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ON HIGH DIMENSIONAL MAXIMAL OPERATORS

J. M. ALDAZ1 ∗ AND J. PÉREZ LÁZARO2

Communicated by M. S. Moslehian

Abstract. In this note we describe some recent advances in the area of maxi-
mal function inequalities. We also study the behaviour of the centered Hardy–
Littlewood maximal operator associated to certain families of doubling, radial
decreasing measures, and acting on radial functions. In fact, we precisely de-
termine when the weak type (1, 1) bounds are uniform in the dimension.

1. Introduction

Given a Borel measure µ on a metric space X and a locally integrable function
g, the centered Hardy–Littlewood maximal operator Mµ is given by

Mµg(x) := sup
{r>0:0<µ(B(x,r))}

1

µ(B(x, r))

∫
B(x,r)

|g|dµ, (1.1)

where B(x, r) denotes the open ball of radius r > 0 centered at x. Recall that g is
locally integrable if for every x ∈ X there exists an r > 0 such that

∫
B(x,r)

|g|dµ <
∞. For instance, g(x) := 1/x is locally integrable on (0,∞), but not on R,
regardless of how it is extended to (−∞, 0].

We allow measures that assign infinite size to some balls. Of course, if µ
assigns infinite measure to all balls, then it is of no interest in this context,
since then Mµg ≡ 0 for every locally integrable g (we adopt the convention
∞/∞ =∞ · 0 = 0). Note that if all balls (with finite radii) have finite measure,
then it does not matter whether one uses open or closed balls in the definition
of Mµ. It follows from countable additivity that this does not alter the value of
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Mµg(x), since closed (resp. open) balls can be obtained as countable intersections
(resp. unions) of open (resp. closed) balls with the same center. When µ = λd,
the d-dimensional Lebesgue measure, we often simplify notation, by writing M
rather than Mλd and dx instead of dλd(x).

It is well known that Mµ is a positive, sublinear operator, acting on the cone
of positive, locally integrable functions (Mµ is defined by using |g| rather than
g). The Hardy–Littlewood maximal operator admits many variants: Instead of
averaging |g| over balls centered at x (the centered operator) as in (1.1), it is
possible to consider all balls containing x (the uncentered operator) or average
over convex bodies more general than euclidean balls (and even over more general
sets, for instance, star-shaped, lower dimensional, etc.). It can also be applied
to locally finite measures ν (rather than just functions) by setting (say, in the
centered case)

Mµν(x) := sup
{r>0:µ(B(x,r))>0}

ν(B(x, r))

µ(B(x, r))
.

The Hardy–Littlewood maximal operator is an often used tool in Real and
Harmonic Analysis, mainly (but not exclusively) due to the fact that while |g| ≤
Mµg a.e., Mµg is not too large (in an Lp sense) since for every Borel measure µ
defined on Rd, it satisfies the following strong type (p, p) inequality: ‖Mµg‖p ≤
Cp‖g‖p for 1 < p ≤ ∞. Thus, Mµg is often used to replace g, or some average of
g, in chains of inequalities, without leaving Lp (p > 1).

The situation when p = 1 is different. Taking g = χ[0,1], we see that Mg (on
the real line with Lebesgue measure) behaves essentially like 1/x near infinity, so
Mg is not integrable. However, it follows from the Besicovitch Covering Theorem
that Mµ satisfies the weak type (1, 1) inequality supα>0 αµ({Mµg ≥ α}) ≤ c1‖g‖1
for every Borel measure µ on Rd. This is a very important fact, as it implies
the Lp bounds for 1 < p <∞ via interpolation (the Marcinkiewicz Interpolation
Theorem generalizes this result). From now on we shall use c1,d to denote the
lowest possible constant in the weak type (1,1) inequality when the dimension is
d, and likewise, Cp,d will denote the lowest strong (p, p) constant in dimension d.

2. Weak bounds, strong bounds, and dimensions

An aspect of the Hardy–Littlewood maximal operator that is receiving increas-
ing attention, but which will not be touched upon here, is that of its regularity
properties (cf. for instance [6, 7, 8, 5] and the references contained therein). In
this paper we restrict our attention to results regarding weak and strong type
bounds. Since, as mentioned above, maximal operators are often used in chains
of inequalities, improvements in these bounds lead to improvements in several
other inequalities.

Considerable efforts have gone into determining how changing the dimension
of Rd modifies the best constants Cp,d and c1,d in the case of Lebesgue measure.
When p =∞, we can take Cp,d = 1 in every dimension, since averages never ex-
ceed a supremum. At the other endpoint p = 1, the first boundedness arguments
used the Vitali covering lemma, which leads to exponential bounds of the type
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c1,d ≤ 3d, and by interpolation, to exponential bounds for Cp,d. So it is natural
to try to improve on these bounds, and in particular, to seek bounds indepen-
dent of the dimension, with a view towards infinite dimensional generalizations
of Harmonic Analysis.

In the Vitali covering lemma one obtains a disjoint subfamily from a finite
family of balls by a greedy algorithm and enlarging radii: Choose first the ball
B1 with largest radius. Then remove from the collection all the balls that intersect
it. Observe that the union of these balls is contained in the ball 3B1 with the
same center and three times the radius as B1. Then choose B2 as the ball with
the largest radius among the balls left, and repeat. This argument works well
whenever the measure of balls with large radii is controlled by the measure of
balls with the same center and smaller radii, in the following sense: There exists
a constant K such that for all balls B, µ2B ≤ KµB. Such measures µ are called
doubling because we double the radius of B, but in fact any other constant t > 1
could be used in place of 2. For instance, doubling with 2 implies doubling with
4, with constant K2, and doubling with 4 implies doubling with 2, trivially.

