,ϕ(Ω)

for all χ ∈ C∞(Ω) with suppχ ⊆ Ω0 ∪ Γ0

}
.

The other local space Hs,ϕ
loc (Γ0), which we need, was defined in (6.3).

Theorem 9.9. Let s > m + 1/2 and η ∈ M. Suppose that the distribution
u ∈ Hs,η(Ω) is a solution to the boundary-value problem (9.1), (9.2), with

f ∈ Hs−2q+ε,ϕ
loc (Ω0,Γ0) and gj ∈ H

s−mj−1/2+ε,ϕ
loc (Γ0), j = 1, . . . , q,

for some ε ≥ 0 and ϕ ∈M. Then u ∈ Hs+ε,ϕ
loc (Ω0,Γ0).

In the special case where Ω0 = Ω and Γ0 = ∂Ω we have the global smoothness
increase (i.e. the increase in the domain Ω up to its boundary). This case follows
from Theorem 9.6. Indeed, since the vector (f, g) ∈ Hs+ε,ϕ(Ω, ∂Ω) satisfies (9.8),
we can write (L,B)v = (f, g) for some v ∈ Hs+ε,ϕ(Ω), whence u − v ∈ N and
u ∈ Hs+ε,ϕ(Ω); here g := (g1, . . . , gq). In general, we can deduce Theorem 9.9 from
the above case reasoning similar to the proof of Theorem 4.4. Note, if Γ0 = ∅,
then we get an interior smoothness increase (in neighbourhoods of interior points
of Ω).

Theorem 9.9 specifies, with regard to the refined Sobolev scale, the classical
results on a local smoothness of solutions to elliptic boundary-value problems [11,
Ch. 3, Sec. 4], [16, 102, 121].

Theorems 9.9 and 8.6 iv) imply the following sufficient condition for the solution
u to be classical.

Theorem 9.10. Let s > m + 1/2 and η ∈ M. Suppose that the distribution
u ∈ Hs,η(Ω) is a solution to the boundary-value problem (9.1), (9.2), where

f ∈ Hn/2, ϕ
loc (Ω,∅) ∩Hm−2q+n/2, ϕ(Ω),

gj ∈ Hm−mj+(n−1)/2, ϕ(∂Ω), j = 1, . . . , q,

for some ϕ ∈ M. If ϕ satisfies (3.6), then the solution u is classical, i.e. u ∈
C2q(Ω) ∩ Cm( Ω ).

Note that the condition (3.6) not only is sufficient for u to be a classical solution
but also is necessary on the class of all the considered solutions u. This follows
from Theorem 3.3.

9.3. The limiting case. This case is s = m + 1/2. We study it, e.g., for the
Dirichlet problem for the Laplace equation:

∆u = f in Ω, R1u := u�∂Ω = g.

This problem is regular elliptic, with m = 0. Let ϕ ∈ M. By Theorem 8.11, the
mapping u 7→ (∆u,R1u), u ∈ C∞( Ω ), extends uniquely to a continuous linear
operator from H1/2,ϕ(Ω) to H−3/2,ϕ(Ω) × D′(∂Ω) if and only if ϕ satisfies (3.6).



REFINED SOBOLEV SCALE, INTERPOLATION, AND ELLIPTIC PROBLEMS 249

Suppose the inequality (3.6) is fulfilled, and ϕ0 ∈ M is defined by (8.10). Then
we get the bounded linear operator

(∆, R1) : H1/2,ϕ(Ω)→ H−3/2,ϕ(Ω)⊕H0,ϕ0(∂Ω) =: H(Ω, ∂Ω), (9.9)

with R1(H1/2,ϕ(Ω)) being equal to H0,ϕ0(∂Ω). It is reasonable to ask whether
this operator is Fredholm or not. The answer is no because the range of (9.9) is
not closed in H(Ω, ∂Ω).

To prove this let us suppose the contrary, i.e., the range of (9.9) to be closed
in H(Ω, ∂Ω). Then the restriction of (9.9) to the subspace

K
1/2,ϕ
∆ (Ω) :=

{
u ∈ H1/2,ϕ(Ω) : ∆u = 0 in Ω

}
has a closed range in H0,ϕ0(∂Ω). But, according to Theorem 10.1 given be-

low in Section 10.1, this restriction establishes a homeomorphism of K
1/2,ϕ
∆ (Ω)

onto H0,ϕ(∂Ω). Hence, H0,ϕ(∂Ω) is a (closed) subspace of H0,ϕ0(∂Ω), so that
H0,ϕ(∂Ω) = H0,ϕ0(∂Ω). We arrive at a contradiction if we note that ϕ0(t)/ϕ(t)→
0 as t→ +∞ and use Theorem 5.6 ii). Thus our hypothesis is false.

Given a general elliptic boundary-value problem (9.1), (9.2), the reasoning is
similar. If s = m + 1/2, ϕ satisfies (3.6), and ϕ0 is defined by (8.10), then we
get the bounded linear operator (9.4) providing the space Hs−mj−1/2,ϕ(∂Ω) =
H0,ϕ(∂Ω) is replaced by H0,ϕ0(∂Ω) for j such that mj = m. This operator has a
nonclosed range and therefore is not Fredholm.

10. Semihomogeneous elliptic problems

As we have mentioned, the results of the previous section are not valid for
s ≤ m+ 1/2. But if the boundary-value problem (9.1), (9.2) is semihomogeneous
(i.e., f ≡ 0 or all gj ≡ 0), it establishes a bounded and Fredholm operator
on the two-sided refined Sobolev scale, in which the number parameter s runs
over the whole real axis. In this section we separately consider the case of the
homogeneous elliptic equation (9.1) and the case of the homogeneous boundary
conditions (9.2). In what follows we focuss our attention on analogs of Theorem
9.6 on the Fredholm property of (L,B). Counterparts of Theorems 9.8–9.10 can
be derived from the analogs similarly to the reasoning outlined in Section 9 (for
details, see [75, 79, 80]).

10.1. A boundary-value problem for a homogeneous elliptic equation.
Let us consider the regular elliptic boundary-value problem (9.1), (9.2) provided
that f ≡ 0, namely

Lu = 0 in Ω, Bju = gj on ∂Ω, j = 1, . . . , q. (10.1)

We connect the following linear spaces with this problem:

K∞L (Ω) :=
{
u ∈ C∞( Ω ) : Lu = 0 in Ω

}
,

Ks,ϕ
L (Ω) :=

{
u ∈ Hs,ϕ(Ω) : Lu = 0 in Ω

}
for s ∈ R and ϕ ∈M. Here the equality Lu = 0 is understood in the distribution
theory sense. It follows from a continuity of the embedding Hs,ϕ(Ω) ↪→ D′(Ω)
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that Ks,ϕ
L (Ω) is a (closed) subspace in Hs,ϕ(Ω). We consider Ks,ϕ

L (Ω) as a Hilbert
space with respect to the inner product in Hs,ϕ(Ω).

Theorem 10.1. Let s ∈ R and ϕ ∈ M. Then the set K∞L (Ω) is dense in the
space Ks,ϕ

L (Ω), and the mapping

u 7→ Bu = (B1u, . . . , Bqu), u ∈ K∞L (Ω),

extends uniquely to a continuous linear operator

B : Ks,ϕ
L (Ω)→

q⊕
j=1

Hs−mj−1/2, ϕ(∂Ω) =: Hs,ϕ(∂Ω). (10.2)

This operator is Fredholm. Its kernel coincides with N , whereas its range consists
of all the vectors (g1, . . . , gq) ∈ Hs,ϕ(∂Ω) such that

q∑
j=1

(gj, C
+
j v)∂Ω = 0 for all v ∈ N+.

The index of the operator (10.2) is equal to dimN − dimG+, with

G+ :=
{

(C+
1 v, . . . , C

+
q v) : v ∈ N+

}
,

and does not depend on s and ϕ.

Theorem 10.1 was proved in [75, Sec. 6]. In the s > m+ 1/2 case the theorem
follows plainly from Lemma 9.1 and Theorem 9.6. If s ≤ m + 1/2, then the
ellipticity condition is essential for the continuity of the operator (10.2). Note
that dimG+ ≤ dimN+, the strict inequality being possible [45, Theorem 13.6.15].

Theorem 10.1 can be regarded as a certain analog of the Harnack theorem
on convergence of sequences of harmonic functions (see, e.g., [90, Ch. 11, § 9]),
however we use the metric in Hs,ϕ(Ω) instead of the uniform metric. Here it is
relevant to mention R. Seeley’s investigation [124] of the Cauchy data of solutions
to a homogeneous elliptic equation in the two-sided Sobolev scale; see also the
survey [8, Sec. 5.4 b].

Let us outline the proof of Theorem 10.1. For the sake of simplicity, we suppose
that both N and N+ are trivial. Let s < 2q and ϕ ∈M. Chose an integer r ≥ 1
such that 2q(1− r) < s < 2q. We need the following Hilbert space

Ds,ϕ
L (Ω) :=

{
u ∈ Hs,ϕ(Ω) : Lu ∈ L2(Ω)

}
,

(u1, u2)Ds,ϕL (Ω) := (u1, u2)Hs,ϕ(Ω) + (Lu1, L u2)L2(Ω).

The mapping (9.3) extends uniquely to the homeomorphisms

(L,B) : D
2q(1−r)
L (Ω)↔ L2(Ω)⊕H2q(1−r)(∂Ω),

(L,B) : H2q(Ω)↔ L2(Ω)⊕H2q(∂Ω).

The first of them follows from the Lions–Magenes theorems [61] stated below in
Section 11.1, whereas the second is a special case of Theorem 9.6. (Recall that we
omit ϕ in the notations if ϕ ≡ 1.) Applying the interpolation with the function
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parameter ψ defined by (3.8) with ε := s − 2q(1 − r) and δ := 2q − s we get
another homeomorphism

(L,B) :
[
D

2q(1−r)
L (Ω), H2q(Ω)

]
ψ
↔ L2(Ω)⊕Hs,ϕ(∂Ω). (10.3)

Now if we prove that Zψ :=
[
D

2q(1−r)
L (Ω), H2q(Ω)

]
ψ

coincides with Ds,ϕ
L (Ω) up

to equivalence of norms, then the restriction of (10.3) to Ks,ϕ
L (Ω) will give the

homeomorphism (10.2).
The continuous embedding Zψ ↪→ Ds,ϕ

L (Ω) is evident. The inverse can be
proved by the following modification of the reasoning used by Lions and Magenes
[61, Ch. 2, Sec. 7.2] for r = 1 and power parameter ψ. In view of Theorem 9.6
we have the homeomorphism

LrLr+ + I :
{
u ∈ Hσ(Ω) : (Dj−1

ν u) � ∂Ω = 0 ∀ j = 1, . . . , r
}
↔ Hσ−4qr(Ω)

for each σ ≥ 2qr. Here Lr is the r-th iteration of L, Lr+ is the formally adjoint
to Lr, and I is the identity operator. We regard the domain of LrLr+ + I as a
subspace of Hσ(Ω). Consider the bounded linear inverse operators

(LrLr+ + I)−1 : Hσ(Ω)→ Hσ+4qr(Ω), σ ≥ −2qr.

