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Abstract. If Σ = (X,σ) is a topological dynamical system, where X is a
compact Hausdorff space and σ is a homeomorphism of X, then a crossed
product involutive Banach algebra `1(Σ) is naturally associated with these
data. If X consists of one point, then `1(Σ) is the group algebra of the integers,
hence the general `1(Σ) could be regarded as a noncommutative `1-algebra. In
this paper, we study spectral synthesis for the closed ideals of `1(Σ) in two
versions, one modeled after C(X), and one modeled after `1(Z). We identify
the closed ideals which are equal to (what is the analogue of) the kernel of their
hull, and determine when this holds for all closed ideals, i.e., when spectral
synthesis holds. In both models, this is the case precisely when Σ is free.

1. Introduction

Suppose G is a locally compact abelian group, with dual group Ĝ. If I ⊂ L1(G)

is a closed ideal, then its hull h(I) ⊂ Ĝ is the closed set of common zeroes of the
Fourier transforms of the elements of I, or, equivalently, the set of all maximal

modular ideals of L1(G) containing I. If S ⊂ Ĝ is closed, then its kernel k (S) is
the closed ideal of L1(G) defined as k (S) :=

⋂
m∈S m. It is a non-trivial fact (the

regularity of L1(G)) that hk (S) = S for all closed S ⊂ Ĝ, and a closed subset S

of Ĝ is called a set of spectral synthesis if k (S) is the only closed ideal I of L1(G)
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such that h(I) = S. Determining sets of spectral synthesis is a delicate problem,

and one may ask whether it is possible that all closed subsets of Ĝ are sets of
spectral synthesis, in which case spectral synthesis is said to hold for G. This is
asking for the injectivity of h on the set of closed ideals, or, equivalently, requiring

that each closed ideal I is of the form k (S) for some closed subset S of Ĝ (which
is then necessarily equal to h(I)). In that case, one can think of each I as being
synthesised, via intersection, from the maximal modular ideal—which one can
regard as the evidently existing closed ideals of L1(G)—in k (I). Alternatively,
one can view each I as being reconstructed from the set of common zeroes of
the Fourier transforms of the elements of I. This problem was finally settled by
Malliavin [9], [10, Theorem 7.6.1]: spectral synthesis holds for G if and only if G
is compact. For compact G, all closed ideals of L1(G) are then self-adjoint, and
the converse is also true, cf. [10, Theorem 7.7.1]. Hence all closed ideals of L1(G)
are self-adjoint if and only if G is compact.

Spectral synthesis has also been studied for other semisimple regular com-
mutative Banach algebras than L1(G); see, for example, [8, Chapter 8], or [7,
Chapter 5]. Apart from L1(G), with G compact and abelian, the only other com-
mon class of commutative Banach algebras for which spectral synthesis holds, and
that we are aware of, are the algebras C0(X), for a locally compact Hausdorff
space X. Passing to possibly noncommutative algebras, we note that for general
C∗-algebras every closed ideal is the intersection of primitive ideals [2]. Thus,
here again every closed ideal can be synthesised from evidently present ideals,
emerging from the representation theory of the algebra.

In this paper, we consider spectral synthesis for the involutive Banach algebra
`1(Σ) that is naturally associated with a dynamical system Σ, consisting of a
compact Hausdorff space X and a homeomorphism σ of X. Its enveloping C∗-
algebra C∗(Σ) is well studied, but the investigation of this underlying involutive
Banach algebra itself is of a more recent nature and was initiated in [5] and [6].
These algebras are considerably more complicated than their C∗-envelopes, as
already becomes obvious from the case where X consists of one point. In that
case, `1(Σ) = `1(Z), so that its C∗-envelope is C(T), and whereas C(T) has
only self-adjoint closed ideals, `1(Z) also has non-self-adjoint closed ideals; and
whereas spectral synthesis holds for C(T), it fails for `1(Z). For general X, C∗(Σ)
naturally has only self-adjoint closed ideals, but it is known that this holds for the
underlying algebra `1(Σ) precisely when Σ is free [5, Theorem 4.4], as an analogue
of the result that L1(G) has only self-adjoint closed ideals precisely when G is
compact. Can we, then, also settle the matter of the validity of spectral synthesis
for this non-commutative `1-algebra `1(Σ), as it has been settled for L1(G)?

In answering this question we have interpreted “spectral synthesis” as the re-
construction of a closed ideal of `1(Σ) from a suitably defined set of common
zeroes of functions associated to all the elements of the ideal, thus (as in the
above examples) establishing that it belongs to an evidently existing family of
ideals of `1(Σ). There are two natural candidates to do this. Firstly, as in [16],
one can take C(X) as a model, and ask which closed ideals are determined by
the common zeroes of the coefficients of the elements of the ideal. Theorem 3.6
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provides a number of answers, one of which is that these are precisely the ideals
that are intersections of closed ideals naturally associated to orbit closures. Con-
sequently, such ideals are intersections of primitive ideals, but the latter cannot
be chosen freely. Spectral synthesis in this model then holds when every closed
ideal can be so reconstructed, and Theorem 3.13 gives a number of equivalent
conditions for this to hold, one of these being requiring Σ to be free. Secondly,
one can take L1(G), or in this case `1(Z), as a model, and consider the common
zeroes of all (generalised) Fourier transforms of the elements of the closed ideal.
In that case, Theorem 4.16 asserts that the reconstructible ideals are precisely
the intersections of (freely chosen) primitive ideals naturally associated to the
points of X. According to Theorem 4.19, spectral synthesis holds in this model
precisely when Σ is free again.

Thus the question of global spectral synthesis in both models has been settled.
If it does not hold, then the study of spectral sets becomes relevant, but we leave
that for future research.

To conclude this introduction, let us mention that these algebras `1(Σ) are
rather well accessible concrete examples of involutive Banach algebras, and with
a rich variety of possible properties, depending on the dynamics. Major open
issues are the question whether `1(Σ) is always Hermitian, whether the closure of
a proper ideal of `1(Σ) in C∗(Σ) is always proper (see Remark 4.13), and whether
each self-adjoint closed ideal is the kernel of an involutive representation of `1(Σ).
We hope to be able to report further on these algebras and their structure in the
future.

This paper is organised as follows.
Section 2 contains not only the necessary notions and notations, but also a

detailed investigation of three families of closed ideals of `1(Σ). These ideals play
a key role in the subsequent sections.

Section 3 is concerned with spectral synthesis in the C(X)-model. The main
results are Theorem 3.6 (identifying the reconstructible ideals), Theorem 3.7 (for-
mulating the properties of the analogues of the hull and kernel operators), and
Theorem 3.13 (determining when spectral synthesis holds in this model).

Section 4 takes up spectral synthesis in the `1(Z)-model. The main results
are now Theorem 4.16 (identifying the reconstructible ideals), Theorem 4.17 and
(formulating the properties of the analogies of the hull and kernel operator), and
Theorem 4.19 (determining when spectral synthesis holds in this model).

Appendix A contains the underlying abstract framework of hull-kernel-type
operators. It is completely elementary, but we know of no reference for the basic
properties of the combination of such operators, which we use in both Section 3
and Section 4. By explicitly including them here we also hope to avoid any
future mildly annoying verification of these elementary, but not entirely obvious,
generalities in other examples.

2. Preliminaries

In this section, we establish the basic notations and introduce the algebra `1(Σ),
along with three families of ideals. In Section 3 and Section 4, the ideals thus
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obtained will play a role similar to that of the maximal modular ideals in spectral
synthesis for L1(G), where G is a locally compact abelian group.