In his Princeton Ph. D. thesis, motivated by Fritz John’s solution of the wave
equation via spherical means, Prof. Antonio Cordoba (personal communication)
considered what nowadays is called Bourgain’s circular maximal function, where
averages are taken over circumferences centered at a point, in dimension d = 2
(there is a small subtlety in the definition; since circumferences have area zero,
one needs to work first with functions defined everywhere, for instance, continuous
functions, or C∞ functions, and then, if one manages to prove strong type bounds
of some sort, the operator can be defined over measurable functions via approx-
imation arguments). However, A. Cordoba was unable to obtain Lp bounds for
this maximal operator. As it turns out, these bounds were easier to establish
in higher dimensions. E. M. Stein showed that for d ≥ 3 the (Stein’s) spherical
maximal operator (where averages are taken over centered spheres) was bounded
in Lp if and only if p > d/(d−1), cf. [31]. It took about ten years, and the efforts
of Bourgain, to extend Stein’s result to d = 2, cf. [12]. So the moral here seems to
be that one should not start with the hardest case. Of course, a priori it may not
be obvious what is easy and what is difficult. For instance, in d = 1 a simple cov-
ering argument yields, for the uncentered operator and essentially all measures,
c1,1 ≤ 2 (cf. Theorem 3.5 below) and often c1,1 = 2 is sharp (example: Lebesgue
measure). However, if we ask the same question for the centered operator and
(just) Lebesgue measure, then even proving that the constant is different from 2
is difficult. This was done in [2], where the then commonly accepted conjecture
c1,1 = 3/2 was also refuted. The exact value c1,1 = (11 +

√
61)/12 was obtained

by Melas by a rather involved argument, in the two papers [26, 27].
Returning to the spherical maximal operator, it is more or less intuitively

clear that it controls the Hardy–Littlewood maximal operator M associated to
euclidean balls (but this requires some argument). By proving dimension inde-
pendent bounds for the spherical maximal operator, E. M. Stein showed that
for M , there exist bounds for Cp that are independent of d ([32, 33], [35], see
also [34]). Stein’s result was generalized to the maximal function defined using
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an arbitrary norm by Bourgain ([13, 14, 15]) and Carbery ([17]) when p > 3/2.
For `q balls, 1 ≤ q < ∞, Müller [28] showed that uniform bounds again hold
for every p > 1 (given 1 ≤ q < ∞, the `q balls are defined using the norm

‖x‖q := (|x1|q + |x2|q + · · ·+ |xd|q)1/q).
Regarding weak type (1, 1) inequalities, in [35] Stein and Strömberg proved

that the smallest constants in the weak type (1,1) inequality satisfied by M grow
at most like O(d) for euclidean balls, using the heat semigroup, and at most like
O(d log d) for more general balls, by a difficult covering lemma argument. They
also asked if uniform bounds could be found, a question still open for euclidean
balls.

Semigroup theory enters maximal function estimates via the Hopf maximal
ergodic theorem for semigroups of operators, applied to the heat semigroup. Here
the supremum is taken over time (one dimensional) so the bound is independent
of dimension. Now the maximal function bound Cd (C a constant) appears
as follows: It is possible to express the centered maximal operator in terms of
convolutions:

Mf(x) = sup
r>0
|f | ∗

χB(0,r)

λd(B(0, r))
(x).

The argument then proceeds by showing that there exists a constant C > 0 and
s = s(d) such that

χB(0,r)

λd(B(0, r))
(x) ≤ Cd

s

∫ s

0

1

(4πt)d/2
e−
‖x‖22
4t dt.

These results about the Hardy–Littlewood maximal operator were obtained
during the eighties, after which activity in this area slowed down. But recently,
it seems to have picked up steam. In 2008 the note [3] was posted in the Math
ArXiv (but was published in 2011, so some papers that cite it have earlier pub-
lication dates). It is shown there that if one considers cubes with sides parallel
to the coordinate axes (that is, `∞ balls) instead of euclidean balls, then the
best constants c1,d must diverge to infinity with d, and thus the answer to the
Stein-Strömberg question is negative for cubes. This was proven by elementary
means, basically calculus and first year probability (the normal approximation to
the binomial distribution). More advanced probabilistic techniques (the theory
of stochastic processes and in particular, the brownian bridge) quickly lead to
an improvement: Aubrun showed shortly after that c1,d ≥ Θ(log1−ε d), where Θ
denotes the exact order and ε > 0 is arbitrary, cf. [11]. Finally, the question
whether the maximal operator associated to cubes and Lebesgue measure is uni-
formly bounded in d, for each 1 < p ≤ 3/2, has recently received a positive answer
by Bourgain [16] (Math. ArXiv, December 11th, 2012). So, save for refinements
on the size of the constants, the situation is now well understood for cubes (and
Lebesgue measure).

These results suggest (at least to us) that uniform bounds for c1,d may fail
to exist if one uses euclidean balls (the original question of Stein and Strömbeg)
since there seems to be no reason to believe that the maximal operator associated
to euclidean balls is substantially smaller than the maximal operator associated
to cubes.
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A very significant extension of the Stein and Strömberg’s O(d log d) theorem,
beyond Rd, has recently been obtained by Naor and Tao, cf. [29]. At the level of
generality these authors work, the order of growth O(d log d) cannot be lowered,
as they show by constructing the appropriate counterexample.

In the Vitali covering lemma one covers balls by expanding the radius of an
intersecting ball, which may have only slightly larger radius than the others. It
was already noted in [35] that engulfing balls by expanding the radius of a much
larger ball can be more efficient. This idea leads Naor and Tao to define the
Microdoubling and Strong Microdoubling properties on metric measure spaces.

A metric measure space (X, d, µ) is a separable metric space (X, d), equipped
with a Radon measure µ. Naor and Tao also assume that 0 < µ(B(x, r)) < ∞
for all r > 0. Now (X, d, µ) is defined to be d-Microdoubling with constant K if
for all x ∈ X and all r > 0, we have

µB

(
x,

(
1 +

1

d

)
r

)
≤ KµB(x, r).

Note that the case n = 1 is just doubling. And (X, d, µ) is Strong d-Microdoubling
with constant K if for all x, all r > 0 and all y ∈ B(x, r),

µB

(
y,

(
1 +

1

d

)
r

)
≤ KµB(x, r).