Set R := Lr−1Lr+(LrLr+ + I)−1 and P := −RL+ I. Since

LPu = (LrLr+ + I)−1Lu ∈ L2(Ω) for each u ∈ H2q(1−r)(Ω),

the operator P maps continuously Hσ(Ω) → Dσ
L(Ω) with σ ≥ 2q(1− r). There-

fore, by the interpolation, we get the bounded operator

P : Hs,ϕ(Ω) =
[
H2q(1−r)(Ω), H2q(Ω)

]
ψ
→
[
D

2q(1−r)
L (Ω), H2q(Ω)

]
ψ

= Zψ.

Now, for each u ∈ Ds,ϕ
L (Ω), we have u = Pu + RLu, with Pu ∈ Zψ and RLu ∈

H2q(Ω) ⊂ Zψ. So Ds,ϕ
L (Ω) ⊆ Zψ, and our reasoning is complete.

Note that in the Sobolev case of ϕ ≡ 1 Theorem 10.1 is a consequence of the
above-mentioned Lions–Magenes theorems provided s is negative and not half-
integer. If negative s is half-integer, then Theorem 10.1 is new even in the Sobolev
case.

10.2. An elliptic problem with homogeneous boundary conditions. Now
we consider the regular elliptic boundary-value problem (9.1), (9.2) provided that
all gj ≡ 0, namely

Lu = f in Ω, Bju = 0 on ∂Ω, j = 1, . . . , q. (10.4)

Let us introduce some function spaces related to the boundary-value problem
(10.4). For the sake of brevity, we denote by (b.c.) the homogeneous boundary
conditions in (10.4). In addition, we denote by (b.c.)+ the homogeneous adjoint
boundary conditions (9.6):

B+
j v = 0 on ∂Ω, j = 1, . . . , q.

We set

C∞(b.c.) :=
{
u ∈ C∞( Ω ) : Bju = 0 on ∂Ω ∀ j = 1, . . . , q

}
,

C∞(b.c.)+ :=
{
v ∈ C∞( Ω ) : B+

j v = 0 on ∂Ω ∀ j = 1, . . . , q
}
.
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Let s ∈ R and ϕ ∈ M. We introduce the separable Hilbert spaces Hs,ϕ(b.c.)
and Hs,ϕ(b.c.)+ formed by distributions satisfying the homogeneous boundary
conditions (b.c.) and (b.c.)+ respectively.

Definition 10.2. If s /∈ {mj + 1/2 : j = 1, . . . , q}, then Hs,ϕ(b.c.) is defined to
be the closure of C∞(b.c.) in Hs,ϕ,(0)(Ω), the space Hs,ϕ(b.c.) being regarded as a
subspace of Hs,ϕ,(0)(Ω). If s ∈ {mj+1/2 : j = 1, . . . , q}, then the space Hs,ϕ(b.c.)
is defined by means of the interpolation with the power parameter ψ(t) = t1/2:

Hs,ϕ(b.c.) :=
[
Hs−1/2, ϕ(b.c.), Hs+1/2, ϕ(b.c.)

]
t1/2
. (10.5)

Changing (b.c.) for (b.c.)+, and mj for m+
j in the last two sentences, we have the

definition of the space Hs,ϕ(b.c.)+.

The space C∞(b.c.)+ and therefore Hs,ϕ(b.c.)+ are independent of the choice
of the system {B+

j } adjoint to {Bj}; see, e.g., [61, Ch. 2, Sec. 2.5].
Note that the case of s ∈ {mj + 1/2 : j = 1, . . . , q} is special in the definition

of Hs,ϕ(b.c.). We have to resort to the interpolation formula (10.5) to get the
spaces for which the main result of the subsection, Theorem 10.4, will be valid.
In this case the norms in the spaces Hs,ϕ(b.c.) and Hs,ϕ,(0)(Ω) are not equivalent.
The analogous fact is true for Hs,ϕ(b.c.)+. Providing ϕ ≡ 1, this was proved in
[33, 125] (see also [133, Sec. 4.3.3]).

The spaces just introduced admit the following constructive description.

Theorem 10.3. Let s ∈ R, s 6= mj + 1/2 for all j = 1, . . . , q, and ϕ ∈ M. If
s > 0, then the space Hs,ϕ(b.c.) consists of the functions u ∈ Hs,ϕ(Ω) such that
Bju = 0 on ∂Ω for all indices j = 1, . . . , q satisfying s > mj + 1/2. If s < 1/2,
then Hs,ϕ(b.c.) = Hs,ϕ,(0)(Ω). This proposition remains true if one changes mj

for m+
j , (b.c.) for (b.c.)+, and Bj for B+

j .

Theorem 10.3 is known in the Sobolev case of ϕ ≡ 1 [118, Sec. 5.5.2]. In general,
we can deduce it by means of the interpolation with a function parameter. Here
we only need to treat the case where mk + 1/2 < s < mk+1 + 1/2 for some
k = 1, . . . , q, with m1 < m2 < . . . < mq and mq+1 := ∞. Chose ε > 0 such that
mk+1/2 < s∓ε < mk+1+1/2. Then the space Hs∓ε(b.c.) consists of the functions
u ∈ Hs∓ε(Ω) satisfying the condition Bju = 0 on ∂Ω for all j = 1, . . . , k. So there
exists a projector Pk of Hs∓ε(Ω) onto Hs∓ε(b.c.); it is constructed in [133, the
proof of Lemma 5.4.4]. Hence, by Proposition 8.5 and Theorem 8.4 with ε = δ,
we get that Yψ := [Hs−ε(b.c.), Hs+ε(b.c.)]ψ is the subspace Hs,ϕ(Ω) ∩Hs−ε(b.c.)
of Hs,ϕ(Ω). Now since C∞(b.c.) is dense in Yψ, we have[

Hs−ε(b.c.), Hs+ε(b.c.)
]
ψ
= Hs,ϕ(b.c.) (10.6)

with equivalence of norms, so that Hs,ϕ(b.c.) admits the description stated in
Theorem 10.1.

The following theorem is about the Fredholm property of the boundary-value
problem (10.4) in the two-sided refined Sobolev scale.
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Theorem 10.4. Let s ∈ R and ϕ ∈ M. Then the mapping u 7→ Lu, with
u ∈ C∞(b.c.), extends uniquely to a continuous linear operator

L : Hs,ϕ(b.c.)→ (H2q−s,1/ϕ(b.c.)+)′. (10.7)

Here Lu is interpreted as the functional (Lu, · )Ω, and (H2q−s, 1/ϕ(b.c.)+)′ denotes
the antidual space to H2q−s,1/ϕ(b.c.)+ with respect to the inner product in L2(Ω).
The operator (10.7) is Fredholm. Its kernel coincides with N , whereas its range
consists of all the functionals f ∈ (H2q−s, 1/ϕ(b.c.)+)′ such that (f, v)Ω = 0 for
all v ∈ N+. The index of (10.7) is dimN − dimN+ and does not depend on s
and ϕ.

For the Sobolev scale, where ϕ ≡ 1, this theorem was proved by Yu. M. Berezan-
sky, S.G. Krein, and Ya.A. Roitberg ([12] and [11, Ch. III, § 6, Sec. 10]) in the
case of integral s and by Roitberg [118, Sec. 5.5.2] for all real s; see also the
textbook [13, Ch. XVI, § 1] and the survey [8, Sec. 7.9 c]. They formulated
the theorem in an equivalent form of a homeomorphism theorem. Note that if
s ≤ m + 1/2, then the ellipticity condition is essential for the continuity of the
operator (10.7).

For arbitrary ϕ ∈M, Theorem 10.4 follows from the Sobolev case by Proposi-
tion 6.5 if we apply the interpolation formulas (10.6), (10.5) and their counterparts
for H2q−s,1/ϕ(b.c.)+. First we should use (10.6) for s /∈ {j − 1/2 : j = 1, . . . , 2q}
and a sufficiently small ε > 0, then should apply (10.5) for the rest of s. More-
over, we have to resort to the interpolation duality formula [X ′1, X

′
0]ψ = [X0, X1]′χ,

where X := [X0, X1] is an admissible couple of Hilbert spaces and χ(t) := t/ψ(t)
for t > 0. The formula follows directly from the definition of Xψ; see, e.g., [81,
Sec. 2.4].

10.3. On a connection between nonhomogeneous and semihomogeneous
elliptic problems. Here, for the sake of simplicity, we suppose that N = N+ =
{0}. Let s > m + 1/2 and ϕ ∈ M. It follows from Theorems 9.6 and 10.3 that
the space Hs,ϕ(Ω) is the direct sum of the subspaces Ks,ϕ

L (Ω) and Hs,ϕ(b.c.).
Therefore Theorem 9.6 are equivalent to Theorems 10.1 and 10.4 taken together;
note that the antidual space (H2q−s,1/ϕ(b.c.)+)′ coincides with Hs−2q,ϕ(Ω). Thus
the nonhomogeneous problem (9.1), (9.2) can be reduced immediately to the
semihomogeneous problems (10.1) and (10.4) provided s > m+ 1/2.

This reduction fails for s < m + 1/2. Indeed, if 0 ≤ s < m + 1/2, then the
operator (L,B) cannot be well defined on Ks,ϕ

L (Ω)∪Hs,ϕ(b.c.) because Ks,ϕ
L (Ω)∩

Hs,ϕ(b.c.) 6= ∅. This inequality follows from Theorems 10.1 and 10.3 if we note
that the boundary-value problem (10.1), with gq ≡ 1 and gj ≡ 0 for j < q, has a
nonzero solution u ∈ K∞L (Ω) belonging to Hs,ϕ(b.c.). Here we may suppose that
mq = m.

So much the more, the above reduction is impossible for negative s. Note if s <
−1/2, then solutions to the semihomogeneous problems pertain to the spaces of
distributions of the different nature. Namely, the solutions to the problem (10.1)
belong to Ks,ϕ

L (Ω) ⊂ Hs,ϕ(Ω) and are distributions given in the open domain Ω,
whereas the solutions to the problem (10.4) belong to Hs,ϕ(b.c.) ⊂ Hs,ϕ

Ω
(Rn) and

are distributions supported on the closed domain Ω.
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The same conclusions are valid in general, for nontrivial N and/or N+.

11. Generic theorems for elliptic problems in two-sided scales

Let us return to the nonhomogeneous regular elliptic boundary-value problem
(9.1), (9.2). We aim to prove analogs of Theorem 9.6 for arbitrary real s. To get
the bounded operator (L,B) for such s we have to chose another space instead of
Hs,ϕ(Ω) as a domain of the operator. There are known two essentially different
ways to construct the domain. They were suggested by Ya.A. Roitberg [114, 115,
118] and J.-L. Lions, E. Magenes [59, 60, 61, 62] in the Sobolev case. These
ways lead to different kinds of theorems on the Fredholm property of (L,B); we
name them generic and individual theorems. In generic theorems, the domain
of (L,B) does not depend on the coefficients of the elliptic expression L and is
generic for all boundary-value problems of the same order. Note that Theorem
9.6 is generic. In individual theorems, the domain depends on coefficients of L,
even on the coefficients of lover order derivatives.

In this section we realize Roitberg’s approach with regard to the refined Sobolev
scale; namely, we modify this scale by Roitberg and prove a generic theorem about
the Fredholm property of (L,B) on the two-sided modified scale. The results of
the section were obtained by the authors in [82]. Lions and Magenes’s approach
led to individual theorems will be considered below in Section 12.

11.1. The modification of the refined Sobolev scale. Let s ∈ R, ϕ ∈ M,
and integer r > 0. We set Er := {k−1/2 : k = 1, . . . , r}. Note that Dν := i ∂/∂ν,
where ν is the field of unit vectors of inner normals to ∂Ω. Let us define the
separable Hilbert spaces Hs,ϕ,(r)(Ω), which form the modified scale.