Throughout this paper, X is a non-empty compact Hausdorff space, and σ :
X → X is a homeomorphism. If x ∈ X, we write Z · x and Z · x for its orbit
and the closure of its orbit, respectively. We let Aper(σ) and Per(σ) denote the
aperiodic and the periodic points of σ, respectively. For p ≥ 1, let Perp(σ) be the
set of points of period p.

The involutive algebra of continuous complex-valued functions on X is denoted
by C(X), and we write α for be the involutive automorphism of C(X) induced
by σ via α(f) := f ◦ σ−1, for f ∈ C(X).

If S ⊂ X, then we let k (S) = {f ∈ X : f�S = 0} be its usual kernel. If I is
an ideal of C(X), let h(I) = {x ∈ X : f(x) = 0 for all f ∈ I} be its usual hull.
Then k (S) = k (S̄), h(I) = h(Ī), and h and k are mutually inverse bijections
between the set of closed ideals of C(X) on the one hand, and the set of closed
subsets of X on the other hand. Their restrictions are mutually inverse bijections
between the set of α-invariant closed ideals of C(X) and the set of σ-invariant
closed subsets of X.

2.1. `1(Σ) and behaviour of ideals. Via n 7→ αn, the integers act on C(X).
With ‖ · ‖ denoting the supremum norm on C(X), we let

`1(Σ) = {a : Z→ C(X) : ‖a‖ :=
∑
n

‖a(n)‖ <∞}.

We supply `1(Σ) with the usual twisted convolution as multiplication,

(aa′)(n) :=
∑
k∈Z

a(k) · αk(a′(n− k)) (a, a′ ∈ `1(Σ)),

and define an involution by

a∗(n) = αn(a(−n)) (a ∈ `1(Σ)),

so that it becomes a unital Banach ∗-algebra with isometric involution. We let
C∗(Σ) denote its enveloping C∗-algebra. If X consists of one point, then `1(Σ) is
the group algebra `1(Z), and C∗(Σ) can be identified with C(T).

A convenient way to work with `1(Σ) is provided by the following. For n,m ∈ Z,
let

χ{n}(m) =

{
1 if m = n;

0 if m 6= n,

where the constants denote the corresponding constant functions in C(X). Then
χ{0} is the identity element of `1(Σ). Let δ = χ{1}; then χ{−1} = δ−1 = δ∗. If we
put δ0 = χ{0}, then δn = χ{n}, for all n ∈ Z. We may view C(X) as a closed
abelian ∗-subalgebra of `1(Σ), namely as {a0δ0 : a0 ∈ C(X)}. If a ∈ `1(Σ), and if
we write a(n) = an for short, then a =

∑
n anδ

n, and ‖a‖ =
∑

n ‖an‖ <∞. In the
rest of this paper we will constantly use this series representation a =

∑
n anδ

n of
an arbitrary element a ∈ `1(Σ), for uniquely determined an ∈ C(X). Thus `1(Σ)
is generated as a unital Banach algebra by an isometrically isomorphic copy of
C(X) and the elements δ and δ−1, subject to the relation δfδ−1 = α(f) = f ◦σ−1,
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for f ∈ C(X). The isometric involution is determined by f ∗ = f (f ∈ C(X)),
and δ∗ = δ−1. Hence the inner automorphism Ad δ of `1(Σ) is involutive, it leaves
C(X) invariant, and its restriction to C(X) is α.

Let c00(Σ) denote the finitely supported elements of `1(Σ). It is a dense invo-
lutive subalgebra.

Definition 2.1. In this paper, a primitive ideal of `1(Σ) is the kernel of a topo-
logically irreducible unital involutive representation of `1(Σ) on a Hilbert space.

Note that this definition is not the one as used in, e.g., [1], where a primitive
ideal is defined in a purely algebraic fashion as the kernel of an abstract alge-
braically irreducible representation on an arbitrary complex vector space. Our
definition is convenient for our purposes, to shorten terminology somewhat, and
modeled after the situation for C∗-algebras, for which the primitive ideals as in
[1] are precisely the ideals defined analogously to Definition 2.1 (see [2] for this
non-trivial fact). The usual argument shows that an involutive representation of
`1(Σ) on a Hilbert space is automatically continuous, in fact even contractive.
Hence a primitive ideal is a self-adjoint closed ideal.

If L ⊂ C(X) is a linear subspace, let:

(1) L(δ) := {a =
∑

n anδ
n ∈ c00(Σ) : an ∈ L for all n ∈ Z};

(2) L((δ)) := {a =
∑

n anδ
n ∈ `1(Σ) : an ∈ L for all n ∈ Z}.

The following is readily verified.

Lemma 2.2. Let L be a linear subspace of C(X). Then:

(1) L(δ) = L((δ)) = L̄((δ));
(2) L(δ) is closed in `1(Σ) if and only if L = {0}, and L((δ)) is closed if and

only if L is closed.
(3) L(δ) is an ideal of c00(Σ) if and only if L is an α-invariant ideal of C(X);
(4) L((δ)) is a closed ideal of `1(Σ) if and only if L is an α-invariant closed

ideal of C(X). In that case, L((δ)) is self-adjoint;
(5) If {Lα : α ∈ A} is a collection of linear subspaces of C(X), then:

(a)
∑

α∈A Lα(δ) = (
∑

α∈A Lα)(δ), and
⋂
α∈A Lα(δ) = (

⋂
α∈A Lα)(δ);

(b)
∑

α∈A Lα((δ))⊂(
∑

α∈A Lα)((δ)), and
⋂
α∈A Lα((δ)) = (

⋂
α∈A Lα)((δ)).

As in [17] for C∗(Σ), we distinguish three types of ideals in `1(Σ). For their
definition we use the canonical involutive norm one projection E : `1(Σ)→ C(X),
given by E(a) = a0, for a =

∑
n anδ

n ∈ `1(Σ). The following properties are easy
to check.

Lemma 2.3. Let a =
∑

n anδ
n ∈ `1(Σ). Then:

(1) E(f · a · g) = fgE(a) (f, g ∈ C(X));
(2) E(δ · a · δ−1) = δ · E(a) · δ−1 = α(E(a)) = E(a) ◦ σ−1;
(3) E(a∗a) =

∑
n |an ◦ σn|2;

(4) E is injective on the positive cone of `1(Σ);
(5) If I is an ideal of `1(Σ), then:

(a) E(I) is an α-invariant ideal of C(X);
(b) E(I) = {an : a =

∑
n anδ

n ∈ I};
(c) I ⊂ E(I)((δ));
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(d) E(I) = {0} if and only if I = {0}.
If {Lα : α ∈ A} is a collection of linear subspaces of `1(Σ), then E(

∑
α∈A Lα) =∑

α∈AE(Lα).

Definition 2.4. Let I be an ideal of `1(Σ). Then

(1) I is well behaved if E(I) ⊂ I;
(2) I is badly behaved if E(I) = C(X);
(3) I is plain if E(I) 6= C(X) and E(I) 6⊂ I.

Example 2.5. If X consists of one point, so that `1(Σ) = `1(Z), then there are
no plain ideals. The well behaved ideals are {0} and all ideals containing c00(Z).
The badly behaved ideals are all ideals containing c00(Z), together with the badly
behaved ideals which are not well behaved; the latter family admitting no explicit
description. The picture simplifies when restricting our attention to closed ideals:
there are no plain closed ideals in `1(Z), and the only well behaved closed ideals
are {0} and `1(Z). The badly behaved closed ideals of `1(Z) are precisely the non-
zero closed ideals. We will see later (cf. Proposition 2.12) how plain self-adjoint
closed ideals can sometimes be obtained for non-trivial X.

The following Lemma follows easily from the definitions.

Lemma 2.6. (1) Arbitrary intersections and sums of well behaved ideals are
well behaved.