Naor and Tao prove a localization result for microdoubling spaces: One does
not need to consider the supremum over all r > 0 when proving weak type
bounds, provided the averaging operators are well behaved. And this is implied
by strong n-microdoubling. In the specific case of Rd with Lebesgue measure,
their localization result entails that it is enough to consider radii r satisfying
1 ≤ r ≤ d. It is clear that localized maximal operators with c ≤ r ≤ (1 + 1/d)c,
are bounded by the averaging operator with radius r = c times the microdoubling
constant. Since (1 + 1/d)d log d ≈ d, it follows that we need roughly d log d steps
to go from 1 to to d by using c0 = 1, c1 = (1 + 1/d), c2 = (1 + 1/d)2, etc. Thus
the maximal operator M with 1 ≤ r ≤ d is controlled by the sum of O(d log d)
maximal operators with ci ≤ r ≤ (1+1/d)ci, which yields the result by Stein and
Strömberg mentioned above. Localization is proved by approximating in a certain
sense metric spaces by ultrametric spaces via “random partitioning methods”;
certain modified Doob’s maximal inequalities for sublinear operators are proved
and applied in their arguments. A second proof of the O(d log d) bound is given
via the “Random Vitali Covering Lemma” of Lindenstrauss.

Another setting where it is natural to explore these issues is that of d-dimensional
Riemannian or sub-Riemannian manifolds, or spaces not as general as metric mea-
sure spaces. In [23], Hong-Quan Li extends to the Heisenberg groups the O(d)
estimate of Stein and Strömberg for euclidean balls on Rd, by semigroup meth-
ods. And in [24], Li and Lohoué give an O(d log d) upper bound for the weak
type (1,1) inequalities, when working with the Riemannian volume in hyperbolic
spaces. This is quite remarkable, as the volume of balls in hyperbolic spaces
grows exponentially, so no doubling or microdoubling condition is satisfied (in
fact, no doubling measure can be defined in the hyperbolic spaces). Again the
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result is obtained by semigroup methods. In a recent preprint (personal commu-
nication) Hong-Quan Li obtains Lp bounds independent of the dimension (p > 1)
for the centered maximal operator in hyperbolic spaces (once more by semigroup
methods).

Curiously, the analogous question for area on the d-dimensional sphere appears
not to have been answered. Of course, one would expect the same result to hold,
that is, the existence of Lp bounds (p > 1) independent of the dimension, for the
centered maximal operator defined by geodesic balls (spherical caps).

A different line of research explores what happens in Rd under measures that
may be different from Lebesgue measure, restricted to some special class of func-
tions (something which of course, simplifies arguments). From now on we always
refer to the centered maximal function defined by euclidean balls. It is shown in
[25, Theorem 3] that considering only radial functions (with Lebesgue measure)
leads to c1,d ≤ 4 in all dimensions, and the same happens if Lebesgue measure is
replaced by a radial, radially increasing measure, cf. [22, Theorem 2.1]. Besides,
for Lebesgue measure and radial decreasing functions, it is shown in [9, Theorem
2.7] that the sharp constant is c1,d = 1.

If instead of radial, radially increasing measures one considers radial, radially
decreasing measures, the situation changes radically. Typically, one has exponen-
tial increase in the dimension for c1,d, and some times even for the strong type
constants Cp,d. Furthermore it is enough to consider characteristic functions of
balls centered at zero (hence, radial and decreasing) to prove exponential increase.
The weak type (1, 1) case for integrable radial densities defined via bounded de-
creasing functions was studied in [2]. It was shown there that the best constants

c1,d satisfy c1,d ≥ Θ (1)
(
2/
√

3
)d/6

, in strong contrast with the linear O(d) upper
bounds known for Lebesgue measure. Exponential increase was also shown for
the same measures and small values of p > 1 in [19]; shortly after (and indepen-
dently) these results were improved in [10], as they applied to larger exponents
p and to a wider class of measures. It was also shown in [10] that exponential
increase could occur for arbitrarily large values of p and suitably chosen doubling
measures. Together with the results for hyperbolic spaces mentioned before, this
shows that the doubling condition is neither necessary nor sufficient to have “good
bounds” for maximal inequalities in terms of the dimension. Finally, it is proven
in [20] that for the standard gaussian measure in Rd, one has exponential increase
in the constants for all p ∈ (1,∞). So from this viewpoint, the most important
measures in Rd, Lebesgue and Gaussian, behave in a completely opposite manner.

In the next section we consider the following question about the maximal oper-
ator acting on radial functions: As we have seen, uniform bounds hold for radial
non-decreasing measures, and we have exponential increase for several classes
of radial decreasing measures. So it is natural to ask whether Lebesgue mea-
sure is the borderline case which separates uniform from non-uniform behavior
in the constants. We shall show in the next section that the answer to this
question is negative: For the the radial decreasing measures µd on Rd, defined
by dµd(y) = dy

‖y‖α2
, α > 0, and the maximal operator acting on radial integrable

functions, the constants c1,d are bounded uniformly in d; of course, the bounds
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we find increase with α, as was to be expected. In fact, if the exponents αd are
allowed to increase to infinity with d, then so do the constants c1,d.

3. Uniform bounds for some radial measures and radial functions

Recall that ‖x‖2 := (x21 + x22 + · · ·+ x2d)
1/2

. A function f : Rd → R is radial if
there is a second function f0 : (0,∞)→ R such that

f(x) = f0(‖x‖2) (3.1)

on Rd \ {0}, i.e., f(x) depends only on the distance from x to the origin, and
not on x itself (no restriction is placed on f(0)). Thus, f is rotation invariant.
Since f depends only on one parameter (the distance to the origin) it is not
surprising that uniform bounds can be found (at least for some measures) by
reduction to the 1-dimensional case. All functions considered in this section are
radial. Next, radial measures are defined as follows. Fix d ∈ N \ {0}, and
let µ0 : (0,∞) → [0,∞) be a (possibly unbounded) function, not zero almost
everywhere, such that µ0(t)t

d−1 ∈ L1
loc[(0,∞), dt]. Then the function µ0 defines a

rotationally invariant measure µ on Rd via

µ(A) :=

∫
A

µ0(‖y‖2)dλd(y). (3.2)

Here µ0 is allowed to depend on d, and the local integrability of µ0(t)t
d−1 is

assumed for each fixed d. Furthermore, µ may fail to be locally finite, even if
µ0(t)t

d−1 ∈ L1
loc[(0,∞), dt]. This happens, for instance, if d = 1 and µ0(t) = t−1:

In this case µ(−h, h) = ∞ for every h > 0. For convenience, we assume in this
section that maximal operators are defined using closed balls, which we denote
also by B(x, r), to keep the notation simple.