Definition 11.1. If s ∈ R \ Er, then the space Hs,ϕ,(r)(Ω) is defined to be the
completion of C∞( Ω ) with respect to the Hilbert norm

‖u‖Hs,ϕ,(r)(Ω) :=

(
‖u‖2

Hs,ϕ,(0)(Ω) +
r∑

k=1

∥∥(Dk−1
ν u) � ∂Ω

∥∥2

Hs−k+1/2,ϕ(∂Ω)

)1/2

. (11.1)

If s ∈ Er, then the space Hs,ϕ,(r)(Ω) is defined by means of the interpolation with
the power parameter ψ(t) = t1/2, namely

Hs,ϕ,(r)(Ω) :=
[
Hs−1/2,ϕ,(r)(Ω), Hs+1/2,ϕ,(r)(Ω)

]
t1/2
. (11.2)

In the Sobolev case of ϕ ≡ 1 the space Hs,ϕ,(r)(Ω) was introduced and inves-
tigated by Ya.A. Roitberg; see [114, 115] and [118, Ch. 2]. As usual, we put
Hs,(r)(Ω) := Hs,1,(r)(Ω).

Note that the case of s ∈ Er is special in Definition 11.1 because the norm in
Hs,ϕ,(r)(Ω) is defined by the interpolation formula (11.2) instead of (11.1). These
formulas give nonequivalent norms. As in Subsection 10.2, we have to resort to
the interpolation in the mentioned case to get the spaces for which the main result
of this section, Theorem 11.4, will be true.

Definition 11.2. The class of Hilbert spaces

{Hs,ϕ,(r)(Ω) : s ∈ R, ϕ ∈M} (11.3)
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is called the refined Sobolev scale modified by Roitberg. The number r is called
the order of the modification.

The scale (11.3) is found fruitful in the theory of boundary-value problems
because the trace mapping (8.7) extends uniquely to an operator Rr mapping
continuously Hs,ϕ,(r)(Ω) → Hr

s,ϕ(∂Ω) for all real s. It is useful to compare this
fact with Theorem 8.9, in which the condition s > r − 1/2 cannot be neglected.
Note that

Hs,ϕ,(r)(Ω) = Hs,ϕ(Ω) if s > r − 1/2 (11.4)

because the spaces in (11.4) are completions of C∞( Ω ) with equivalence norms
due to Theorem 8.9.

The spaces Hs,ϕ,(r)(Ω) admit the following isometric representation. We let
Ks,ϕ,(r)(Ω, ∂Ω) denote the linear space of the vectors

(u0, u1, . . . , ur) ∈ Hs,ϕ,(0)(Ω)⊕
r⊕

k=1

Hs−k+1/2, ϕ(∂Ω) =: Πs,ϕ,(r)(Ω, ∂Ω) (11.5)

such that uk = (Dk−1
ν u0)�∂Ω for each integer k = 1, . . . r satisfying s > k − 1/2.

By Theorem 8.9 we may regard Ks,ϕ,(r)(Ω, ∂Ω) as a subspace of Πs,ϕ,(r)(Ω, ∂Ω).

Theorem 11.3. The mapping

Tr : u 7→
(
u, u�∂Ω, . . . , (Dr−1

ν u)�∂Ω
)
, u ∈ C∞( Ω ),

extends uniquely to a continuous linear operator

Tr : Hs,ϕ,(r)(Ω)→ Ks,ϕ,(r)(Ω, ∂Ω) (11.6)

for all s ∈ R and ϕ ∈ M. This operator is injective. Moreover, if s /∈ Er, then
(11.6) is an isometric isomorphism.

We need only to argue that (11.6) is surjective if s /∈ Er. For ϕ ≡ 1 this
property is proved by Ya.A. Roitberg; see, e.g., [118, Sec. 2.2]. In general, the
proof is quite similar provided we apply Theorem 8.9 and (8.8).

Note that we have the following dense compact embeddings in the modified
scale (11.3):

Hs1,ϕ1,(r)(Ω) ↪→ Hs,ϕ,(r)(Ω), −∞ < s < s1 <∞ and ϕ, ϕ1 ∈M. (11.7)

They results from (8.16) and Theorem 5.6 (i) by Theorem 11.3 and are understood
as embeddings of spaces which are completions of the same set, C∞( Ω ), with
different norms. Suppose that s = s1, then the continuous embedding (11.7)
holds if and only if ϕ/ϕ1 is bounded in a neighbourhood of +∞; the embedding
is compact if and only if ϕ(t)/ϕ1(t) → 0 as t → +∞. This follows from the
relevant properties of the refined Sobolev scales over Ω and ∂Ω.

11.2. Roitberg’s type generic theorem. The main result of the section is the
following generic theorem about properties of the operator (L,B) on the two-sided
scale (11.3) with r = 2q.
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Theorem 11.4. Let s ∈ R and ϕ ∈ M. The mapping (9.3) extends uniquely to
a continuous linear operator

(L,B) : Hs,ϕ,(2q)(Ω)→ Hs−2q,ϕ,(0)(Ω)⊕
q⊕
j=1

Hs−mj−1/2,ϕ(∂Ω) (11.8)

=: Hs,ϕ,(0)(Ω, ∂Ω).

This operator is Fredholm. Its kernel coincides with N , and its range consists
of all the vectors (f, g1, . . . , gq) ∈ Hs,ϕ,(0)(Ω, ∂Ω) that satisfy (9.8). The index of
(11.8) is dimN − dimN+ and does not depend on s and ϕ.

Note that Theorem 11.4 is generic because the domain of the operator (11.8),
the space Hs,ϕ,(2q)(Ω), is independent of L due to Definition 11.1. If s > 2q−1/2,
then generic Theorems 9.6 and 11.4 are tantamount in view of (11.4) and (8.17).

For the modified Sobolev scale, with ϕ ≡ 1, Theorem 11.4 was proved by
Ya. A. Roitberg [114, 115], [118, Ch. 4 and Sec. 5.3]; see also the monograph
[11, Ch. 3, Sec. 6, Theorem 6.9], the handbook [30, Ch. III, § 6, Sec. 5], and the
survey [8, Sec. 7.9].

For arbitrary ϕ ∈ M we can deduce Theorem 11.4 from the ϕ ≡ 1 case with
the help of the interpolation in the following way. First assume that s /∈ E2q and
let ε > 0. We have the Fredholm bounded operators on the modified Sobolev
scale

(L,B) : Hs∓ε,(2q)(Ω)→ Hs∓ε,(0)(Ω, ∂Ω). (11.9)

They possess the common kernelN and the common index κ := dimN−dimN+.
Applying the interpolation with the function parameter ψ defined by (3.8) for
ε = δ, we get by Proposition 6.5 and Theorems 5.7, 8.13 that (11.9) implies the
boundedness and the Fredholm property of the operator

(L,B) :
[
Hs−ε,(2q)(Ω), Hs+ε,(2q)(Ω)

]
ψ
→ Hs,ϕ,(0)(Ω, ∂Ω).

It remains to prove the interpolation formula[
Hs−ε,(2q)(Ω), Hs+ε,(2q)(Ω)

]
ψ

= Hs,ϕ,(2q)(Ω), (11.10)

where the equality of spaces is up to equivalence of norms.
Let an index p be such that s ∈ αp, where α0 := (−∞, 1/2), αk := (k−1/2, k+

1/2) with k = 1, . . . , 2q − 1, and α2q := (2q − 1/2,∞). We chose ε > 0 satisfying
s∓ ε ∈ αp. By Theorem 11.3, the mapping

T2q,p : u 7→
(
u, {(Dk−1

ν u)�∂Ω : p+ 1 ≤ k ≤ 2q}
)

establishes the homeomorphisms

T2q,p : Hs,ϕ,(2q)(Ω)↔ Hs,ϕ,(0)(Ω)⊕
⊕

p+1≤k≤2q

Hs−k+1/2,ϕ(∂Ω) =: Kp
s,ϕ,(2q)(Ω, ∂Ω),

(11.11)

T2q,p : Hs∓ε,(2q)(Ω)↔ Kp
s∓ε,(2q)(Ω, ∂Ω). (11.12)
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Applying the interpolation with ψ, we deduce another homeomorphism from
(11.12):

T2q,p :
[
Hs−ε,(2q)(Ω), Hs+ε,(2q)(Ω)

]
ψ
↔ Kp

s,ϕ,(2q)(Ω, ∂Ω). (11.13)

Now (11.11) and (11.13) imply the required formula (11.10).
In the remaining case of s ∈ E2q, we deduce Theorem 11.4 from the s /∈ E2q

case by the interpolation with the power parameter ψ(t) = t1/2 if we apply (11.2)
and the counterparts of Theorem 3.9 for the refined Sobolev scales over Ω and
∂Ω.

Note that the continuity of the operator (11.8) holds without the assumption
about the regular ellipticity of the boundary-value problem (9.1), (9.2).

11.3. Roitberg’s interpretation of generalized solutions. Using Theorem
10.1, we can give the following interpretation of a solution u ∈ Hs,ϕ,(2q)(Ω) to the
boundary-value problem (9.1), (9.2) in the framework of the distribution theory.

Let us write down the differential expressions L and Bj in a neighbourhood of
∂Ω in the form

L =

2q∑
k=0

LkD
k
ν , Bj =

mj∑
k=0

Bj,kD
k
ν . (11.14)

Here Lk and Bj,k are certain tangent differential expression. Integrating by parts,
we arrive at the (special) Green formula

(Lu, v)Ω = (u, L+v)Ω − i
2q∑
k=1

(Dk−1
ν u, L(k)v)∂Ω, u, v ∈ C∞( Ω ).

Here L(k) :=
∑2q

r=kD
r−k
ν L+

r , where L+
r is the tangent differential expression for-

mally adjoint to Lr. By passing to the limit and using the notation

(u0, u1, . . . , u2q) := T2qu ∈ Ks,ϕ,(2q)(Ω, ∂Ω), (11.15)

we get the next equality for u ∈ Hs,ϕ,(2q)(Ω):

(Lu, v)Ω = (u0, L
+v)Ω − i

2q∑
k=1

(uk, L
(k)v)∂Ω, v ∈ C∞( Ω ). (11.16)

Now it follows from (11.14) and (11.16) that the element u ∈ Hs,ϕ,(2q)(Ω) is
a solution to the boundary-value problem (9.1), (9.2) with f ∈ Hs−2q,ϕ,(0)(Ω),
gi ∈ Hs−mj−1/2, ϕ(∂Ω) if and only if

(u0, L
+v)Ω − i

2q∑
k=1

(uk, L
(k)v)∂Ω = (f, v)Ω for all v ∈ C∞( Ω ), (11.17)

mj∑
k=0

Bj,k uk+1 = gj on ∂Ω, j = 1, . . . , q. (11.18)
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Note that these equalities have meaning for arbitrary distributions

u0 ∈ D′(Rn), suppu0 ⊆ Ω, u1, . . . , u2q ∈ D′(Γ), (11.19)

f ∈ D′(Rn), supp f ⊆ Ω, g1, . . . , gq ∈ D′(Γ). (11.20)

Therefore it is useful to introduce the following notion.

Definition 11.5. Suppose that (11.19) and (11.20) are fulfilled. Then the vector
u := (u0, u1, . . . , u2q) is called a generalized solution in Roitberg’s sense to the
boundary-value problem (9.1), (9.2) if the conditions (11.17) and (11.18) are valid.