(2) If the ideal I is badly behaved and J ⊃ I for an ideal J , then J is badly
behaved.

(3) An ideal I is both well behaved and badly behaved if and only if it contains
c00(Σ); all other ideals fall into precisely one category.

(4) The closed ideal `1(Σ) is the only closed ideal that is both well behaved and
badly behaved; all other closed ideals fall into precisely one category.

Lemma 2.7. Let I be an ideal of `1(Σ). Then:

(1) I is well behaved if and only if E(I) = I ∩ C(X);
(2) If I is well behaved and closed, then E(I) = I ∩ C(X) is an α-invariant

closed ideal of C(X).

Proof. Suppose that I is a well behaved ideal. Then E(I) ⊂ I ∩ C(X) ⊂ E(I).
Hence E(I) = I ∩ C(X), and the converse is clear. The second part is now
obvious. �

This leads to the following description of the well behaved closed ideals and
their automatic self-adjointness.

Corollary 2.8. (1) The involutive norm one projection E induces a bijection
I ↔ E(I) between the well behaved closed ideals of `1(Σ) and the α-
invariant closed ideals of C(X); the inverse map sends an α-invariant
closed ideal I ′ of C(X) to I ′((δ)).

(2) All well behaved closed ideals of `1(Σ) are self-adjoint.

Proof. The routine proof of the first part is left to the reader. For the second,
one need then merely note that all closed ideals of C(X) are self-adjoint. �
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Although we will not need it, the following result is worth noticing: a quotient
of `1(Σ) by a well behaved closed ideal is again an algebra in our class.

Proposition 2.9. Let I be a well behaved closed ideal of `1(Σ). Put SI = h(E(I)),
so that SI is a σ-invariant closed subset of X, and let σI denote the restriction of
σ to SI . Let ΣI = (SI , σI) denote the resulting dynamical system, with associated
algebra `1(ΣI), generated by C(SI) and a unitary δI . Then the map, sending∑

n anδ
n ∈ `1(Σ) to

∑
n an�SI

δnI , is a contractive unital involutive Banach algebra
homomorphism from `1(Σ) onto `1(ΣI), inducing an isometric involutive Banach
algebra isomorphism between `1(Σ)/I and `1(ΣI).

Proof. We recall that a bounded surjective linear map T : X → Y between two
Banach spaces is a quotient map, i.e., it induces an isometry between X/KerT
and Y , precisely when T maps the open unit ball of X onto that of Y . Now Res :
C(X) → C(SI) is a surjective (by Tietze’s Theorem) morphism of C∗-algebras.
The induced map between C(X)/k (SI) and C(SI) is then an isomorphism of
C∗-algebras, hence automatically isometric. Therefore Res : C(X) → C(SI) is
a quotient map. Since there are only countably many coefficients to be taken
into account, it is now clear that the described map between `1(Σ) and `1(ΣI)
is surjective, and in fact again a quotient map. As it is easily checked to be
a unital involutive Banach algebra homomorphism, and its kernel is equal to
k (SI)((δ)) = kh(E(I)((δ)) = E(I)((δ)) = I, it induces an isometric involutive
Banach algebra isomorphism between `1(Σ)/I and `1(ΣI). �

2.2. Three families of ideals. We will now describe a number of irreducible
involutive representations of `1(Σ) that made an earlier appearance in [6], and
investigate their kernels. The ideals thus obtained will be an important ingredient
in Sections 3 and 4.

As a consequence of the general theory, cf. [2], there is bijection (via extension
and restriction) between the pure states of `1(Σ) and C∗(Σ), and between the
irreducible GNS-representations of the two algebras. Now, for each x ∈ X, point
evaluation is a pure state evx on C(X), and all pure state extensions of evx to
C∗(Σ) therefore yield irreducible GNS-representations of C∗(Σ), hence of `1(Σ)
by restriction. Since these pure state extensions of point evaluations to C∗(Σ)
(hence to `1(Σ)) are well understood, as are their GNS-representations, we obtain
explicitly given irreducible involutive representations of `1(Σ). Referring to [13,
§4] for further details and proofs, the description is as follows.

First of all, if x ∈ Aper(σ), then there is a unique pure state extension of evx
to `1(Σ), which we denote by φx. The Hilbert space for the GNS-representation
πx corresponding to φx has an orthonormal basis (ek)k∈Z, and the representation
itself is determined by πx(δ)ek = ek+1, for k ∈ Z, and πx(f)ek = f(σkx)ek, for
k ∈ Z. The vector e0 reproduces the state φx of C∗(Σ).

If x ∈ Per(σ), say x ∈ Perp(σ) (p ≥ 1), then the pure state extensions of
evx to `1(Σ) are in bijection with the points in T, and we denote these pure
states of `1(Σ) by φx,λ, for λ ∈ T. The Hilbert space for the GNS-representation
πx,λ corresponding to φx,λ has an orthonormal basis {e0, . . . , ep−1}, πx,λ(δ) is
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represented with respect to this basis by the matrix
0 0 . . . 0 λ
1 0 . . . 0 0
0 1 . . . 0 0
...

...
. . .

...
...

0 0 . . . 1 0

 ,

and, for f ∈ C(X), πx,λ(f) is represented with respect to this basis by the matrix
f(x) 0 . . . 0

0 f(σx) . . . 0
...

...
. . .

...
0 0 . . . f(σp−1x)

 .

The vector e0 reproduces the state φx,λ of `1(Σ).
If x ∈ Aper(σ), then we write Px for the primitive ideal Kerπx of `1(Σ), and

if x ∈ Per(σ) and λ ∈ T, then the primitive ideal Kerπx,λ is denoted by Px,λ.
If x ∈ Per(σ), we let Qx =

⋂
λ∈T Px,λ. Note that these ideals Px, Px,λ and Qx

are self-adjoint. If X consists of one point x, so that `1(Σ) = `1(Z), then only
the second family Px,λ occurs, and Px,λ = {a ∈ `1(Σ) : F(a)(λ) = 0}, where
F(a)(λ) =

∑
n∈Zλ

nan (λ ∈ T) is the usual Fourier transform (defined in a form
more convenient in our setup than the alternative F(a)(λ) =

∑
n∈Zλ

−nan).Hence
we retrieve the usual maximal modular ideals for `1(Z) and we have Qx = {0} by
the injectivity of the Fourier transform.

Unless X consists of one point, there exist unitary equivalences between mem-
bers of the family {πx : x ∈ Aper(σ)} ∪ {πx,λ : x ∈ Per(σ), λ ∈ T}. Hence the
indices as used for these families of primitive ideals should not be thought of as a
unique parametrisation, quite contrary to the case of `1(Z). In Remark 2.16 we
will give the precise relation between the indices, the unitary equivalence classes
of involutive representations, and the primitive ideals.

The following description is the basis for further investigation of these ideals.

Proposition 2.10. Let
∑

n anδ
n ∈ `1(Σ).

(1) If x ∈ Aper(σ), then a ∈ Px if and only if an�Z·x = 0, for all n ∈ Z.
(2) If x ∈ Perp(σ) for some p ≥ 1, and λ ∈ T, then a ∈ Px,λ if and only if∑

l∈Z

λlalp+j(x
′) = 0, (2.1)

for all j ∈ {0, 1, . . . , p− 1} and all x′ ∈ Z · x.
(3) If x ∈ Per(σ), then a ∈ Qx if and only if an�Z·x = 0, for all n ∈ Z.