We shall show next that uniform weak type (1,1) bounds hold for the radial
measures with densities given dµ(y) = dy

‖y‖α2
, where α is a fixed constant, inde-

pendent of the dimension. However, as soon as we allow the exponents to grow
to infinity with the dimension, this result fails. So the measures dµ(y) = dy

‖y‖α2
represent the borderline case between uniform and non-uniform weak type (1,1)
bounds. Finally, if the exponents are allowed to grow like αd, where α ∈ (1/2, 1)
is fixed, then there is exponential increase of the constants Cp,d for all p <∞.

Theorem 3.1. For d ≥ 1, let µαd be the measure on Rd defined by dµαd(x) =
‖x‖−αd2 dx. We consider the centered maximal operator defined by µαd and eu-
clidean balls, acting on radial functions.

1) If the fixed constant α > 0 satisfies 1/2 < α < 1 and αd := αd, then for
every p ∈ [1,∞) there exists a b = b(p) > 1 such that cp,d ≥ Θ(bd). That is, we
have exponential increase in the weak type (p, p) bounds for all p <∞.

2) For αd ≤ d/2, we have c1,d ≥ Θ((51/2/2)αd). In particular, if lim supd αd =
∞, then we always have lim supd c1,d =∞.

3) If supd αd ≤ α < ∞, then there exists a C = C(α) such that for every
d ≥ 1, c1,d ≤ C. Thus, there are bounds, uniform in the dimension, for the weak
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type (1,1) constants, and hence, by interpolation, for the strong (p, p) constants,
whenever 1 < p <∞.

Remark 3.2. If αd ≤ 0, then we are in the case of radial non-decreasing measures,
so c1,d ≤ 4, as we noted above.

Remark 3.3. Parts 1) and 3) of the preceding theorem have been independently
discovered by Criado in his Ph. D. Thesis, cf. [21]. Remarkably, it is also shown
there that Stein’s result regarding strong Lp bounds uniform in d, for euclidean
balls and Lebesgue measure, extends to the measures dµα(x) = ‖x‖−α2 dx, α > 0
(without restricting the action of the operator to radial functions, as we do here).

Proof of part 1) We follow the same steps as in the proof of [20, Theorem 2.8],
with the appropriate modifications. Let Br := B(0, r), and denote by ωd−1 =
σd−1(Sd−1) the area of the unit sphere Sd−1 in Rd.

Lemma 3.4. [20, Lemma 3.1] Let µ be a rotation-invariant locally finite Borel
measure in Rd. For all x ∈ Rd and all r, R > 0 such that µ(Br), µ(B(x,R)) > 0,
we have

cµ,p ≥MµχBr(x)

(
µ(B|x|)

µ(Br)

)1/p

≥ µ(B(x,R) ∩Br)

µ(B(x,R))

(
µ(B|x|)

µ(Br)

)1/p

.

Let µd be the Radon measure dµd(x) = ‖x‖−αd2 dx in Rd. Assume 1/2 < α < 1.
We point out that the arguments below also work if instead of a constant α we
use variables βd, provided they belong to a compact subinterval of (1/2, 1). That
is, if βd tends to 1/2, then the base of exponentiation tends to 1. And if βd tends
to 1, some “constants” appearing below may explode.

In view of the preceding lemma, it is enough to show that for each fixed α ∈
(1/2, 1), there exist r ≡ r(α), R ≡ R(α), c ≡ c(α), C ≡ C(α) > 0 with r, R < 1,
and a ≡ a(α) > 1, such that

µd(B(e1, R) ∩Br)

µd(B(e1, R))
≥ c√

d
,

and
µd(B1)

µd(Br)
≥ Cad. (3.3)

Integration in spherical coordinates shows that for all ρ > 0,

µ(Bρ) =
ωd−1

d(1− α)
ρd(1−α).

Thus,

µd(B1)

µd(Br)
≥
(

1

r

)(1−α)d

,

and (3.3) follows with C = 1 and a = (1/r)1−α.
Next we bound µd(B(e1, R)) from above, by changing to spherical coordinates:

µd(B(e1, R)) =

∫ 1+R

1−R
|∂Bs ∩B(e1, R)|d−1s−αdds, (3.4)



ON HIGH DIMENSIONAL MAXIMAL OPERATORS 233

where | · |d−1 denotes the n− 1 dimensional Hausdorff measure. Call βs the angle
determined by the segment that joins the origin with e1 and the one that connects
the origin to any point of intersection of ∂Bs with ∂B(e1, R). Then 0 ≤ βs < π/2,
since R < 1. Thus,

|∂Bs∩B(e1, R)|d−1 =

∫ βs

0

ωd−2(s sin θ)d−2sdθ = ωd−2s
d−1
∫ βs

0

(sin θ)d−2dθ. (3.5)

By the cosine law, applied to the triangle T (1, s, R) with side lengths 1, s, and
R, and the angle βs facing the R-side, we have

cos βs =
1 + s2 −R2

2s
, (3.6)

so

sin βs =

[
1−

(
1 + s2 −R2

2s

)2
]1/2

. (3.7)

Note that the maximum value of βs occurs when the ray starting at 0 is tangent
to B(e1, R), so the triangle T (1, s, R) has a right angle, and hence s =

√
1−R2.

Since sin βs increases with βs and cos βs decreases, from (3.6) and (3.7) we obtain
cos βs ≥

√
1−R2 and sin βs ≤ R.

Using (3.5) we conclude that

ωd−2
d− 1

(s sin βs)
d−1 ≤ |∂Bs ∩B(e1, R)|d−1 = ωd−2s

d−1
∫ βs

0

(sin θ)d−2dθ (3.8)

≤ ωd−2s
d−1

√
1−R2

∫ βs

0

cos θ(sin θ)d−2dθ ≤ 1√
1−R2

ωd−2
d− 1

(s sin βs)
d−1.

Define

FR (s) := (s sin βs)
2s−2α =

1

4

[
4s2 −

(
1 + s2 −R2

)2]
s−2α.