This interpretation of a generalized solution is suggested by Roitberg; see, e.g,
his monograph [118, Sec. 2.4].

Thus, Theorem 11.4 can be regarded as a statement about the solvability of
the boundary-value problem (9.1), (9.2) in the class of generalized solutions in
Roitberg’s sense provided that we identify solutions u ∈ Hs,ϕ,(2q)(Ω) with vectors
(11.15).

Roitberg’s interpretation of a generalized solution and the relevant Theorem
11.4 have been found fruitful in the theory of elliptic boundary-value problems.
Analogs of this theorem were proved by Roitberg for nonregular elliptic boundary-
value problems and for general elliptic systems of differential equations, the mod-
ified scale of the Lp-type Sobolev spaces with 1 < p < ∞ being used. In the
literature [30, 118, 119], Theorem 11.4 and its analogs are known as theorems
on a complete collection of homeomorphisms. They have various applications;
among them are the theorems on an increase in smoothness of solutions up to the
boundary, application to the investigation of Green functions of elliptic boundary-
value problems, applications to elliptic problems with power singularities, to the
transmission problem, the Odhnoff problem, and others. The investigations of
Ya.A. Roitberg, Z.G. Sheftel’ and their disciples into this subject were summed
up in Roitberg’s monographs [118].

Note that, in the most general form, the theorem on a complete collection of
homeomorphisms was proved by A. Kozhevnikov [56] for general elliptic pseu-
dodifferential boundary-value problems. Analogs of Theorem 11.4 were obtained
in [92, 93] for some non-Sobolev Banach spaces parametrized by collections of
numbers; the case of a scalar elliptic equation was treated therein. We also re-
mark applications of the concept of a generalized solution and relevant modified
two-sided scale in the theory of elliptic boundary-value problems in nonsmooth
domains [57] and in the theory of parabolic [26] and hyperbolic [119] equations.

12. Individual theorems for elliptic problems

In this section, we generalize J.-L. Lions and E. Magenes’s method [59, 60, 61,
62] for constructing of the domain of the operator (L,B). We prove new theorems
on the Fredholm property of the operator on scales of Sobolev inner product
spaces and some Hörmander spaces. These theorems has an individual character
because the domain of (L,B) depends on coefficients of elliptic expression L, as
distinguished from generic Theorems 9.6 and 11.4. Moreover, in the individual
theorems the operator (L,B) acts on the spaces consisting of distributions given



REFINED SOBOLEV SCALE, INTERPOLATION, AND ELLIPTIC PROBLEMS 259

in the domain Ω, so that we do not need to modify the refined Sobolev scale as
this was done for Theorem 11.4.

The section is organized in the following manner. First, for the sake of the
reader’s convenience, we recall Lions and Magenes’s theorems about elliptic boun-
dary-value problems. Then we prove a certain general form of the Lions–Magenes
theorems; we call it the key theorem. Namely, we find a general condition on
the space of right-hand sides of the elliptic equation Lu = f under which the
operator (L,B) is bounded and Fredholm on the corresponding pairs of Sobolev
inner product spaces of negative order. Extensive classes of the spaces satisfying
this condition will be constructed; they contain the spaces used by Lions and
Magenes and many others spaces. These results motivate statements and proofs
of individual theorems on the Fredholm property of the operator (L,B) on some
Hilbert Hörmander spaces.

12.1. The Lions–Magenes theorems. As we have mentioned in Remark 8.8,
J.-L. Lions and E. Magenes used a definition of the Sobolev space of negative
order s over Ω which is different from our Definition 8.2 for ϕ ≡ 1. Namely, they
defined this space as the dual of H−s0 (Ω) with respect to the inner product in
L2(Ω). We use this definition throughout Section 12. To distinguish the Sobolev
spaces Hs(Ω) introduced above by Definition 8.2 from ones used here, we resort
to the somewhat different notation Hs(Ω), where the letter H is not slanted.

Thus we put

Hs(Ω) :=

{
Hs(Ω) for s ≥ 0,

(H−s0 (Ω))′ for s < 0.

Here (H−s0 (Ω))′ denotes the Hilbert space antidual to H−s0 (Ω) with respect to the
inner product in L2(Ω).

The antilinear continuous functionals from Hs(Ω) with s < 0 are defined
uniquely by their values on the functions in C∞0 (Ω). Therefore it is reasonable to
identify these functionals with distributions given in Ω. In so doing, we have [61,
Ch. 1, Remark 12.5]

Hs(Ω) = Hs
Ω

(Rn)/Hs
∂Ω(Rn) =

{
w �Ω : w ∈ Hs

Ω
(Rn)

}
for s < 0. (12.1)

It is remarkable that the spaces Hs(Ω) and Hs(Ω), with s < 0, coincide up to
equivalence of norms provided s + 1/2 /∈ Z; see, e.g., [133, Sec. 4.8.2]. If s is
half-integer, then Hs(Ω) is narrower than Hs(Ω). Note also that

− 1/2 ≤ s < 0 ⇒ Hs(Ω) = Hs,(0)(Ω) with equality of norms. (12.2)

This fact follows, by the duality, from the equality H−s0 (Ω) = H−s(Ω); see, e.g.,
[133, Sec. 4.7.1].

Lions and Magenes consider the operator

(L,B) : Dσ+2q
L,X (Ω)→ Xσ(Ω)⊕

q⊕
j=1

Hσ+2q−mj−1/2(∂Ω) =: Xσ(Ω, ∂Ω), (12.3)

with σ ∈ R. Here Xσ(Ω) is a certain Hilbert space consisting of distributions in
Ω and embedded continuously in D′(Ω). The domain of the operator (12.3) is the
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Hilbert space
Dσ+2q
L,X (Ω) :=

{
u ∈ Hσ+2q(Ω) : Lu ∈ Xσ(Ω)

}
endowed with the graph inner product

(u1, u2)Dσ+2q
L,X (Ω) := (u1, u2)Hσ+2q(Ω) + (Lu1, Lu2)Xσ(Ω).

In the case where s := σ + 2q > m + 1/2 we may set Xσ(Ω) := Hσ(Ω) that
leads us to Theorem 9.6 for ϕ ≡ 1. But in the case where s ≤ m+ 1/2 we cannot
do so if we want to have the well-defined operator (12.3). The space Xσ(Ω) must
be narrower than Hσ(Ω).

Lions and Magenes found some important spaces Xσ(Ω) with σ < 0 such that
the operator (12.3) is bounded and Fredholm; see [59, 60] and [61, Ch. 2, Sec.
6.3]. We state their results in the form of two individual theorems on elliptic
boundary-value problems.

Theorem 12.1 (the first Lions–Magenes theorem [59, 60]). Let σ < 0 and
Xσ(Ω) := L2(Ω). Then the mapping (9.3) extends uniquely to the continuous
linear operator (12.3). This operator is Fredholm. Its kernel coincides with N ,
and its range consists of all the vectors (f, g1, . . . , gq) ∈ Xσ(Ω, ∂Ω) satisfying
(9.8). The index of (12.3) is dimN − dimN+ and does not depend on σ.

Remark 12.2. Here, the σ = −2q case is important in the spectral theory of elliptic
operators with general boundary conditions [34, 35, 70, 71]; see also the survey
[8, Sec. 7.7 and 9.6]. Then the space D0

A,L2
(Ω) = {u ∈ L2(Ω) : Au ∈ L2(Ω)}

is the domain of the maximal operator Amax corresponding to the differential
expression A. Even when all coefficients of A are constant, this space depends
essentially on each of them [42, Sec. 3.1, Theorem 3.1].

To formulate the second Lions–Magenes theorem, we need the next weighted
space

%Hσ(Ω) := {f = %v : v ∈ Hσ(Ω) }, (f1, f2)%Hσ(Ω) := (%−1f1, %
−1f2)Hσ(Ω),

with σ < 0 and a positive function % ∈ C∞(Ω). The space %Hσ(Ω) is Hilbert and
imbedded continuously in D′(Ω). Consider a weight function % := %−σ1 such that

%1 ∈ C∞( Ω ), %1 > 0 in Ω, %1(x) = dist(x, ∂Ω) near by ∂Ω. (12.4)

Theorem 12.3 (the second Lions–Magenes theorem [61]). Let σ < 0 and

Xσ(Ω) :=

{
%−σ1 Hσ(Ω) if σ + 1/2 /∈ Z,[
%
−σ+1/2
1 Hσ−1/2(Ω), %

−σ−1/2
1 Hσ+1/2(Ω)

]
t1/2

if σ + 1/2 ∈ Z.
(12.5)

Then the conclusion of Theorem 12.1 remains true.

Remark 12.4. In the cited monograph [61, Ch. 2, Sec. 6.3], Lions and Magenes
introduced the space Xσ(Ω) in a way different from (12.5) and designated Xσ(Ω)
as Ξσ(Ω). Namely, for an integer σ ≥ 0, the space Ξσ(Ω) is defined to consists

of all f ∈ D′(Ω) such that %
|µ|
1 Dµf ∈ L2(Ω) for each multi-index µ with |µ| ≤

σ, and Ξσ(Ω) is endowed with the Hilbert norm
∑
|µ|≤σ ‖%

|µ|
1 Dµf‖L2(Ω). Then,

Ξσ(Ω) := [Ξ[σ](Ω),Ξ[σ]+1(Ω)]t{σ} for fractional σ > 0, with σ = [σ] + {σ} and [σ]
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being the integral part of σ. Finally, Ξσ(Ω) := (Ξ−σ(Ω))′ for σ < 0, the duality
being with respect to the inner product in L2(Ω). It follows from the result of
Lions and Magenes [61, Ch. 2, Sec. 7.1, Corollary 7.4] that, for every σ < 0, the
space Ξσ(Ω) coincides with (12.5) up to equivalence of norms.

12.2. An extension of the Lions–Magenes theorems. The results presented
here are got by the second author in [100]. First, we establish the key theorem,
which is a certain generalization of the Lions–Magenes theorems stated above.
The key theorem asserts that the operator (12.3) is well defined, bounded, and
Fredholm for σ < 0 provided that a Hilbert space Xσ(Ω) ↪→ D′(Ω) satisfies the
following condition.

Condition 12.5 (we name it as Iσ). The set X∞(Ω) := Xσ(Ω)∩C∞( Ω ) is dense
in Xσ(Ω), and there exists a number c > 0 such that ‖Of‖Hσ(Rn) ≤ c ‖f‖Xσ(Ω)

for all f ∈ X∞(Ω), where Of is defined by (8.15).

Note that the smaller σ is, the weaker Condition 12.5 (Iσ) will be for the same
space Xσ(Ω).

The spaces Xσ(Ω) appearing in Theorems 12.1 and 12.3 satisfy Condition 12.5.
This is evident for the first theorem, whereas, for the second one, this follows
from the dense continuous imbedding H−σ(Ω) ↪→ Ξ−σ(Ω) by the duality in view
of Theorem 8.7 iii) and Remark 12.4.

Our key theorem is the following.