Proof. The first part follows easily from the requirement πx(a)ek = 0 (k ∈ Z),
which is equivalent to a ∈ Px. As to the second part, taking into account that
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πx,λ(δ)
p = λ · id we see that a ∈ Px,λ if and only if

0 =
∑
n∈Z

πx,λ(an)πx,λ(δ)
nek

=

p−1∑
j=0

∑
l∈Z

πx,λ(alp+j)πx,λ(δ)
lp+jek

=

p−1∑
j=0

[∑
l∈Z

λlπx,λ(alp+j)

]
πx,λ(δ)

jek,

for all k ∈ {0, 1, . . . , p − 1}. Since, for fixed k, the elements πx,λ(δ)
jek (j =

0, . . . , p−1) are, up to non-zero multiples, simply the basis vectors {e0, . . . , ep−1},
and the action of C(X) on this basis is diagonal, this holds if and only if∑

l∈Z

λlπx,λ(alp+j)πx,λ(δ)
jek = 0,

for all j, k ∈ {0, 1, . . . , p − 1}. Applying πx,λ(δ)
−j to this relation, we find the

equivalent requirement ∑
l∈Z

λlπx,λ(alp+j ◦ σj)ek = 0,

for all j, k ∈ {0, 1, . . . , p − 1}. Making the diagonal action of C(X) explicit this
translates into ∑

l∈Z

λlalp+j(σ
j+kx) = 0,

for all j, k ∈ {0, 1, . . . , p− 1}, which is the vanishing property on Z · x as stated
in the second part of the Proposition.

Turning to the third part, let p be the period of x. If an�Z·x = 0 for all n ∈ Z,
then part (2) implies that a ∈ Px,λ for all λ ∈ T, hence a ∈ Qx =

⋂
λ∈T Px,λ.

Conversely, if a ∈ Px,λ for all λ ∈ T, then (2.1) holds for all j ∈ {0, 1, . . . , p− 1},
all x′ ∈ Z · x and all λ ∈ T. For fixed j and x′, the validity of (2.1) for all λ ∈ T
simply means that the map l 7→ alp+j(x

′), which is in `1(Z), has zero Fourier
transform. Hence alp+j(x

′) = 0 for all l ∈ Z, j ∈ {0, 1, . . . , p− 1} and x′ ∈ Z · x,
which is an alternative way of expressing that an�Z·x = 0 for all n ∈ Z. �

For the definition of Qx, countable intersection will do, as is implied by the
next result.

Corollary 2.11. Let x ∈ Per(σ), and let Tx be a dense subset of T. Then

Qx =
⋂
λ∈Tx

Px,λ

Proof. CertainlyQx ⊂ ∩λ∈TxPx,λ. For the reverse inclusion, if a =
∑

n anδ
n ∈ Px,λ

for all λ ∈ Tx, then the Fourier transform occurring in the conclusion of the proof
of the third part of Proposition 2.10 is zero on Tx, hence on T, and it follows as
before that an�Z·x = 0, for all n ∈ Z. Hence a ∈ Qx. �
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We will now collect a number of further consequences of Proposition 2.10,
and we start with the existence of well behaved, badly behaved and (possibly)
plain self-adjoint closed ideals in `1(Σ), as announced in the discussion following
Lemma 2.6. Note that for `1(Z) only the second and third part of Proposition 2.12
are non-vacuous.

Proposition 2.12.

(1) If x ∈ Aper(σ), then Px = k (Z · x)((δ)) is a well behaved proper (self-
adjoint) closed ideal.

(2) If x ∈ Per(σ) and λ ∈ T, then Px,λ is a badly behaved proper self-adjoint
closed ideal.

(3) If x ∈ Per(σ), then:
(a) Qx = k (Z · x)((δ)) is a well behaved proper (self-adjoint) closed ideal;
(b) If λ ∈ T, then Qx is the largest well behaved ideal contained in Px,λ.

(4) If x1 ∈ Aper(σ) and x2 ∈ Per(σ)∩ (X \Z · x1), then Px1 ∩Px2,λ is a plain
(hence proper) self-adjoint closed ideal, for all λ ∈ T.

Proof. Parts (1) and (3)(a) are immediate from the first and third part of Propo-
sition 2.10, respectively. For part (3)(b), if a =

∑
n anδ

n ∈ I, where I is a well
behaved ideal contained in Px,λ, then anδ

n ∈ I ⊂ Px,λ, for all n ∈ Z. Since (2.1)
then shows that an�Z·x = 0, for all n ∈ Z, we see that a ∈ Qx. Hence I ⊂ Qx.

As to the second part, suppose x ∈ Perp(σ). Now note that, for arbitrary
f ∈ C(X), a := f − (f/λ)δp is in Px,λ, since πx,λ(δ

p) = λ · id. Hence f = E(a) ∈
E(Px,λ).

Turning to the fourth part, note that E(Px1 ∩ Px2,λ) ⊂ E(Px1) = {f ∈ C(X) :
f�Z·x1 = 0} 6= C(X). Next, choose f ∈ C(X) such that f�Z·x1 = 0 and f(x2) 6= 0.
If p is the period of x2, let a := f−(f/λ)δp. Since πx1(f) = 0 and πx2,λ(δ

p) = λ·id,
a is in Px1 ∩ Px2,λ. However, by the second part of Proposition 2.10, E(a) = f
is not in Px2,λ since f(x2) 6= 0, hence it is certainly not in Px1 ∩ Px2,λ. Hence
E(Px1 ∩ Px2,λ) 6⊂ Px1 ∩ Px2,λ, and we see that Px1 ∩ Px2,λ is plain. �

Another consequence of Proposition 2.10 is the following.

Proposition 2.13. The family {πx : x ∈ Aper(σ)} ∪ {πx,λ : x ∈ Per(σ), λ ∈ T}
of involutive representations of `1(Σ) separates the elements of `1(Σ).

Proof. This is clear from the first and third part of Proposition 2.12. Alter-
natively, we can remark that it must be the case, as it is even true for the
superalgebra C∗(Σ) of `1(Σ), as a special case of [15, Proposition 2]. The con-
ceptual proof as given in [15] translates to a slightly easier one for `1(Σ), as
follows. If a =

∑
n anδ

n ∈ `1(Σ) is in the kernel of all πx (x ∈ Aper(σ)) and
πx,λ (x ∈ Per(σ), λ ∈ T), then certainly the states on `1(Σ) used to define these
representations vanish at a∗a. Since these states were taken to constitute all pure
state extensions of all states evx on C(X), for x ∈ X, the Krein-Milman theorem
implies that all state extensions of all states evx (x ∈ X) vanish at a∗a. Now
observe that, for all x ∈ X, the map a 7→ a0(x) is a state on `1(Σ) extending
evx. The positivity follows from the fact that (a∗a)0 =

∑
n |an ◦ σn|2, and this

also makes clear that, if a∗a is in the simultaneous kernel of these states, then
a = 0. �
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An argument similar to that in the proof of Proposition 2.13 shows that it is
a priori clear that, if a =

∑
n anδ

n is in Px or Qx, then an(σnx) = 0 (n ∈ Z).
Applying this to aδk (k ∈ Z), which is in the same ideal, we see that Px ⊂
k (Z · x)((δ)) (x ∈ Aper(σ)) and that Qx ⊂ k (Z · x)((δ)) (x ∈ Per(σ)). Since the
reverse inclusion is clear from the description of the pertinent representations,
one obtains an alternative proof of the first and third part of Proposition 2.12.

The following is obvious from the first and third part of Proposition 2.12.

Corollary 2.14. Let OC be the set of orbit closures {Z · x : x ∈ X}. For
Z · x ∈ OC, let

I(Z · x) =

{
Px if x ∈ Aper(σ);

Qx if x ∈ Per(σ).