By (3.8) and (3.4),

µd(B(e1, R)) ≤ 1√
1−R2

ωd−2
d− 1

∫ 1+R

1−R
(s sin βs)

d−1s−αdds

=
1√

1−R2

ωd−2
d− 1

∫ 1+R

1−R
(s sin βs)

d−1sα(1−d)
ds

sα

=
1√

1−R2

ωd−2
d− 1

∫ 1+R

1−R
FR (s)

d−1
2
ds

sα
.

Clearly, FR(1 − R) = FR(1 + R) = 0. Furthermore, FR is increasing on [1 −
R,
√

1−R2] since it is the product of two increasing functions there ((sin βs)
2

and s2−2α)).

Claim (to be proven later): Choosing R =
√

1− 4(1− α)2, the function FR
achieves its unique maximum on [1−R, 1 +R] at a point s0 < 1.
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Assuming the claim, if we replace FR (s) and s−α in the preceding integral by
their maximum values, we obtain

µd(B(e1, R)) ≤ 2R

(1−R)α
√

1−R2

ωd−2
d− 1

FR (s0)
d−1
2 . (3.9)

Next we set r := s0. To bound µd(B(e1, R) ∩ Br) from below, we change to
spherical coordinates and use (3.8):

µd(B(e1, R) ∩Bs0) =

∫ s0

1−R
|∂Bs ∩B(e1, R)|d−1s−αdds ≥

ωd−2
d− 1

∫ s0

1−R
(s sin βs)

d−1s−αdds =
ωd−2
d− 1

∫ s0

1−R
FR (s)

d−1
2
ds

sα
. (3.10)

By Taylor’s approximation, for every s ∈ [1−R, 1 +R] there exists a τs between
s and s0 such that

FR(s) = FR(s0) +
F ′′R(τs)

2
(s− s0)2.

Denote by M ≡M(α) the maximum value of |F ′′R| on [1−R, 1 +R]. We assume
that d >> 1 is so large that

0 < δ :=
√

4FR(s0)/M(d− 1) < s0 − 1 +R

(we can do this since neither R nor FR depend on d). Then, for all s ∈ (s0−δ, s0),

FR(s) ≥ FR(s0)−
M

2
δ2 = FR(s0)

(
1− 2

(d− 1)

)
.

Since (1− t)1/t increases to 1/e as t ↓ 0, for all d ≥ 4.

FR(s)
d−1
2 ≥ FR(s0)

d−1
2

(
1− 2

(d− 1)

) d−1
2

≥ FR(s0)
d−1
2

(
1

3

) 3
2

.

Thus, by (3.10)

µd(B(e1, R) ∩Bs0) ≥
ωd−2
d− 1

∫ s0

1−R
FR (s)

d−1
2
ds

sα

≥ ωd−2
d− 1

∫ s0

s0−δ
FR (s)

d−1
2
ds

sα

≥ ωd−2
d− 1

FR (s0)
d−1
2

(
1

3

) 3
2
∫ s0

s0−δ

ds

sα

≥ ωd−2
d− 1

FR (s0)
d−1
2

(
1

3

) 3
2

s−α0 δ. (3.11)

Finally, using (3.9) and (3.11), we get

µn(B(e1, R) ∩Bs0)

µn(B(e1, R))
≥
(
1
3

) 3
2 (1−R)α

√
1−R2s−α0 δ

2R
≥ c√

d
,

where c = c(α) > 0 (c depends on R, but recall that R =
√

1− 4(1− α)2).
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Proof of the claim. For simplicity, we make the change of variables t = s2,
and write

g(t) := 4FR
(
t1/2
)

=
[
4t−

(
1 + t−R2

)2]
t−α. (3.12)

Clearly it is enough to show that g has a unique maximum t0 ∈ [(1−R)2, (1 +R)2]
such that t0 < 1. It then follows that FR has a unique maximum s0 ∈ [1−R, 1+R]

with s0 = t
1/2
0 < 1.

Replacing R2 by its value 1− 4(1− α)2 in (3.12) and simplifying we obtain

g(t) =
[
−16(α− 1)4 + (−4 + 16α− 8α2)t− t2

]
t−α.

To find the local extrema we differentiate and rearrange:

g′(t) =
[
16(α− 1)4α + (−4 + 20α− 24α2 + 8α3)t+ (α− 2)t2

]
/t1+α.

Note that the zeroes of g′ are the same as the zeroes of its numerator, so by
solving a second degree equation, we get

t0 = 4(α− α2) and t1 =
4(α− 1)3

2− α
.

Now at least one root belongs to [(1−R)2, (1 +R)2], since g vanishes at the
endpoints and it must have a global maximum. But t1 < 0, so the only solution
in [(1−R)2, (1 +R)2] is t0, and thus the global maximum of g occurs there.
Furthermore, on (1/2, 1), f(α) := α− α2 < 1/4, whence t0 = t0(α) < 1.

This finishes the proof of Part 1). �

Proof of part 2). Assume that 0 < αd ≤ d/2. It is shown next that if d ≥ 12,
then

c1,d ≥
1

2e

(
5

4

)αd
2

.

The proof we present below illustrates the discretization technique, valid only
for p = 1. In this particular application, a radial decreasing function is replaced
by one Dirac delta at the origin. Clearly, any lower bound obtained using δ0
can be approximated as much as we want, by considering instead the function
χB(0,r)/µαd(B(0, r)), where 0 < r << 1. In fact, by the 1-homogeneity of the
operator, we can just take χB(0,r), since constants cancel out. We note that
the proofs of exponential growth of the weak and strong type constants in the
papers [2, 10, 19, 20], all use this method of considering δ0 or χB(0,r), and then
estimating how shifting balls away from the origin reduces their measure (the
differences between these papers lie in the values of r > 0 selected, the shifted
balls chosen, and how their sizes are controlled).

We utilize the following special case of [2, Proposition 2.1]:

c1,d ≥
µαd(B(0, 1))

µαd(B(e1, 1))
, (3.13)

where e1 is the first vector in the standard basis of Rd (any vector of length one
will do, by rotational invariance). This lower bound is obtained by noticing that
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Mµαd
δ0(x) = 1/µαd(B(x, ‖x‖2) (recall that balls can be taken to be closed) and

that

B(0, 1) ⊂
{
Mµαd

δ0 ≥
1

µαd(B(e1, 1))

}
.