Theorem 12.6. Let σ < 0 and Xσ(Ω) be an arbitrary Hilbert space imbedded
continuously in D′(Ω) and satisfying Condition 12.5 (Iσ). Then:

i) The set D∞L,X(Ω) := {u ∈ C∞( Ω ) : Lu ∈ Xσ(Ω)} is dense in Dσ+2q
L,X (Ω).

ii) The mapping u → (Lu,Bu), with u ∈ D∞L,X(Ω), extends uniquely to the
continuous linear operator (12.3).

iii) The operator (12.3) is Fredholm. Its kernel is N , and its range consists
of all the vectors (f, g1, . . . , gq) ∈ Xσ(Ω, ∂Ω) that satisfy (9.8).

iv) If O(X∞(Ω)) is dense in Hσ
Ω

(Rn), then the index of (12.3) is dimN −
dimN+.

Let us outline the proof of Theorem 12.6. The main idea is to derive this
theorem from Roitberg’s generic theorem, i.e. from Theorem 11.4 considered in
the ϕ ≡ 1 case. For the sake of simplicity, suppose that N = N+ = {0}.

We get from Condition 12.5 (Iσ) that the mapping f 7→ Of , f ∈ X∞(Ω),
extends by a continuity to a bounded linear injective operator O : Xσ(Ω) →
Hσ

Ω
(Rn). This operator defines the continuous imbedding Xσ(Ω) ↪→ Hσ,(0)(Ω).

Hence, by Theorem 11.4 a restriction of (11.8) establishes a homeomorphism

(L,B) : D
σ+2q,(2q)
L,X (Ω)↔ Xσ(Ω, ∂Ω). (12.6)

Its domain is the Hilbert space

D
σ+2q,(2q)
L,X (Ω) := {u ∈ Hσ+2q,(2q)(Ω) : Lu ∈ Xσ(Ω)},
‖u‖2

D
σ+2q,(2q)
L,X (Ω)

:= ‖u‖2
Hσ+2q,(2q)(Ω) + ‖Lu‖2

Xσ(Ω).
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It follows from (12.6) that D∞L,X(Ω) is dense in D
σ+2q,(2q)
L,X (Ω).

According to Ya.A. Roitberg [118, Sec. 6.1, Theorem 6.1.1] we have the equiv-
alence of norms

‖u‖Hσ+2q,(2q)(Ω) �
(
‖u‖2

Hσ+2q,(0)(Ω) + ‖Lu‖2
Hσ,(0)(Ω)

)1/2
, u ∈ C∞( Ω ). (12.7)

This result and the continuous imbedding Xσ(Ω) ↪→ Hσ,(0)(Ω) imply

‖u‖
D
σ+2q,(2q)
L,X (Ω)

�
(
‖u‖2

Hσ+2q,(0)(Ω) + ‖Lu‖2
Xσ(Ω)

)1/2
, u ∈ C∞( Ω ). (12.8)

Thus, D
σ+2q,(2q)
L,X (Ω) is the completion of D∞L,X(Ω) with respect to the norm which

is the right-hand side of (12.8).

Consider the mapping u 7→ u0 that takes each u ∈ Dσ+2q,(2q)
L,X (Ω) to the initial

component u0 ∈ Hσ+2q,(0)(Ω) of the vector T2qu. Here the operator T2q is that in
Theorem 11.3 for r = 2q.

If −2q − 1/2 ≤ σ < 0, then Hσ+2q,(0)(Ω) = Hσ+2q(Ω) by (12.2). Now, we may

assert that the mapping u 7→ u0 establishes a homeomorphism of D
σ+2q,(2q)
L,X (Ω)

onto Dσ+2q
L,X (Ω). Hence, (12.6) implies the required homeomorphism

(L,B) : Dσ+2q
L,X (Ω)↔ Xσ(Ω, ∂Ω). (12.9)

Further, if σ < −2q − 1/2, then Hσ+2q,(0)(Ω) = Hσ+2q

Ω
(Rn). Then using (12.1)

and Roitberg’s result [118, Sec. 6.2, Theorem 6.2] we can prove that the mapping

u 7→ u0 �Ω establishes a homeomorphism of D
σ+2q,(2q)
L,X (Ω) onto Dσ+2q

L,X (Ω). Hence,
(12.6) implies (12.9) in this case as well. See [100, Sec. 4] for more details.

Remark 12.7. A proposition similar to Theorem 12.6 was proved in Magenes’s
survey [62, Sec. 6.10] for non half-integer σ ≤ −2q and the Dirichlet problem, the
space Xσ(Ω) obeying some different conditions depending on the problem. Our
Condition 12.5 (Iσ) does not depend on it.

Remark 12.8. Ya.A. Roitberg [117, Sec. 2.4] considered a condition on the space
Xσ(Ω), which was somewhat stronger than Condition 12.5 (Iσ). He required ad-
ditionally that C∞( Ω ) ⊂ Xσ(Ω). Under this stronger condition, Roitberg [117,
Sec. 2.4], [118, Sec. 6.2, p. 190] proved the boundedness of the operator (12.3)
for all σ < 0. Homeomorphism Theorem for this operator was formulated in the
survey [8, Sec. 7.9, p. 85] provided that −2q ≤ s ≤ 0 and N = N+ = {0}.
We also mention the analogs of Theorem 12.6 proved by Yu.V. Kostarchuk and
Ya.A. Roitberg [52, Theorem 4], [119, Sec. 1.3.8]. In these analogs, Roitberg’s
condition is used, but solutions of an elliptic boundary-value problem are con-
sidered in Hσ+2q,(2q)(Ω). Note that Roitberg’s condition does not include the
important case where Xσ(Ω) = {0} and does not cover some weighted spaces
Xσ(Ω) = %Hσ(Ω), which we consider.

Let us consider some applications of Theorem 12.6 caused by a particular choice
of the space Xσ(Ω). Apparently, the space Xσ(Ω) := {0} satisfies Condition 12.5
(Iσ). In this case, Theorem 12.6 coincides with Theorem 10.1 for s := σ+2q < 2q.
It is remarkable that, despite Hs(Ω) 6= Hs(Ω) for half-integer s < 0, we have

{u ∈ Hs(Ω) : Lu = 0 in Ω} = {u ∈ Hs(Ω) : Lu = 0 in Ω}, (12.10)
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the norms in Hs(Ω) and Hs(Ω) being equivalent on the distributions u appearing
in (12.10).

It is also evident that the space Xσ(Ω) := L2(Ω) satisfies Condition 12.5 (Iσ)
for every σ < 0. In this important case, Theorem 12.6 coincides with Theorem
12.1.

We can describe all the Sobolev inner product spaces satisfying Condition 12.5.

Lemma 12.9. Let σ < 0 and λ ∈ R. The space Xσ(Ω) := Hλ(Ω) satisfies
Condition 12.5 (Iσ) if and only if λ ≥ max {σ,−1/2}.

Indeed, we can restrict ourselves to the λ < 0 case. Then the space Xσ(Ω) :=
Hλ(Ω) satisfies Condition 12.5 (Iσ) if and only if the mapping O establishes the
dense continuous embedding Hλ(Ω) ↪→ Hσ

Ω
(Rn). By the duality, this embedding

is equivalent to the dense continuous embedding H−σ(Ω) ↪→ H−λ0 (Ω), which is
valid if and only if −σ ≥ −λ and H−λ0 (Ω) = H−λ(Ω). Since the latter equality
⇔ −λ ≤ 1/2, the lemma is proved.

The next individual theorem results from Theorem 12.6 and Lemma 12.9.

Theorem 12.10. Let σ < 0 and λ ≥ max {σ,−1/2}. Then the mapping u 7→
(Lu,Bu), with u ∈ C∞( Ω ), extends uniquely to a continuous linear operator

(L,B) : {u ∈ Hσ+2q(Ω) : Lu ∈ Hλ(Ω)} → Hλ(Ω)⊕
q⊕
j=1

Hσ+2q−mj−1/2(∂Ω)

(12.11)
provided that its domain is endowed with the norm(

‖u‖2
Hσ+2q(Ω) + ‖Lu‖2

Hλ(Ω)

)1/2
.

The domain is a Hilbert space with respect to this norm. Moreover, the operator
(12.11) is Fredholm, and its index is dimN − dimN+.

Here, it is useful to discuss the special case where λ = σ. If −1/2 < λ = σ < 0,
then the domain of (12.11) coincides with Hσ+2q(Ω) and we arrive at Theorem
9.6 for s = σ+2q and ϕ ≡ 1. If λ = σ = −1/2, then the domain is narrower than
H2q−1/2(Ω) and is equal to H2q−1/2,(2q)(Ω) in view of (12.8) and (12.2) so that we
get Theorem 11.4 for s = 2q − 1/2 and ϕ ≡ 1.

In Theorem 12.10, we always have Xσ(Ω) ⊆ H−1/2(Ω). But we can get a space
Xσ(Ω) containing an extensive class of distributions f /∈ H−1/2(Ω) and satisfying
Condition 12.5 (Iσ) if we use certain weighted spaces %Hσ(Ω).

In this connection, recall the following.

Definition 12.11. Let X(Ω) be a Banach space lying in D′(Ω). A function %
given in Ω is called a multiplier in X(Ω) if the operator of multiplication by % is
defined and bounded on X(Ω).

Let σ < −1/2 and consider the next condition.

Condition 12.12 (we name it as IIσ). The function % is a multiplier in H−σ(Ω),
and

Dj
ν % = 0 on ∂Ω for every j ∈ Z such that 0 ≤ j < −σ − 1/2. (12.12)
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Note if % is a multiplier in H−σ(Ω), then evidently % ∈ H−σ(Ω) so that, by
Theorem 8.9, the trace of Dj

ν% on ∂Ω is well defined in (12.12). A description of
the set of all multipliers in H−σ(Ω) is given in [66, Sec. 9.3.3].

Using Condition 12.12 (IIσ), we can describe the class of all weighted Sobolev
inner product spaces of order σ that satisfies Condition 12.5 (Iσ).

Lemma 12.13. Let σ < −1/2, and let a function % ∈ C∞(Ω) be positive. The
space Xσ(Ω) := %Hσ(Ω) satisfies Condition 12.5 (Iσ) if and only if % meets Con-
dition 12.12 (IIσ).

Indeed, using the intrinsic description of H−σ0 (Ω) mentioned in Subsection 8.4,
we can prove that % satisfies Condition 12.12 (IIσ) if and only if the multiplication
by % is a bounded operator M% : H−σ(Ω)→ H−σ0 (Ω). The latter is equivalent, by
the duality, to the boundedness of the operator M% : Hσ(Ω)→ Hσ

Ω
(Rn). Note that

the mapping f 7→ %−1f establishes the homeomorphism M%−1 : %Hσ(Ω)↔ Hσ(Ω).
Therefore, we conclude that % satisfies Condition 12.12 (IIσ) if and only if the
identity operator M%M%−1 establishes a continuous embedding O : %Hσ(Ω) →
Hσ

Ω
(Rn). The embedding means that the space Xσ(Ω) = %Hσ(Ω) satisfies Condi-

tion 12.5 (Iσ).
The next individual theorem results from Theorem 12.6 and Lemma 12.13.

Theorem 12.14. Let σ < −1/2, and let a positive function % ∈ C∞(Ω) satisfy
Condition 12.12 (IIσ). Then the mapping u → (Lu,Bu), with u ∈ C∞( Ω ),
Lu ∈ %Hσ(Ω), extends uniquely to a continuous linear operator

(L,B) :
{
u ∈ Hσ+2q(Ω) : Lu ∈ %Hσ(Ω)

}
→ %Hσ(Ω)⊕

q⊕
j=1

Hσ+2q−mj−1/2(∂Ω)

(12.13)
provided that its domain is endowed with the norm(

‖u‖2
Hσ+2q(Ω) + ‖%−1Lu‖2

Hσ(Ω)

)1/2
.