Then I is a well defined inclusion reversing bijection between OC and the set
{Px : x ∈ Aper(σ)} ∪ {Qx : x ∈ Per(σ)}, which consists of well behaved (self-
adjoint) closed ideals of `1(Σ). It is given explicitly as I(Z · x) = k (Z · x)((δ)).

We conclude this section with complete information on the properness, trivial-
ity and all possible inclusions within and between these three families in our next
result, followed by two of its consequences.

Proposition 2.15.

(1) (a) The ideals Px (x ∈ Aper(σ)), Px,λ (x ∈ Per(σ), λ ∈ T), and Qx

(x ∈ Per(σ)) are proper self-adjoint closed ideals of `1(Σ).
(b) (i) For x ∈ Aper(σ), Px = {0} if and only if Z · x = X.

(ii) For x ∈ Per(σ) and λ ∈ T, Px,λ 6= {0}.
(iii) For x ∈ Per(σ), Qx = {0} if and only if Z · x = X.

(2) The three sets {Px : x ∈ Aper(σ)}, {Px,λ : x ∈ Per(σ), λ ∈ T} and
{Qx : x ∈ Per(σ)} of proper self-adjoint closed ideals of `1(Σ) are pairwise
disjoint.

(3) (a) For x1, x2 ∈ Aper(σ), Px1 ⊂ Px2 if and only if Z · x1 ⊃ Z · x2.
(b) For x1, x2 ∈ Per(σ) and λ1, λ2 ∈ T, the following are equivalent;

(i) Px1,λ1 ⊂ Px2,λ2;
(ii) Z · x1 = Z · x2 and λ1 = λ2;
(iii) Px1,λ1 = Px2,λ2.

(c) For x1, x2 ∈ Per(σ), the following are equivalent:
(i) Qx1 ⊂ Qx2;

(ii) Z · x1 = Z · x2;
(iii) Qx1 = Qx2.

(4) (a) Let x1 ∈ Aper(σ), x2 ∈ Per(σ), and λ ∈ T. Then:
(i) Px1 6⊃ Px2,λ;

(ii) Px1 ⊂ Px2,λ if and only if Z · x1 ⊃ Z · x2.
(b) Let x1 ∈ Aper(σ) and x2 ∈ Per(σ). Then:

(i) Px1 6⊃ Qx2;
(ii) Px1 ⊂ Qx2 if and only if Z · x1 ⊃ Z · x2.

(c) Let x1, x2 ∈ Per(σ) and λ ∈ T. Then:
(i) Qx1 6⊃ Px2,λ;
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(ii) Qx1 ⊂ Px2,λ if and only if Z · x1 = Z · x2.

Proof. Part (1)(a) is obvious. Part (1)(b)(i) and (1)(b)(iii) follow from Proposi-
tion 2.12; part (1)(b)(ii) is clear since πx,λ is a finite dimensional representation
of the infinite dimensional algebra `1(Σ).

As to part (2), the first and third part of Proposition 2.10 imply that there is
no overlap between the two families {Px : x ∈ Aper(σ)} and {Qx : x ∈ Per(σ)}.
That the remaining two intersections are empty follows from Proposition 2.12:
since the ideals Px (x ∈ Aper(σ)) and Qx (x ∈ Per(σ) are well behaved proper
closed ideals, and the ideals Px,λ (x ∈ Per(σ), λ ∈ T) are badly behaved proper
closed ideals, there can be no overlap in view of part (4) of Lemma 2.6.

Turning to part (3), part (3)(a) and (3)(c) are obvious from Proposition 2.10.
As to (3)(b), suppose that Px1,λ1 ⊂ Px2,λ2 . If Z · x1 6= Z · x2, then there exists
f ∈ C(X) such that f�Z·x1 = 0 and f�Z·x2 6= 0. The description of πx1,λ1 and
πx2,λ2 then makes it clear that f ∈ Px1,λ1 , but f /∈ Px2,λ2 . Hence the orbits must
coincide, and we let p be the period of x1 and x2. Since 1− (1/λ1)δ

p ∈ Px1,λ1 , it
is in Px2,λ2 and applying πx2,λ2 yields 1− (λ2/λ1) = 0, hence λ2 = λ1. Therefore
(3)(b)(i) implies (3)(b)(ii). It is clear from the second part of Proposition 2.10
that (3)(b)(ii) implies (3)(b)(iii), and the remaining implication in (3)(b) is trivial.

For part (4)(a)(i), if Px1 ⊃ Px2,λ, then the kernel of the infinite dimensional
irreducible representation πx1 would contain an ideal of the algebra of finite
codimension in the algebra, which is impossible. As to (4)(a)(ii), assume that
Px1 ⊂ Px2,λ. Since the first part of Proposition 2.10 shows that k (Z · x1) ⊂ Px1 ,

we have k (Z · x1) ⊂ Px2,λ. An application of the second part of Proposition 2.12

with j = 0, or an appeal to the description of πx2,λ, then implies that k (Z · x1) ⊂
k (Z · x2). Hence Z · x1 ⊃ Z · x2. The converse implication in (4)(a)(ii) is imme-
diate from the first and second part of Proposition 2.10.

Part (4)(b) is immediate from the first and third part of Proposition 2.10.
For (4)(c)(i), if Qx1 ⊃ Px2,λ, then, using that part (2) of Proposition 2.12

shows that Px,λ is badly behaved, the second part of Lemma 2.6 implies that
Qx1 is likewise badly behaved. This yields a contradiction between part (4) of
Lemma 2.6 and part (3)(a) of Proposition 2.12. The proof of (4)(c)(ii) is similar
to that of (4)(a)(ii). �

Naturally, part (2) of Proposition 2.15 also follows from part (4).

Remark 2.16.

(1) It follows from [12, Corollary 4.1.4] that, among the set {πx : x ∈ Aper(σ)}
∪ {πx,λ : x ∈ Per(σ), λ ∈ T} of irreducible involutive representations
of `1(Σ), unitary equivalence occurs precisely between πx1 and πx1 for
x1, x2 ∈ Aper(σ) in the same orbit, and between πx1,λ and πx2,λ for x1, x2 ∈
Per(σ) in the same orbit. Certainly the corresponding primitive ideals are
then equal, but the converse is not true in general. As Proposition 2.15
shows, if x0 ∈ Per(σ), λ0 ∈ T, it is still true that the only representations
in {πx : x ∈ Aper(σ)} ∪ {πx,λ : x ∈ Per(σ), λ ∈ T} with Px0,λ0 as primitive
ideal are the πx′,λ0 with x′ ∈ Z · x0, i.e., precisely the involutive represen-
tations unitarily equivalent to πx0,λ0 . For x0 ∈ Aper(σ) this need not hold:
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the representations in {πx : x ∈ Aper(σ)} ∪ {πx,λ : x ∈ Per(σ), λ ∈ T}
with Px0 as primitive ideal are precisely the πx′ with x′ ∈ Aper(σ) such
that Z · x′ = Z · x0, and it is possible that the set of such x′ (the quasi-
orbit of x) is strictly larger than Z · x0.

(2) If X is metrizable, then [14, Theorem 7.7] gives a number of equivalent
conditions for the property that each irreducible representations of C∗(Σ)
is uniquely determined, up to unitary equivalence, by its primitive ideal.
One of these is that the Birkhoff center c(σ) of Σ coincides with Per(σ),
and another is that all irreducible representations of C∗(Σ) are unitarily
equivalent with the representations arising from pure state extensions of
point evaluations as above (see [14, Proposition 7.5] for an explicit coun-
terexample if c(σ) % Per(σ)).