So, all we need to do is to estimate from below the quotient appearing in
(3.13). Writing σd−1 for the (d− 1)-dimensional Hausdorff measure on Sd−1 (the
unit sphere in Rd) integration in polar coordinates yields

µαd(B(0, 1)) =
σd−1(Sd−1)
d− αd

. (3.14)

Next, note that B(e1, 1) can be decomposed in vertical sections as follows:

B(e1, 1) = {x = (x1, . . . , xd) ∈ Rd : ‖x− e1‖2 ≤ 1} =

{x : 0 ≤ x1 ≤ 2, (x2, . . . , xd) ∈ Rd−1, x22 + . . .+ x2d ≤ 2x1 − x21}.
Thus, by Fubini’s theorem,

µαd(B(e1, 1)) =

∫
B(e1,1)

dx

‖x‖αd2
=

=

∫ 2

0

(∫
{(x2,...,xd)∈Rd−1,x22+...+x

2
d≤2x1−x

2
1}

1

(x21 + x22 + . . .+ x2d)
αd/2

dx2 · · · dxd

)
dx1

=:

∫ 2

0

F (x1)dx1,

where F (x1) denotes the inner integral. Using a spherical change of coordinates
we get

F (x1) = σd−2(Sd−2)
∫ √2x1−x21

0

td−2dt

(x21 + t2)αd/2
.

Thus

µαd(B(e1, 1)) = σd−2(Sd−2)
∫ 2

0

(∫ √2x1−x21

0

td−2dt

(x21 + t2)αd/2

)
dx1.

Note that the region of integration in the above expression is the upper semicircle
centered at x1 = 1, t = 0, in the x1t-plane.

Hence, by changing to polar coordinates we obtain

µαd(B(e1, 1)) = σd−2(Sd−2)
∫ π/2

0

(∫ 2 cos θ

0

(ρ sin θ)d−2ρ

ραd
dρ

)
dθ =

=
σd−2(Sd−2)
d− αd

∫ π/2

0

(sin θ)d−2(2 cos θ)d−αddθ

=
2d−αd−1σd−2(Sd−2)β(d−αd+1

2
, d−1

2
)

d− αd
(3.15)



ON HIGH DIMENSIONAL MAXIMAL OPERATORS 237

By (3.13), (3.14) and (3.15),

c1,d ≥
σd−1(Sd−1)

2d−αd−1σd−2(Sd−2)β(d−αd+1
2

, d−1
2

)
=
√
π

Γ(2d−αd
2

)

2d−αd−1Γ(d
2
)Γ(d−αd+1

2
)

(3.16)

Now we use the Stirling representation of the Gamma function [1, p.257, 6.1.38]:
For every x > 0, there exists a θ ≡ θ(x) ∈ [0, 1] such that

Γ(x+ 1) =
√

2πxx+1/2e−x+θ/(12x).

Thus, for d ≥ 3, we have

Γ

(
d

2

)
≤ e1/6

√
2π

(
d− 2

2

) d−1
2

e−
d−2
2 . (3.17)

and

Γ

(
d− αd + 1

2

)
≤ e1/3

√
2π

(
d− αd − 1

2

) d−αd
2

e−
d−αd−1

2 . (3.18)

We also obtain

Γ

(
2d− αd

2

)
≥
√

2π

(
2d− αd − 2

2

) 2d−αd−1

2

e−
2d−αd−2

2 . (3.19)

Using (3.16), (3.17), (3.18) and (3.19), we get

c1,d ≥
√

2

e

(2d− αd − 2)
2d−αd−1

2

2d−αd (d− 2)
d−1
2 (d− αd − 1)

d−αd
2

.

Finally, since d ≥ 12 and αd ≤ d/2,

4[4 (d− αd − 1)] ≥ 5(2d− αd − 2),

and
(2d− αd − 2)2 ≥ 4 (d− 2) (d− αd − 1) .

Thus

c1,d ≥
(

1

2e

)
(2d− αd − 2)

2d−αd
2

2d−αd (d− 2)
d
2 (d− αd − 1)

d−αd
2

=
1

2e

(
(2d− αd − 2)2

4 (d− 2) (d− αd − 1)

)d/2(
4 (d− αd − 1)

2d− αd − 2

)αd
2

≥ 1

2e

(
5

4

)αd
2

.

�
Regarding part 3), the rest of this paper presents its proof in detail. Since the

upper bounds we obtain increase with the constant α (cf. Corollary 3.8 below)
the case where αd = α for all d ≥ 1 entails the case αd ≤ α, so from now on we
suppose that αd = α for all d.

Note that if d ≤ α, then µαd is not locally finite at the origin, so we want to
allow this possibility in the definitions. Since below 2α there are only finitely
many dimensions 1, . . . , [2α], to obtain a uniform bound, it is enough to prove
that it exists for d ≥ 2α, and then take the largest of these (at most) 1 + [2α]
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constants. The case d ≥ 2α is considered in Corollary 3.8 at the end of this
paper. This corollary follows from Theorem 3.6, which is obtained by isolating
the property that makes the proofs of [22, Theorem 2.1] and [25, Theorem 3]
work: To each ball, the argument associates a second ball with the same radius,
and center nearer to the origin (perhaps the origin itself). It is enough to assume
that this second ball is not much larger than the first.

The following (uniform in the dimension) weak type (1,1) inequality was proven
in [22, Theorem 2.1] (cf. [25, Theorem 3] for Lebesgue measure): If Mµ is the
maximal operator associated to centered euclidean balls in Rd with a radial non-
decreasing measure µ, then for every t > 0 and every radial f ∈ L1,

tµ{Mf > t} ≤ 4‖f‖1.
Even though this proof has already appeared in print (save for some trivial modi-
fications) we include it here because of its didactic value, as it illustrates two basic
techniques in the subject: 1) Control a maximal operator in terms of another op-
erator with known bounds. 2) Instead of integrating over a ball, integrate over a
larger (but not much larger) set (perhaps, just a larger ball).