The domain is a Hilbert space with respect to this norm. Moreover, the operator
(12.13) is Fredholm, and its index is dimN − dimN+.

We give an important example of a function % satisfying Condition 12.12 (IIσ)
for fixed σ < −1/2 if we set % := %δ1 provided that %1 meets (12.4) and that
δ ≥ −σ − 1/2 ∈ Z or δ > −σ − 1/2 /∈ Z.

It is useful to compare Theorem 12.3 (the second Lions–Magenes theorem)
with Theorems 12.10 and 12.14. For non half-integer σ < −1/2, Theorem 12.3
is the special case of Theorem 12.14, where % := %−σ1 . For the half-integer values
of σ < −1/2, Theorem 12.3 follows from this case by the interpolation with
the power parameter t1/2. Finally, if −1/2 ≤ σ < 0, then Theorem 12.3 is a
consequence of Theorem 12.10, in which we can take the space Xσ(Ω) := Hσ(Ω)
containing %−σ1 Hσ(Ω).

12.3. Individual theorems on classes of Hörmander spaces. Here we give
analogs of Theorems 12.6, 12.10, and 12.14 for some classes of Hörmander spaces.
The proofs of the analogs are similar to those outlined in the previous subsection.
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First, we state the key theorem, an analog of Theorems 12.6. Let σ < 0 and
ϕ ∈ M. Suppose that a Hilbert space Xσ,ϕ(Ω) is embedded continuously in
D′(Ω). Consider the following analog of Condition 12.5 (Iσ).

Condition 12.15 (we name it as Iσ,ϕ). The set X∞(Ω) := Xσ,ϕ(Ω) ∩ C∞( Ω )
is dense in Xσ,ϕ(Ω), and there exists a number c > 0 such that ‖Of‖Hσ,ϕ(Rn) ≤
c ‖f‖Xσ,ϕ(Ω) for all f ∈ X∞(Ω), where Of is defined by (8.15).

The domain of (L,B) is defined by the formula

Dσ+2q,ϕ
L,X (Ω) := {u ∈ Hσ+2q,ϕ(Ω) : Lu ∈ Xσ,ϕ(Ω)}

and endowed with the graph inner product

(u1, u2)Dσ+2q
L,X (Ω) := (u1, u2)Hσ+2q(Ω) + (Lu1, Lu2)Xσ(Ω).

The space Dσ+2q,ϕ
L,X (Ω) is Hilbert.

Our key theorem on classes of Hörmander spaces is the following.

Theorem 12.16. Let ϕ ∈M, and let a number σ < 0 be such that

σ + 2q 6= 1/2− k for every integer k ≥ 1. (12.14)

Suppose that Xσ,ϕ(Ω) is an arbitrary Hilbert space imbedded continuously in D′(Ω)
and satisfying Condition 12.15 (Iσ,ϕ). Then:

i) The set D∞L,X(Ω) := {u ∈ C∞( Ω ) : Lu ∈ Xσ,ϕ(Ω)} is dense in Dσ+2q,ϕ
L,X (Ω).

ii) The mapping u → (Lu,Bu), with u ∈ D∞L,X(Ω), extends uniquely to a
continuous linear operator

(L,B) : Dσ+2q,ϕ
L,X (Ω)→ Xσ,ϕ(Ω)⊕

q⊕
j=1

Hσ+2q−mj−1/2,ϕ(∂Ω) =: Xσ,ϕ(Ω, ∂Ω),

(12.15)
iii) The operator (12.15) is Fredholm. Its kernel is N , and its range consists

of all the vectors (f, g1, . . . , gq) ∈ Xσ,ϕ(Ω, ∂Ω) that satisfy (9.8).
iv) If O(X∞(Ω)) is dense in Hσ,ϕ

Ω
(Rn), then the index of (12.15) is dimN −

dimN+.

Note that the condition (12.14) is stipulated by that, in definition ofDσ+2q,ϕ
L,X (Ω),

we use the space Hσ+2q,ϕ(Ω), rather than an appropriate analog of Hσ+2q(Ω),
which is different from Hσ+2q,ϕ(Ω) if σ + 2q is negative and half-integer.

The following two individual theorems result from the key theorem. The first
of them is for nonweighted Hörmander spaces Xσ,ϕ(Ω) := Hλ,η(Ω). In view of
Theorem 9.6, we can confine ourselves to the σ < −1/2 case.

Theorem 12.17. Let σ < −1/2, the condition (12.14) be fulfilled, λ > −1/2,
and ϕ, η ∈ M. Then the mapping u 7→ (Lu,Bu), with u ∈ C∞( Ω ), extends
uniquely to a continuous linear operator

(L,B) : {u ∈ Hσ+2q,ϕ(Ω) : Lu ∈ Hλ,η(Ω)} →

Hλ,η(Ω)⊕
q⊕
j=1

Hσ+2q−mj−1/2,ϕ(∂Ω) (12.16)
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provided that its domain is endowed with the norm(
‖u‖2

Hσ+2q,ϕ(Ω) + ‖Lu‖2
Hλ,η(Ω)

)1/2
.

The domain is a Hilbert space with respect to this norm. Moreover, the operator
(12.16) is Fredholm, and its index is dimN − dimN+.

It is remarkable that, in this individual theorem, the solution and right-hand
side of the elliptic equation Lu = f can be of different supplementary smoothness,
ϕ and η.

The second individual theorem is for weighted Hörmander spaces Xσ,ϕ(Ω) :=
%Hσ,ϕ(Ω), namely

%Hσ,ϕ(Ω) := {f = %v : v ∈ Hσ,ϕ(Ω) },
(f1, f2)%Hσ,ϕ(Ω) := (%−1f1, %

−1f2)Hσ,ϕ(Ω).

Here σ < −1/2, ϕ ∈ M, and the function % ∈ C∞(Ω) is positive. The space
%Hσ,ϕ(Ω) is Hilbert.

Theorem 12.18. Let σ < −1/2, the condition (12.14) be valid, and ϕ ∈ M.
Suppose that a positive function % ∈ C∞(Ω) is a multiplier in H−σ,1/ϕ(Ω) and
satisfies (12.12). Then the mapping u → (Lu,Bu), with u ∈ C∞( Ω ), Lu ∈
%Hσ,ϕ(Ω), extends uniquely to a continuous linear operator

(L,B) :
{
u ∈ Hσ+2q,ϕ(Ω) : Lu ∈ %Hσ,ϕ(Ω)

}
→

%Hσ,ϕ(Ω)⊕
q⊕
j=1

Hσ+2q−mj−1/2,ϕ(∂Ω) (12.17)

provided that its domain is endowed with the norm(
‖u‖2

Hσ+2q,ϕ(Ω) + ‖%−1Lu‖2
Hσ,ϕ(Ω)

)1/2
.

The domain is a Hilbert space with respect to this norm. Moreover, the operator
(12.18) is Fredholm, and its index is dimN − dimN+.

We get a wide enough class of weight functions % satisfying the condition of
this theorem if we set % := %δ1, where %1 is subject to (12.4) and δ > −σ − 1/2.

13. Other results

In this section, we outline applications of Hörmander spaces to other classes of
elliptic problems, namely to nonregular elliptic boundary-value problems, para-
meter-elliptic problems, mixed elliptic problems, and elliptic systems. We recall
the statements of these problems and formulate theorems about properties of
the correspondent operators. As for Sobolev spaces, the Fredholm property and
its implications will be preserved for some classes of Hörmander spaces. The
theorems stated below are deduced from the Sobolev case with the help of the
interpolation with an appropriate function parameter. We will not sketch the
proofs and only will refer to the authors’ relevant papers.
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13.1. Nonregular elliptic boundary-value problems. Here we suppose that
the boundary-value problem (9.1), (9.2) is elliptic in Ω but can be nonregular.
This means that it satisfies conditions i) and ii) of Definition 9.2 but need not meet
condition iii). Theorems 9.6–9.10 remain valid for this boundary-value problem
except for the description of the operator range and the index formula given in
Theorem 9.6. The exception is caused by that the boundary-value problem need
not have a formally adjoint boundary-value problem in the class of differential
equations. A version of Theorem 9.6 in this situation is the following.

Theorem 13.1. Let s > m+ 1/2 and ϕ ∈M. Then the bounded linear operator
(9.4) is Fredholm. Its kernel coincides with N , whereas its range consists of
all the vectors (f, g1, . . . , gq) ∈ Hs,ϕ(Ω, ∂Ω) such that the equality in (9.8) is
fulfilled for each v ∈ W . Here W is a certain finite-dimensional space that lies
in C∞( Ω )× (C∞(∂Ω))q and does not depend on s and ϕ. The index of (9.4) is
dimN − dimW and is also independent of s, ϕ.

The proof is given in [77, Sec. 4]. Recall, if the boundary-value problem (9.1),
(9.2) is regular elliptic, then W = N+

Example 13.2. The oblique derivative problem for the Laplace equation:

∆u = f in Ω,
∂u

∂η
= g on ∂Ω. (13.1)

Here η is an infinitely smooth field of unit vectors η(x), x ∈ ∂Ω. Suppose that
dim Ω = 2, then the boundary-value problem (13.1) is elliptic in Ω, but it is
nonregular provided ∂Ωη 6= ∅. Here ∂Ωη denotes the set of all x ∈ ∂Ω such
that η(x) is tangent to ∂Ω. If Ω is a disk, then the correspondent operator index
equals 2 − δ(η)/π, where δ(η) is the increment of the angle between i := (1, 0)
and η(x) when x goes counterclockwise around ∂Ω; see, e.g., [90, Ch. 19, § 4].
Note if dim Ω ≥ 3 and ∂Ωη 6= ∅, then the boundary-value problem (13.1) is not
elliptic at all.

Other examples of nonregular elliptic boundary-value problems are given in
[116, Sec. 4].

At the end of this subsection, we recall the following important result concern-
ing an arbitrary boundary-value problem (9.1), (9.1) (see, e.g., [8, Sec. 2.4]). If
the corresponding operator (9.4) is Fredholm for certain s ≥ 2q with ϕ ≡ 1, then
this problem is elliptic in Ω, i.e., the above-mentioned conditions i) and ii) are
satisfied.

13.2. Parameter-elliptic problems. Such problems were distinguished by S.
Agmon and L. Nirenberg [1, 4], M.S. Agranovich and M.I. Vishik [9] as a class of
elliptic boundary-value problems that depend on a complex-valued parameter, say
λ, and possess the following remarkable property. Providing |λ| � 1, the operator
correspondent to the problem establishes a homeomorphism on appropriate pairs
of Sobolev spaces, and moreover the operator norm admits a two-sided a priory
estimate with constants independent of λ. Parameter-elliptic problems were ap-
plied to the spectral theory of elliptic operators and to parabolic equations. Some
wider classes of parameter-elliptic operators and boundary-value problems were
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investigated by M.S. Agranovich [5, 6], R. Denk, R. Mennicken and L.R. Volevich
[19, 20], G. Grubb [35, Ch. 2], A.N. Kozhevnikov [53, 54, 55] (see also the surveys
[7, 8]).

In this subsection, we give an application of Hörmander spaces to parameter-
elliptic boundary-value problems considered by Agmon, Nirenberg, and Agra-
novich, Vishik. Namely, we state a homeomorphism theorem on a class of
Hörmander spaces and give a correspondent two-sided a priory estimate for the
operator norm.