It is tempting to try to deduce, from the known result for C∗(Σ),
that the analogous three properties are, for metrizable X, also equiva-
lent for `1(Σ). It follows obviously from the result for C∗(Σ) that each
irreducible involutive representation of `1(Σ) is unitarily equivalent with
an irreducible involutive representation, arising from a pure state exten-
sion of a point evaluations as above, precisely when c(σ) = Per(σ). The
question is harder, however, whether an involutive representation of `1(Σ)
is then also uniquely determined, up to unitary equivalence, by its prim-
itive ideal. The obstacle (if it should be true) for the obvious “‘proof”
is that, while the involutive representations of `1(Σ) and C∗(Σ) are in
natural bijection, the relation is not so clear for primitive ideals: If two
irreducible involutive representations of `1(Σ) with the same kernel are ex-
tended to irreducible involutive representations of C∗(Σ), then there is no
obvious reason why these extended irreducible involutive representations
should have the same kernel in C∗(Σ).

We collect a number of consequences of Proposition 2.15; the first follows by
inspection.

Corollary 2.17. Let I, J ∈ {Px : x ∈ Aper(σ)} ∪ {Px,λ : x ∈ Per(σ), λ ∈
T} ∪ {Qx : x ∈ Per(σ)}. Then the only possible proper inclusions I $ J are the
following.

(1) Px1 $ Px2 (x1, x2 ∈ Aper(σ)): this holds if and only if Z · x1 % Z · x2;
(2) Px1 $ Px2,λ (x1 ∈ Aper(σ), x2 ∈ Per(σ), λ ∈ T): this holds if and only if

Z · x1 ⊃ Z · x2;
(3) Px1 $ Qx2 (x1 ∈ Aper(σ), x2 ∈ Per(σ)): this holds if and only if Z · x1 ⊃

Z · x2;
(4) Qx1 $ Px2,λ (x1, x2 ∈ Per(σ), λ ∈ T): this holds if and only if Z · x1 =

Z · x2.

Part (4)(a) and (4)(b) of Proposition 2.15 imply the following.

Corollary 2.18. Let x1 ∈ Aper(σ) and x2 ∈ Per(σ). Then the following are
equivalent:

(1) There exists λ ∈ T such that Px1 ⊂ Px2,λ;
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(2) Z · x1 ⊃ Z · x2;
(3) Px1 ⊂ Qx2 =

⋂
λ∈T Px2,λ.

3. Spectral synthesis: C(X)-model

In this section we introduce the noncommutative hull and kernel for ideals of
`1(Σ), modeled after C(X) in a manner analogous to that in [16], and study the
problem of spectral synthesis.

Definition 3.1. For for a linear subspace I of `1(Σ) define its noncommutative
hull, H (I), as

H (I) = {x ∈ X : an(x) = 0 for all a =
∑
n

anδ
n ∈ I and all n ∈ Z},

and for a subset S of X define its noncommutative kernel, K (S), as

K (S) = {a =
∑
n

anδ
n ∈ `1(Σ) : an�S = 0 for all n ∈ Z},

with the usual convention that K (∅) = `1(Σ).

The following two results are routinely verified, using part (5)(b) of Lemma 2.3
for the penultimate statement in Lemma 3.2.

Lemma 3.2. Let I be a linear subspace of `1(Σ). Then:

(1) H (I) is a closed subset of X;
(2) If I ′ is a linear subspace of `1(Σ), and I ′ ⊂ I, then H (I ′) ⊃ H (I).
(3) H (I) = H (Ī);
(4) H (I) = X if and only if I = {0}.

If {Iα : α ∈ A} is a collection of linear subspaces of `1(Σ), then:

(5) H (
∑

α∈A Iα) =
⋂
α∈A H (Iα);

(6) H (
⋂
α∈A Iα) ⊃

⋃
α∈A H (Iα).

If I is an ideal of `1(Σ), then:

(7) H (I) is a σ-invariant closed subset of X;
(8) H (I) = h(E(I));

(9) H (I) = ∅ if and only if E(I) = C(X).

Lemma 3.3. Let S ⊂ X. Then:

(1) K (S) = k (S)((δ)) is a closed C(X)-subbimodule of `1(Σ), which is right
invariant under δ and δ−1;

(2) If S ′ ⊂ S, then K (S ′) ⊃ K (S);
(3) K (S) = K (S̄);
(4) If S is σ-invariant, then K (S) is a well behaved (self-adjoint) closed ideal

of `1(Σ), and E(K (S)) = k (S);
(5) K (S) = `1(Σ) if and only if S = ∅, and K (S) = {0} if and only if

S̄ = X;

If {Sα : α ∈ A} is a collection of subsets of X, then:

(6) K (
⋃
α∈A Sα) =

⋂
α∈A K (Sα);
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(7) K (
⋂
α∈A Sα) ⊃

∑
α∈A K (Sα).

Lemma 3.4.

(1) If S ⊂ X is σ-invariant, then H K (S) = hk (S) = S̄;

(2) If I is an ideal of `1(Σ), then K H (I) = E(I)((δ)) = E(I)((δ)) ⊃ I.

Proof. For the first part, an application of Lemma 3.2, Lemma 3.3, and the first
part of Corollary 2.8 shows that

H K (S) = H
[
k (S)((δ))

]
= h

[
E[k (S)((δ))]

]
= hk (S)

= S̄.

For the second part, using Lemma 3.2, Lemma 3.3, and Lemma 2.2, we have

K H (I) = K
[
h(E(I))

]
=
[
kh(E(I))

]
((δ))

= E(I)((δ))

= E(I)((δ))

⊃ E(I)((δ))

⊃ I.

�

Corollary 3.5. Let I be an ideal of `1(Σ). Then K H (I) = I if an only if I is
a well behaved (self-adjoint) closed ideal.

Proof. If K H (I) = I, then it is clear from Lemma 3.3 that I is well behaved,
(self-adjoint) and closed. Conversely, if I is well behaved and closed, then the
second part of Lemma 3.4 and the first part of Corollary 2.8 show that K H (I) =

E(I)((δ)) = I = I. �

It is now possible to give a number of alternative descriptions of well behaved
closed ideals in Theorem 3.6 below, reminiscent of similar results for a well be-
haved closed ideal of C∗(Σ) ([15, Theorem 2]). For part of the formulation we
recall that the dual action α of T on `1(Σ) is the strongly continuous represen-
tation λ 7→ αλ (λ ∈ T) of T as isometric involutive automorphisms of `1(Σ)
determined by

αλ(f) = f (f ∈ C(X)), αλ(δ
n) = λnδn (n ∈ Z),

for λ ∈ T. Hence, if a =
∑

n anδ
n ∈ `1(Σ), and λ ∈ T, then αλ(a) =

∑
n λ

nanδ
n.

Therefore the relation

E(a) =

∫
T

αλ(a) dλ, (3.1)

which needs some proof in the case of C∗(Σ), is rather obvious for `1(Σ).

Theorem 3.6. Let I be a closed ideal of `1(Σ). Then the following are equivalent:
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(1) I is well behaved;
(2) E(I) = I ∩ C(X);
(3) I = E(I)((δ));
(4) I = K H (I);
(5) If I ′ is a closed ideal of `1(Σ), then I ′ ⊂ I if and only if H (I ′) ⊃ H (I);
(6) I is invariant under the dual action of T on `1(Σ);
(7) There exist Sap ⊂ Aper(σ) and Sp ⊂ Per(σ) such that

I =
⋂
x∈Sap

Px
⋂
x∈Sp

Qx.