Regarding 1), the controlling operator will be the one-dimensional, uncentered
Hardy–Littlewood maximal operator. Its boundedness (cf. the next result) hinges
upon the fact that from a finite collection of intervals, two disjoint subcollections
can be extracted, so that their union is the same as the union of the original
collection (as far as we know, this was published first in [30]; it seems to have
been rediscovered, as some authors attribute it to Young). To see why this is
true, first throw away unnecessary intervals, those contained in the union of the
others, so no point belongs to three of them; then label the intervals in increasing
order, say, of the left endpoints, and notice that the subcollections of intervals
with even and with odd indices are disjoint. As a consequence, one immediately
obtains the next theorem, cf., for instance, [18] (which makes the unnecessary
assumption that compact sets have finite measure) or [4]. The result is valid for
completely arbitrary Borel measures (countably additive, non-negative and not
identically 0).

Given a Borel measure ν, we always assume that it has been completed, i.e.,
that it has been extended to the σ-algebra generated by the Borel sets and the sets
of ν-outer measure zero; we also use ν to denote this extension. While the next
result is usually stated for the real line, the same proof works for subintervals.
Alternatively, one can consider ν defined on a subinterval I ⊂ R, and extend it
to R by setting ν(Ic) = 0, thus reducing the case of an arbitrary interval I to the
case I = R. In fact, we will only need the particular interval I = (0,∞).

Theorem 3.5. Let µ be a Borel measure on an interval I ⊂ R, let f ∈ L1(µ),
and let Mu

µ be the uncentered maximal operator. Then for every λ > 0,

λµ{Mu
µf > λ} ≤ 2‖f‖1.

Theorem 3.6. Let µ a radial measure on Rd. Suppose there exists a C > 0 such
that for all x ∈ Rd and all r with 0 < r ≤ 1, we have

µ(B(x
√

1− r2, r‖x‖2)) ≤ Cµ(B(x, r‖x‖2)). (3.20)
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Then, for every radial function f ∈ L1(Rd, dµ) and every λ > 0,

λµ{Mµf > λ} ≤ 2(C + 1)‖f‖L1(Rd,dµ).

Remark 3.7. Obviously, all radial non-decreasing measures (including the Lebesgue
d-dimensional measure) satisfy condition (3.20) with C = 1, since the size of balls
does not increase when they are shifted towards the origin. Note also that when
r = 1, condition (3.20) simply says that µ(B(0, ‖x‖2)) ≤ Cµ(B(x, ‖x‖2)).

Proof of Theorem 3.6. Since µ is radial, the local integrability of µ0(t)t
d−1

on (0,∞) together with condition (3.20) entail that all balls have finite measure,
so we can assume that balls B(y, s) are closed. Let r > 0. The idea is to
show that for every x ∈ Rd \ {0} and every ball B = B(x, r‖x‖2), the averages

1
µ(B)

∫
B
fdµ are pointwise bounded by the one-dimensional uncentered maximal

function evaluated at ‖x‖2, times a certain constant (since the set {0} has measure
zero, we can just forget about it; alternatively, we note that the set D defined
below equals B when x = 0, and then the result is immediate).

We prove the pointwise bound by passing to spherical coordinates. Let v be a
unit vector such that the ray {t(v) : t ≥ 0} intersects B; in what follows, rays will
be denoted just by t(v). If the segment I resulting from this intersection contains
‖x‖2v, then we can use the uncentered operator evaluated at ‖x‖2v, and there is
no need to do anything. However, it may happen that I does not contain ‖x‖2v.
If so, we enlarge I up to ‖x‖2v, and define D to be the union with B of all these
enlarged segments. Now if r > 1, then D = B(0, ‖x‖2)) ∪B(x, r‖x‖2), whence

µ(D) ≤ µB(0, ‖x‖2) + µB(x, r‖x‖2)

≤ CµB(x, ‖x‖2) + µB(x, r‖x‖2) ≤ (C + 1)µB(x, r‖x‖2).
We show next that if r ≤ 1, then D ⊂ B(x

√
1− r2, r‖x‖2) ∪B(x, r‖x‖2), so

µ(D) ≤ µB(x
√

1− r2, r‖x‖2)) + µB(x, r‖x‖2) ≤ (C + 1)µB(x, r‖x‖2)

(thus, in both cases the measure of D is comparable to the measure of B).
For each unit vector v such that the ray t(v) intersects D, let the segment

[a(v), b(v)] denote this intersection. That is, a(v) is the point of entry (of first
intersection) of the ray t(v) in B (or equivalently, in D), and b(v), the point of exit
of D, i.e., either b(v) is the point of exit of the ball, or b(v) = ‖x‖2v, whichever
is larger.

Suppose next that the angle between two given unit vectors u, w, is acute
(≤ π/2), and let s > 0. Let R be the length of the segment joining su with its
perpendicular projection over the segment [0, sw]. Then R is also the length of
the segment joining sw, with its perpendicular projection over [0, su]. This obser-
vation proves that D ⊂ B(x

√
1− r2, r‖x‖2) ∪ B(x, r‖x‖2), as follows. Consider

the vector x, and let v be any unit vector such that the ray t(v) is tangent to
B = B(x, r‖x‖2). Call this point of tangency t0(v), and note that the segment
from x to t0(v) is perpendicular to the ray t(v). We use T to denote the set of all
unit vectors with rays tangent to B, and S the set of all unit vectors with rays
intersecting B (in particular, T ⊂ S).
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The observation above, with x = su, ‖x‖2v = sw, and R = r‖x‖2, shows
that the points in D \ B farthest away from the ray tx, i.e., the points of the
form ‖x‖2v, are at distance r‖x‖2 from their perpendicular projections over [0, x].
These perpendicular projections equal x

√
1− r2 by the Pythagorean Theorem,

so all the points ‖x‖2v, v ∈ T , belong to B(x
√

1− r2, r‖x‖2). The points t0(v)
are in B, so they are also in B(x

√
1− r2, r‖x‖2), since the latter ball is just B

displaced towards the origin. By convexity, the segments [t0(v), ‖x‖2v] are fully
contained in B(x

√
1− r2, r‖x‖2). This proves that D \B ⊂ B(x

√
1− r2, r‖x‖2),

as desired.
Now, in order to obtain the pointwise bound

Mµf(x) = Mµf0(‖x‖2) ≤ (C + 1)Mu
γ0
f0(‖x‖2), (3.21)

all we have to do is to average f over D instead of B. Writing the integral in polar
(spherical) coordinates, the averages of a function over any segment are always
controlled by the uncentered one-dimensional maximal operator, evaluated at
any point of the segment. Since all segments in D contain a point of the form
‖x‖2v (where ‖v‖2 = 1) and since both the measure and the function are radial,
by evaluating the one-dimensional maximal operator always at the same point
‖x‖2, we are actually averaging a constant function, so we get the same value
back. We present the details next.