Recall the definition of the parameter-elliptic boundary-value problem. We
consider the nonhomogeneous boundary-value problem

L(λ)u = f in Ω, Bj(λ)u = gj on ∂Ω, j = 1, . . . , q, (13.2)

that depends on the parameter λ ∈ C as follows:

L(λ) :=

2q∑
r=0

λ2q−rLr, Bj(λ) :=

mj∑
r=0

λmj−rBj,r. (13.3)

Here Lr = Lr(x,D), x ∈ Ω, and Bj,r = Bj,r(x,D), x ∈ ∂Ω, are linear partial
differential expressions of order ≤ r and with complex-valued infinitely smooth
coefficients. As above, the integers q and mj satisfy the equalities q ≥ 1 and
0 ≤ mj ≤ 2q − 1. Note that L(0) = L2q and Bj(0) = Bj,mj .

We associate certain homogeneous polynomials in (ξ, λ) ∈ Cn+1 with partial
differential expressions (13.3). Namely, we set

L(0)(x; ξ, λ) :=

2q∑
r=0

λ2q−rL(0)
r (x, ξ), with x ∈ Ω, ξ ∈ Cn, λ ∈ C.

Here L
(0)
r (x, ξ) is the principal symbol of Lr(x,D) provided ordLr = r, or

L
(0)
r (x, ξ) ≡ 0 if ordLr < r. Similarly, for j = 1, . . . , q, we put

B
(0)
j (x; ξ, λ) :=

mj∑
r=0

λmj−rB
(0)
j,r (x, ξ), with x ∈ ∂Ω, ξ ∈ Cn, λ ∈ C.

Here B
(0)
j,r (x, ξ) is the principal symbol of Bj,r(x,D) provided ordBj,r = r, or

B
(0)
j,r (x, ξ) ≡ 0 if ordBj,r < r. Note that L(0)(x; ξ, λ) and B

(0)
j (x; ξ, λ) are homo-

geneous polynomials in (ξ, λ) of the orders 2q and mj respectively.
Let K be a fixed closed angle on the complex plain with vertex at the origin;

here we admits the case where K degenerates into a ray.

Definition 13.3. The boundary-value problem (13.2) is called parameter-elliptic
in the angle K if the following conditions are satisfied:

i) L(0)(x; ξ, λ) 6= 0 for each x ∈ Ω, ξ ∈ Rn, and λ ∈ K whenever |ξ|+ |λ| 6= 0.
ii) Let x ∈ ∂Ω, ξ ∈ Rn, and λ ∈ K be such that ξ is tangent to ∂Ω at

x and that |ξ| + |λ| 6= 0. Then the polynomials B
(0)
j (x; ξ + τν(x), λ) in

τ , j = 1, . . . , q, are linearly independent modulo
∏q

j=1(τ − τ+
j (x; ξ, λ)).

Here τ+
1 (x; ξ, λ), . . . , τ+

q (x; ξ, λ) are all the τ -roots of L(0)(x; ξ + τν(x), λ)
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with Im τ > 0, each root being taken the number of times equal to its
multiplicity.

Remark 13.4. Condition ii) of Definition 13.3 is well stated in the sense that, for
the polynomial L(0)(x; ξ + τν(x), λ), the numbers of the τ -roots with Im τ > 0
and of those with Im τ < 0 are the same and equal to q if we take into account the
roots multiplicity. Indeed, it follows from condition i) that the partial differential
expression

L(x;D,Dt) :=

2q∑
r=0

D2q−r
t Lr(x,D), x ∈ Ω,

is elliptic. Since the expression includes the derivation with respect to n+ 1 ≥ 3
real arguments x1, . . . , xn, t, its ellipticity is equivalent to the proper ellipticity
condition (see Remark 9.3). So, the τ -roots of L(0)(x; ξ + τν(x), λ) satisfy the
indicated property.

Let us give some instances of parameter-elliptic boundary-value problems [8,
Sec. 3.1 b)].

Example 13.5. Let differential expression L(λ) satisfy condition i) of Definition
13.3. Then the Dirichlet boundary-value problem for the equation L(λ) = f is
parameter-elliptic in the angle K. Here the boundary conditions do not depend
on the parameter λ.

Example 13.6. The boundary-value problem

∆u+ λ2u = f in Ω,
∂u

∂ν
− λu = g on ∂Ω

is parameter-elliptic in each angle Kε := {λ ∈ C : ε ≤ |Imλ| ≤ π − ε}, with
0 < ε < π/2, if the complex plane is slitted along the negative semiaxis.

Further in this subsection the boundary-value problem (13.2) is supposed to
be parameter-elliptic in the angle K.

It follows from Definition 13.3 in view of Remark 13.4 that the boundary-value
problem (13.2) is elliptic in Ω (and need not be regular) provided λ = 0. Since
λ is contained only in the lover order terms of differential expressions L(λ) and
Bj(λ), the problem is elliptic in Ω for every λ ∈ C. So, by Theorem 9.6, we have
the Fredholm bounded operator

(L(λ), B(λ)) : Hs,ϕ(Ω)→ Hs,ϕ(Ω, ∂Ω) (13.4)

for each s > m + 1/2, ϕ ∈ M, and λ ∈ C. The operator index does not depend
on s, ϕ, and on λ because λ influences only the lover order terms; see, e.g., [46,
Sec. 20.1, Theorem 20.1.8]. Moreover, since the boundary-value problem (13.2)
is parameter-elliptic in K, the operator (13.4) possesses the following additional
properties.

Theorem 13.7. i) There exists a number λ0 > 0 such that for each λ ∈ K
with |λ| ≥ λ0 and for any s > m + 1/2, ϕ ∈ M, the operator (13.2) is a
homeomorphism of Hs,ϕ(Ω) onto Hs,ϕ(Ω, ∂Ω).



270 V.A. MIKHAILETS, A.A. MURACH

ii) Suppose that s > 2q and ϕ ∈ M, then there is a number c = c(s, ϕ) ≥ 1
such that, for each λ ∈ K, with |λ| ≥ max{λ0, 1}, and for every u ∈
Hs,ϕ(Ω), we have the following two-sided estimate

c−1
(
‖u‖Hs,ϕ(Ω) + |λ|sϕ(|λ|) ‖u‖L2(Ω)

)
≤ ‖L(λ)u‖Hs−2q,ϕ(Ω) + |λ|s−2qϕ(|λ|) ‖L(λ)u‖L2(Ω)

+

q∑
j=1

(
‖Bj(λ)u‖

Hs−mj−1/2,ϕ(∂Ω)

+ |λ|s−mj−1/2ϕ(|λ|) ‖Bj(λ)u‖L2(∂Ω)

)
≤ c

(
‖u‖Hs,ϕ(Ω) + |λ|sϕ(|λ|) ‖u‖L2(Ω)

)
. (13.5)

Here c does not depend on u and λ.

We should comment on assertion ii) of this theorem. For fixed λ, the estimate
(13.5) is written for the norms, non-Hilbert, that are equivalent to ‖u‖Hs,ϕ(Ω)

and ‖(L(λ), B(λ))u‖Hs,ϕ(Ω,∂Ω) respectively. The non-Hilbert norms are used to
avoid cumbersome expressions. To have the finite norm ‖L(λ)u‖L2(Ω) in (13.5),
we suppose that s > 2q is fulfilled instead of the condition s > m + 1/2 used
in assertion i). Finally, the supplement condition |λ| ≥ 1 is caused by that the
function ϕ(t) is defined for t ≥ 1. Note the estimate (13.5) is of interest for
|λ| � 1 only.

In the Sobolev case where s ≥ 2q and ϕ ≡ 1, Theorem 13.7 was proved by
M.S. Agranovich and M.I. Vishik [9, § 4 and 5]; see also [8, Sec. 3.2]. In general,
the theorem is proved in [78, Sec. 7]. Note that the right-hand side of the estimate
(13.5) is valid without the assumption about the parameter-ellipticity of (13.2).
Analogs of Theorem 13.7 for parameter-elliptic operators, scalar or matrix, are
proved in [96, 97].

We note an important consequence of Theorem 13.7 i). Suppose that the
boundary-value problem (13.2) is parameter-elliptic on a certain ray K := {λ ∈
C : arg λ = const}. Then the operator (13.4) is of zero index for each s > m+1/2,
ϕ ∈M, and λ ∈ C.

13.3. Mixed elliptic problems. Here we consider a certain class of elliptic
boundary-value problems in multiply connected bonded domains. As distin-
guished from the above, we allow the orders of the boundary differential ex-
pressions to be distinct on different connected components of the boundary. For
instance, studying the Laplace equation in a ring, one may set the Dirichlet con-
dition on a chosen connected component of the ring boundary and the Neumann
condition on the other component. The problems under consideration relate to
the mixed elliptic boundary-value problems [107, 120, 128, 137]. They have not
investigated so completely as the unmixed elliptic problems. This is concerned
with some difficulties, that appear when one reduces the mixed problem to a
pseudodifferential operator on the boundary; see, e.g., [128]. In the problems we
consider, the portions of boundary on which the boundary expression has distinct
orders do not adjoin to each other. These problems are called formally mixed.
They can be reduced locally to a model elliptic problem in the half-space [94].
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In this subsection, we suppose that the boundary of Ω consists of r ≥ 2
nonempty connected components Γ1, . . . ,Γr. Fix an integer q ≥ 1 and consider a
formally mixed boundary-value problem

Lu = f in Ω, B
(k)
j u = gk,j on Γk, j = 1, . . . , q, k = 1, . . . , r. (13.6)

Here the partial differential expression L = L(x,D), x ∈ Ω, of order 2q, is the

same as in Section 9, whereas B(k) := {B(k)
j : j = 1, . . . , q} is a system of boundary

linear partial differential expressions given on the component Γk. Suppose that

the coefficients of the expressions B
(k)
j = B

(k)
j (x,D), x ∈ Γk, are infinitely smooth

complex-valued functions and that all m
(k)
j := ordB

(k)
j ≤ 2q − 1. We denote

Λ := (L,B
(1)
1 , . . . , B(1)

q , . . . , B
(r)
1 , . . . , B(r)

q ),

NΛ := {u ∈ C∞( Ω ) : Λu = 0},

m := max {ordB
(k)
j : j = 1, . . . , q, k = 1, . . . , r}.

The mapping u 7→ Λu, u ∈ C∞( Ω ), extends uniquely to a bounded linear
operator

Λ : Hs,ϕ(Ω)→ Hs−2q, ϕ(Ω)⊕
r⊕

k=1

q⊕
j=1

Hs−m(k)
j −1/2,ϕ(Γk) (13.7)

=: Hs,ϕ(Ω,Γ1, . . . ,Γr)

for each s > m+ 1/2 and ϕ ∈M.

Definition 13.8. The formally mixed boundary-value problem (13.6) is called
elliptic in the multiply connected domain Ω if L is proper elliptic on Ω and if, for
each k = 1, . . . , r, the system B(k) satisfies the Lopatinsky condition with respect
to L on Γk.

Suppose the mixed boundary-value problem (13.6) is elliptic in Ω. Then it has
the following properties [94].