In that case, if Sap ⊂ Aper(σ) and Sp ⊂ Per(σ) are chosen such that

h(E(I)) =
⋃
x∈Sap

Z · x ∪
⋃
x∈Sp

Z · x, (3.2)

giving the σ-invariant closed subset h(E(I)) as the closure of a union of orbits,
then

I =
⋂
x∈Sap

Px
⋂
x∈Sp

Qx (3.3)

establishes I explicitly as an intersection as in part (6). If, furthermore, Tx is
dense in T, for all x ∈ Sp, then

I =
⋂
x∈Sap

Px
⋂
x∈Sp

⋂
λ∈Tx

Px,λ, (3.4)

establishes I as an intersection of primitive ideals corresponding to pure state
extensions of evaluations in points in Sap ∪ Sp.

Proof. The equivalence of (1) and (2) is the first part of Lemma 2.7. Corollary 2.8
shows that (1) implies (3). If (3) holds, then part (2) of Lemma 2.2 and the fact
that I is closed imply that E(I) is closed, hence Corollary 2.8 shows that I is well
behaved. Hence (1) and (3) are equivalent, and Corollary 3.5 shows that (1) and
(4) are equivalent. The equivalence of (4) and (5) is Lemma A.5. If (6) holds, then
(3.1) makes it clear that E(I) ⊂ I, hence I is well behaved, and (6) implies (1).
If (3) holds, then the definition of the dual action shows that (6) holds as well.
Since all ideals in the intersection in (7) are well behaved by Proposition 2.12,
their intersection is likewise a well behaved ideal by virtue of Lemma 2.6. Hence
(7) implies (1), and the proof will be finished once we establish that (3) implies
(7). While doing so, we will establish the remaining statements as well.

Assume, then, that (3) holds. Since E(I) is an α-invariant ideal of C(X),
h(E(I)) is a closed σ-invariant subset of X. Consequently, a choice of Sap ⊂
Aper(σ) and Sp ⊂ Per(σ) such that (3.2) holds is certainly possible. As already
observed, the validity of (3) implies that E(I) is closed. Hence E(I) = kh(E(I)),
yielding

E(I) =
⋂
x∈Sap

k (Z · x)
⋂
x∈Sp

k (Z · x).
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Since I = E(I)((δ)) by assumption, part (5)(b) of Lemma 2.2 shows that

I =
⋂
x∈Sap

k (Z · x)((δ))
⋂
x∈Sp

k (Z · x)((δ))

An appeal to the first and third part of Proposition 2.12 then shows that (3.3)
holds, and Corollary 2.11 transforms (3.3) into (3.4). �

We will now consider spectral synthesis in the current model, i.e., investigate
the extent to which the operators H , K are mutually inverse. We will make use of
the generalities in Appendix A, since the combination of Lemma 3.2, Lemma 3.3,
and Lemma 3.4 shows that we are in the context of Appendix A, as is the con-
tent of the second sentence of Theorem 3.7. Since Corollary 3.5 describes the
fixed points of K ◦H , Corollary A.2 and Lemma A.4 then imply the remaining
statements.

Note that part (1), (3) and (4) are valid regardless of the dynamics, and that
the validity or failure of spectral synthesis is considered in (2).

Theorem 3.7. Let A be the set of all closed ideals of `1(Σ) and let B be the set of
all σ-invariant closed subsets of X, both ordered by inclusion. Then H : A → B
and K : B → A are decreasing, K ◦H (I) � I for all I ∈ A, and H ◦K = idB .
Let Awb be the set of well behaved closed ideals of `1(Σ). Then:

(1) H : Awb → B and K : B → Awb are mutually inverse bijections;
(2) The following are equivalent:

(a) H is injective on A;
(b) Each closed ideal I of `1(Σ) is of the form K (S) for a σ-invariant

closed subset S of X;
(c) Each closed ideal of `1(Σ) is well behaved;
(d) For each σ-invariant closed subset S of X, K (S) is the unique closed

ideal I ′ of `1(Σ) such that H (I ′) = S.
(3) For each well behaved closed ideal of `1(Σ), H (I) is the unique σ-invariant

closed subset S ′ of X such that K (S ′) = I;
(4) If I is a closed ideal of `1(Σ), then K H (I) is the smallest well behaved

closed ideal of `1(Σ) containing I, and also the largest closed ideal I ′ of
`1(Σ) such that H (I ′) = H (I).

For spectral synthesis to hold in this model one needs to have mutually inverse
bijections H and K between A and B . Theorem 3.7 shows that it is only the
injectivity of H on A that is not automatic, because the inclusion Awb ⊂ A can
be proper. For example, part (9) of Lemma 3.2 shows that (in fact also for non-
closed ideals) H (I) = ∅ precisely when E(I) is dense in C(X). In particular, this
will be the case for each badly behaved closed ideal I, and the next example shows
that this non-injectivity on A caused by the existence of proper badly behaved
closed ideals can be rather substantial.

Example 3.8. If X consists of one point x, so that `1(Σ) = `1(Z), then each
non-zero closed ideal I of `1(Σ) is badly behaved, as observed in Example 2.5,
hence H (I) = ∅ for all such I.
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The bijections in part (1) of Theorem 3.7 reduce to the trivial decreasing bijec-
tions between the tiny part Awb = {{0}, `1(Σ)} of A and B = {∅, {x}}.

Nevertheless, also in the presence of proper badly behaved closed ideals or of
plain closed ideals, the bijection between Awb and B is informative, provided that
it does not reduce to a triviality as for `1(Z). The next result describes when
this degenerate situation occurs. It should be compared with [5, Theorem 4.2],
stating that `1(Σ) has only trivial closed ideals (or: only trivial self-adjoint closed
ideals), precisely when Σ is minimal and X has an infinite number of points.

Corollary 3.9. The following are equivalent:

(1) The only well behaved closed ideals of `1(Σ) are {0} and `1(Σ);
(2) Σ is minimal, i.e., every point in X has dense orbit.

Proof. Assume that (1) holds. For each x ∈ X, k (Z · x)((δ)) is a well behaved
closed ideal, as a consequence of Corollary 2.8. Since it is clearly proper, it equals
{0}, and Corollary 2.8 implies that k (Z · x) = {0}, yielding that Z · x = X.
Conversely, if (2) holds, let I be a proper well behaved closed ideal. Then, again
by Corollary 2.8, I = E(I)((δ)). Since E(I) is then a proper closed ideal of C(X),
h(E(I)) is a non-empty σ-invariant subset of X, hence equal to X. Therefore
E(I) = kh(E(I)) = {0}, hence I = 0. �

Theorem 3.7 gives a hint as to when H could be injective on A : then all
closed ideals must be well behaved, and in particular they will then all be self-
adjoint. As is known [5, Theorem 4.4] this can only occur if Σ is free. We will
now proceed to show that freeness of Σ is also sufficient for, hence equivalent
with, the injectivity of H on A and hence with spectral synthesis holding in this
model. The following technical lemma is instrumental for this: its first two parts
follow easily from [5, Proposition 2.4] and the third and fourth part are trivial.

Lemma 3.10. Suppose that Σ is free. If x ∈ X and N ≥ 1 are given, then
there exist an open neighbourhood U of x and unimodular functions θ1, . . . , θ4N ∈
C(X) with the following property: If a =

∑
n∈Z anδ

n ∈ `1(Σ) is arbitrary, and
1
4N

∑4N

l=1 θlaθ̄l =
∑

n∈Z a
′
nδ

n, then

(1) a′0 = a0;
(2) a′n�U = 0, for 0 < |n| ≤ N ;
(3) if an(x) = 0, for some n ∈ Z and x ∈ X, then a′n(x) = 0;
(4) ‖a′n‖ ≤ ‖an‖, for all n ∈ Z.