Recalling the notation from (3.1) and (3.2), let us define the measure γ0 on
(0,∞) via dγ0(t) := µ0(t)t

d−1dt, so given any subinterval I ⊂ (0,∞),

γ0(I) =

∫
I

µ0(t)t
d−1dt.

Writing σ for area on the unit sphere, and integrating in spherical coordinates,
we get

1

µ(B(x, r‖x‖2))

∫
B(x,r‖x‖2)

|f(y)|dµ(y) =
µ(D)

µ(B)

1

µ(D)

∫
B

|f(y)|dµ(y) (3.22)

≤ C + 1

µ(D)

∫
D

|f(y)|dµ(y) =
C + 1

µ(D)

∫
D

|f0(‖y‖2)|µ0(‖y‖2)dy

=
C + 1

µ(D)

∫
S

(∫ b(v)

a(v)

|f0(t)|µ0(t)t
d−1dt

)
dσ(v)

≤ C + 1

µ(D)

∫
S

γ0((a(v), b(v)))Mu
γ0
f0(‖x‖2)dσ(v) = (C + 1)Mu

γ0
f0(‖x‖2).

Taking the supremum over r > 0 in (3.22), we obtain (3.21). Finally, we express
the level sets of Mµf in spherical coordinates, and apply Theorem 3.5:

µ{x ∈ Rd : Mµf(x) > λ} ≤ µ

{
x ∈ Rd : Mu

γ0
f0(‖x‖2) >

λ

C + 1

}

=

∫
Sd−1

(∫
{Mu

γ0
f0>

λ
C+1}

µ0(t)t
d−1dt

)
dσ(ω) =

∫
Sd−1

γ0

{
Mu

γ0
f0 >

λ

C + 1

}
dσ(ω)
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≤ 2(C + 1)

λ

∫
Sd−1

(∫
(0,∞)

|f0(t)|dγ0(t)
)
dσ(ω) =

2(C + 1)

λ

∫
Rd
|f |dµ.

�
To bound µ(B(x, r‖x‖2)) from below in the next result, in expressions (3.24)

and (3.25) below, it is enough to replace the density by its lowest value on

B(x, r‖x‖2), that is, by (‖x‖2(1 + r))−α. We use
(
‖x‖2
√

1 + r2
)−α

instead, not-
ing that the density is larger than this constant on at least half the ball. The
estimates are not very different, but the second choice gives better constants for
high values of α.

Corollary 3.8. Fix α > 0 and set dµ(y) = dy
‖y‖α2

on Rd, for d ≥ 1. If d ≥ 2α and

f ∈ L1(Rd, dµ) is radial, then for every λ > 0,

µ{Mµf > λ} ≤ 2(4 · 6α/2 + 1)

λ
‖f‖L1(Rd,dµ).

Proof. We show that (3.20) holds with C = 4·6α/2. Because µ is radial decreasing,
it is clear that the measure of balls increases when they are shifted towards the
origin, since the density is always larger on all points of the shifted ball that
are not contained in the intersection (of the two balls) than on the points of the
original ball not in the intersection. Thus

µ(B(x
√

1− r2, r‖x‖2)) ≤ µ(B(0, r‖x‖2)) =
d

d− α
(‖x‖2r)d−αvd ≤ 2(‖x‖2r)d−αvd,

(3.23)
where vd denotes the Lebesgue d-dimensional measure of the unit ball.

On the other hand,

µ(B(x, r‖x‖2)) =

∫
B(x,r‖x‖2)

dy

‖y‖α2
≥
∫
B(x,r‖x‖2)∩{y:‖y‖2≤‖x‖2

√
1+r2}

dy

‖y‖α2
≥ (3.24)

1

‖x‖α2 (1 + r2)α/2
λd(B(x, r‖x‖2) ∩ {y : ‖y‖2 ≤ ‖x‖2

√
1 + r2}) (3.25)

≥ λd(B(x, r‖x‖2))
2‖x‖α2 (1 + r2)α/2

=
(r‖x‖2)d vd

2‖x‖α2 (1 + r2)α/2
(3.26)

If 1/
√

5 ≤ r ≤ 1, it follows from (3.24-3.26) and (3.23) that in order to obtain
(3.20), it is enough to find a C ′ > 0 such that

2(‖x‖2r)d−α vd ≤ C ′
(r‖x‖2)d vd

2‖x‖α2 (1 + r2)α/2
.

Simplifying, we see that C ′ = 4 · 6α/2 suffices.
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Suppose next that 0 < r ≤ 1/
√

5. Then

µ(B(x
√

1− r2, r‖x‖2)) =

∫
B(x
√
1−r2,r‖x‖2)

dy

‖y‖α2

≤ 1

‖x‖α2 (
√

1− r2 − r)α

∫
B(x
√
1−r2,r‖x‖2)

dy

=
(r‖x‖2)d vd

‖x‖α2 (
√

1− r2 − r)α

Arguing as in the previous case, we see that it is enough to find a C ′′ > 0 such
that

(r‖x‖2)d vd
‖x‖α2 (

√
1− r2 − r)α

≤ C ′′
(r‖x‖2)d vd

2‖x‖α2 (1 + r2)α/2
.

Simplifying, we see that we can take C ′′ = 2 · 6α/2. Since C ′ ≥ C ′′, (3.20) follows
with C = C ′. �

And with the proof of Corollary 3.8, the proof or Theorem 3.1, Part 3, is also
finished.
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