Theorem 13.9. Let s > m+ 1/2 and ϕ ∈M. Then the bounded linear operator
(13.7) is Fredholm. Its kernel coincides with NΛ, whereas its range consists of all
the vectors

(f, g1,1, . . . , g1,q, . . . , gr,1, . . . , gr,q) ∈ Hs,ϕ(Ω,Γ1, . . . ,Γr)

such that

(f, w0)Ω +
r∑

k=1

q∑
j=1

(gk,j, wk,j)Γk = 0 (13.8)

for each vector-valued function

(w0, w1,1, . . . , w1,q, . . . , wr,1, . . . , wr,q) ∈ WΛ.

Here WΛ is a certain finite-dimensional space that lies in

C∞( Ω )×
r∏
j=1

(C∞(Γj))
q
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and does not depend on s and ϕ. The index of (13.7) is dimN − dimWΛ and is
also independent of s, ϕ.

It is self-clear that, in (13.8), the notation (·, ·)Γk stands for the inner product
in L2(Γk).

13.4. Elliptic systems. Extensive classes of elliptic systems of linear partial
differential equations were introduced and investigated by I.G. Petrovskii [109]
and A. Douglis, L. Nirenberg [22]. For pseudodifferential equations, general el-
liptic systems were studied by L. Hörmander [44, Sec. 1.0]. He proved a priori
estimates for solutions of these systems in appropriate couples of Sobolev inner
product spaces of arbitrary real orders. If the system is given on a closed smooth
manifold, then the estimate is equivalent to the Fredholm property of the corre-
spondent elliptic matrix PsDO; see, e.g., the monograph [46, Ch. 19], and the
survey [7, Sec. 3.2]. This fact is of great importance in the theory of elliptic
boundary-value problems because each of these problems can be reduced to an
elliptic system of pseudodifferential equations on the boundary of the domain;
see, e.g., [46, Ch. 20] and [139, Part IV].

In this subsection, we examine the Petrovskii elliptic systems on the refined
Sobolev scale over a closed smooth manifold Γ and generalize the results of Sub-
section 6.1 to these systems.

Let us consider a system of p ≥ 2 linear equations
p∑

k=1

Aj,k uk = fj on Γ, j = 1, . . . , p. (13.9)

Here Aj,k, j, k = 1, . . . , p, are scalar classical pseudodifferential operators of arbi-
trary real orders defined on Γ. We consider equations (13.9) in the sense of the dis-
tribution theory so that uk, fj ∈ D′(Γ). Put mk := max{ordA1,k, . . . , ordAp,k}.

Let us rewrite the system (13.9) in the matrix form: Au = f on Γ, where A :=
(Aj,k) is a square matrix of order p, and u = col (u1, . . . , up), f = col (f1, . . . , fp)
are functional columns. The mapping u 7→ Au is a linear continuous operator on
the space (D′(Γ))p. By lemma 6.1, a restriction of the mapping sets a bounded
linear operator

A :

p⊕
k=1

Hs+mk, ϕ(Γ)→ (Hs,ϕ(Γ))p (13.10)

for each s ∈ R and ϕ ∈M.

Definition 13.10. The system (13.9) and the matrix PsDO A are called Petro-

vskii elliptic on Γ if det
(
a

(0)
j,k(x, ξ)

)p
j,k=1

6= 0 for each point x ∈ Γ and cov-

ector ξ ∈ T ∗xΓ \ {0}. Here a
(0)
j,k(x, ξ) is the principal symbol of Aj,k provided

ordAj,k = mk; otherwise a
(0)
j,k(x, ξ) ≡ 0.

We suppose that the system Au = f is elliptic on Γ. Then both the spaces

N :=
{
u ∈ (C∞(Γ))p : Au = 0 on Γ

}
,

N+ :=
{
v ∈ (C∞(Γ))p : A+v = 0 on Γ

}
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are finite-dimensional [7, Sec. 3.2]. Here A+ is the matrix pseudodifferential
operator formally adjoint to A with respect to the inner product in (L2(Γ))p.

Theorem 13.11. The operator (13.10) corresponding to the elliptic system is
Fredholm for each s ∈ R and ϕ ∈ M. Its kernel coincides with N , whereas its
range consists of all the vectors f ∈ (Hs,ϕ(Γ))p such that

∑p
j=1 (fj, vj)Γ = 0 for

each (v1, . . . , vp) ∈ N+. The index of (13.10) is equal to dimN − dimN+ and
independent of s and ϕ.

This theorem is proved in [83] together with other properties of the system
(13.9). They are similar to that given in Subsection 6.1, in which the scalar case
is treated. We also refer to the second author’s papers [97, 98, 99] devoted to
various classes of elliptic systems in Hörmander spaces.

13.5. Boundary-value problems for elliptic systems. Boundary-value prob-
lems for various classes of elliptic systems of linear partial differential equations
were investigated by S. Agmon, A. Douglis, and L. Nirenberg, M.S. Agranovich
and A.S. Dynin, L. Hörmander, L.N. Slobodetskii, V.A. Solonnikov, L.R. Vole-
vich; see the until now unique monograph [139] devoted especially to these prob-
lems, the survey [8, § 6] and the references given therein. It was proved that the
operator correspondent to the problem is Fredholm on appropriate pairs of the
positive order Sobolev spaces. Regarding the boundary-value problems for Petro-
vskii elliptic systems, we extend this result over the one-sided refined Sobolev
scale.

Let us consider a system of p ≥ 2 partial differential equations

p∑
k=1

Lj,k uk = fj in Ω, j = 1, . . . , p. (13.11)

Here Lj,k = Lj,k(x,D), x ∈ Ω, j, k = 1, . . . , p, are scalar linear partial differential
expressions given on Ω. The expression Lj,k is of an arbitrary finite order, the
coefficients of Lj,k are supposed to be complex-valued and infinitely smooth on
Ω. Put mk := max{ordL1,k, . . . , ordLp,k} so that mk is the maximal order of de-
rivative of the unknown function uk. Suppose that all mk ≥ 1 and that

∑p
k=1 mk

is even, say 2q.
We consider the solutions of (13.11) that satisfy the boundary conditions

p∑
k=1

Bj,k uk = gj on ∂Ω, j = 1, . . . , q. (13.12)

Here Bj,k = Bj,k(x,D), with x ∈ ∂Ω, j = 1, . . . , q, and k = 1, . . . , p, are boundary
linear partial differential expressions with infinitely smooth coefficients. We sup-
pose ordBj,k ≤ mk−1 and set rj := min {mk−ordBj,k : k = 1, . . . , p} admitting
ordBj,k := −∞ for Bj,k ≡ 0; thus ordBj,k ≤ mk − rj.

Let us write the boundary-value problem (13.11), (13.12) in the matrix form

Lu = f in Ω, Bu = g on ∂Ω.
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Here L := (Lj,k)
p
j,k=1 and B := (Bj,k)j=1,...,q

k=1,...,p
are matrix differential expressions,

whereas u := col (u1, . . . , up), f := col (f1, . . . , fp), and g := col (g1, . . . , gq) are
function columns.

It follows from Lemma 9.1 that the mapping u 7→ (Lu,Bu), u ∈ (C∞( Ω ))p,
extends uniquely to a continuous linear operator

(L,B) :

p⊕
k=1

Hs+mk,ϕ(Ω)→ (Hs,ϕ(Ω))p ⊕
q⊕
j=1

Hs+rj−1/2,ϕ(∂Ω) (13.13)

=: Hs,ϕ(Ω, ∂Ω)

for each s > −r + 1/2 and ϕ ∈ M, with r := min{r1, . . . , rq} ≥ 1. We are
interested in properties of this operator provided the boundary-value problem is
elliptic in the Petrovskii sense. Recall the ellipticity definition.

With L and B we associate the matrixes of homogeneous polynomials

L(0)(x, ξ) :=
(
L

(0)
j,k(x, ξ)

)p
j,k=1

, B(0)(x, ξ) :=
(
B

(0)
j,k (x, ξ)

)
j=1,...,q
k=1,...,p

.

Here L
(0)
j,k(x, ξ), x ∈ Ω, ξ ∈ Cn, is the principal symbol of Lj,k(x,D) provided

ordLj,k = mk; otherwise L
(0)
j,k(x, ξ) ≡ 0. Similarly, B

(0)
j,k (x, ξ), x ∈ ∂Ω, ξ ∈ Cn,

is the principal symbol of Bj,k(x,D) provided ordBj,k = mk − rj; otherwise

B
(0)
j,k (x, ξ) ≡ 0.

Definition 13.12. The boundary-value problem (13.11), (13.12) is called Petro-
vskii elliptic in Ω if the following conditions are satisfied:

i) The system (13.11) is proper elliptic on Ω; i.e., condition i) of Definition
9.2 is fulfilled, with the notation detL(0)(x, ξ′+ τξ′′) being placed instead
of L(0)(x, ξ′ + τξ′′).

ii) The relations (13.12) satisfies the Lopatinsky condition with respect to
(13.11) on ∂Ω; i.e., for an arbitrary point x ∈ ∂Ω and for each vector
ξ 6= 0 tangent to ∂Ω at x, the rows of the matrix B(0)(x, ξ + τν(x)) ×
L

(0)
c (x, ξ+ τν(x)) are linearly independent polynomials, in τ ∈ R, modulo∏q
j=1

(
τ − τ+

j (x; ξ, ν(x))
)
. Here L

(0)
c (x, ξ) is the transpose of the matrix

composed by the cofactors of the matrix L(0)(x, ξ) elements.

Note, if condition i) is satisfied, then the system (13.11) is Petrovskii elliptic
on Ω, i.e. detL(0)(x, ξ) 6= 0 for each x ∈ Ω and ξ ∈ Rn \{0}. The converse is true
provided that dim Ω ≥ 3; see [8, Sec. 6.1 a)].

Example 13.13. The elliptic boundary-value problem for the Cauchy-Riemann
system:

∂u1

∂x1

− ∂u2

∂x2

= f1,
∂u1

∂x2

+
∂u2

∂x1

= f2 in Ω,

u1 + u2 = g on ∂Ω.

Here n = p = 2 and m1 = m2 = 1, so that q = 1. The Cauchy-Riemann system is
an instance of homogeneous elliptic systems, which satisfy Definition 13.12 with
m1 = . . . = mp.
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Example 13.14. The Petrovskii elliptic boundary-value problem

∂u1

∂x1

− ∂3u2

∂x3
2

= f1,
∂u1

∂x2

+
∂3u2

∂x3
1

= f2 in Ω,

u1 = g1, u2

(
or
∂u2

∂ν
, or

∂2u2

∂ν2

)
= g2 on ∂Ω.

Here n = p = 2, m1 = 1, and m2 = 3 so that q = 2. This system is not
homogeneous elliptic.

Other examples of elliptic systems, of various kinds, are given in [8, § 6.2].
Suppose the boundary-value problem (13.11), (13.12) is Petrovskii elliptic in

Ω. Then it has the following properties [95].

Theorem 13.15. Let s > −r + 1/2 and ϕ ∈ M. Then the bounded linear
operator (13.13) is Fredholm. The kernel N of (13.13) lies in (C∞( Ω ))p and
does not depend on s and ϕ. The range of (13.13) consists of all the vectors
(f1, . . . , fp; g1, . . . , gq) ∈ Hs,ϕ(Ω, ∂Ω) such that

p∑
j=1

(fj, wj)Ω +

q∑
j=1

(gj, hj)∂Ω = 0

for each vector-valued function (w1, . . . , wp; h1, . . . , hq) ∈ W . Here W is a certain
finite-dimensional space that lies in (C∞( Ω ))p × (C∞(Γ))q. The index of the
operator (13.13) is dimN − dimW and independent of s, ϕ.
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