The previous result shows that, while staying in the same C(X)-subbimodule,
one can locally annihilate any finite given set (not containing a0) of coefficients
of a, while retaining E(a). Since zeroes of coefficients are preserved, and the
norm of the coefficients does not increase, repeating this process a finite number
of steps takes us to the global level.

Lemma 3.11. Suppose that Σ is free. If N ≥ 1 is given, then there exist finitely
many unimodular functions θ1, . . . , θM ∈ C(X) with the following property: If

a =
∑

n∈Z anδ
n ∈ `1(Σ) is arbitrary, and 1

M

∑M
k=1 θkaθ̄k =

∑
n∈Z a

′
nδ

n, then

(1) a′0 = a0;
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(2) a′n = 0, for 0 < |n| ≤ N ;
(3) if an(x) = 0, for some n ∈ Z and x ∈ X, then a′n(x) = 0;
(4) ‖a′n‖ ≤ ‖an‖, for all n ∈ Z.

Proof. With N given, we apply Lemma 3.10 to each x ∈ X, and obtain a
neighbourhood Ux of x and unimodular functions θx,1, . . . , θx,4N ∈ C(X), such
that the operator Lx : `1(Σ) → `1(Σ), mapping a =

∑
n∈Z anδ

n ∈ `1(Σ) to
1
4N

∑4N

l=1 θx,laθ̄x,l, has the properties (1)–(4) as stated in Lemma 3.10. By com-

pactness of X, there are finitely many x1, . . . , xC such that X =
⋃C
i=1 Uxi . The

operator Lx1 ◦ . . . ◦ LxC is then described by a summation involving M = 4NC

unimodular functions as stated in the present Lemma. Moreover, the invariance
parts (3) and (4) of Lemma 3.10, together with the annihilation of the coefficient
with index in {−N, . . . ,−1, 1, . . . , N} on Uxi once Lxi is applied, imply part (2),
(3) and (4) of the present Lemma. �

Corollary 3.12. Suppose that Σ is free.

(1) If a ∈ `1(Σ), then E(a) ∈ C(X) · a · C(X).
(2) Every closed ideal of `1(Σ) is well behaved.

Proof. The second part follows trivially from the first. As to that, let a =∑
n anδ

n ∈ `1(Σ) and ε > 0. Choose N ≥ 1 such that
∑
|n|>N ‖an‖ < ε and

next apply Lemma 3.11 to find an element a′ =
∑

n∈Z a
′
nδ

n ∈ C(X) · a · C(X)
such that

(1) a′0 = a0;
(2) a′n = 0, for 0 < |n| ≤ N ;
(3) ‖a′n‖ ≤ ‖an‖, for all n ∈ Z.

Then ‖E(a)− a′‖ = ‖a′0 − a′‖ =
∑
|n|>N ‖a′n‖ ≤

∑
|n|>N ‖an‖ < ε. �

The main theorem on spectral synthesis holding in this model is now simply a
matter of putting the pieces together. Needless to say, if the equivalent statements
below hold, then all parts of Theorem 3.6 apply to all (then automatically well
behaved) closed ideals of `1(Σ).

Theorem 3.13. The following are equivalent:

(1) The maps I → H (I) and S → K (S) are mutually inverse bijections
between the set of closed ideals of `1(Σ) and the set of σ-invariant closed
subsets of X;

(2) Every closed ideal of `1(Σ) is well behaved;
(3) Every closed ideal of `1(Σ) is self-adjoint;
(4) Every primitive ideal of `1(Σ) is well behaved;
(5) Every closed ideal of `1(Σ) is the intersection of well behaved primitive

ideals;
(6) Every closed ideal of `1(Σ) is the intersection of primitive ideals;
(7) Σ is free.

In that case, if I is a closed ideal of `1(Σ), and S ⊂ X is such that

h(E(I)) =
⋃
x∈S

Z · x,
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giving the σ-invariant closed subset h(E(I)) as the closure of a union of orbits,
then

I =
⋂
x∈S

Px

establishes I explicitly as an intersection as in part (5).

Proof. The equivalence of (1) and (2) is immediate from the second part of The-
orem 3.7. It was already observed in Corollary 2.8 that, for general Σ, all well
behaved closed ideals are self-adjoint; hence (2) implies (3). By [5, Theorem 4.4],
(3) and (7) are equivalent. Corollary 3.12 shows that (7) implies (2). It is trivial
that (2) implies (4). For any x ∈ Per(σ) and λ ∈ T, the second part Propo-
sition 2.12 furnishes a primitive ideal Px,λ that is not well behaved, hence (4)
implies (7). Thus the equivalence of (1), (2), (3), (4) and (7) has been estab-
lished, and we turn to (5). Since arbitrary intersections of well behaved ideals
are well behaved, according to Lemma 2.3, (5) implies (2). If (2) holds, then
(7) holds as well, and therefore the set Sp of periodic points in Theorem 3.6 is
necessarily empty, so that (3.3) establishes every closed ideal as an intersection of
well behaved primitive ideals. Hence (2) implies (5). Since obviously (5) implies
(6) and (6) implies (3), the proof of the equivalence of (1) through (7) is now
complete. The remaining statement is immediate from Theorem 3.6. �

Remark 3.14. Regardless of the dynamics, it is always true that every closed
ideal of C∗(Σ) is the intersection of a number of the C∗(Σ)-counterparts of the
primitive ideals Px (x ∈ Aper(σ)) and Px,λ (x ∈ Per(σ), λ ∈ T) [15, Proposition 2].
Certainly every closed ideal of C∗(Σ) is an intersection of primitive ideals, but
that this standard family is always sufficient is remarkable. If X is metrizable,
then it is known (cf. [4], where a generalisation of the Effros-Hahn conjecture
in [3] is proved) that the primitive ideals of C∗(Σ) are precisely the ones in our
standard family, and [15, Proposition 2] is then obvious, but for non-metrizable
X there seems to be no a priori guarantee for this to hold.

One might hope that each closed ideal of `1(Σ) is the intersection of primitive
ideals. However, such an intersection will always be self-adjoint, and hence a
necessary condition for this is that Σ should be free. As Theorem 3.13 shows, this
condition is also sufficient, and in that case the primitive ideals Px (x ∈ Aper(σ))
of `1(Σ) are already sufficiently many. If X is metrizable, then [4] implies again
that this is the complete set of primitive ideals of `1(Σ), but for non-metrizable
X this may no longer be true.

4. Spectral synthesis: `1(Z)-model

In this section we study spectral synthesis in a model analogous to the Fourier
transform for `1(Z). Compared with the previous section, the roles of the opera-
tors H and K are now taken over by the operators Z and I, respectively, which
are the analogues of the usual hull and kernel operators, respectively, for L1(G).

To start with, we define the injective contraction F : `1(Σ)→ C(X × T) as

F(a)(x, λ) =
∑
n

λnan(x) (a =
∑
n

anδ
n ∈ `1(Σ), x ∈ X,λ ∈ T).
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It collects the Fourier transforms of all maps n→ an(x), for x ∈ X, and when X
consists of one point it is the usual Fourier transform. The following properties
are routine to verify.

Lemma 4.1. Let a =
∑

n anδ
n ∈ `1(Σ), (x, λ) ∈ X × T, k ∈ Z, and f ∈ C(X).

Then:

(1) F(1) = 1;
(2) F(a · δk)(x, λ) = λk F(a)(x, λ);
(3) F(δk · a)(x, λ) = λk F(a)(σ−kx, λ);
(4) F(f · a)(x, λ) = f(x)F(a)(x, λ);
(5) F(a · f)(x, λ) =

∑
n λ

nan(x)f(σ−nx);

(6) F(a∗)(x, λ) =
∑

n λ
nan(σnx).

When L is a linear subspace of `1(Σ), let

Z (L) = {(x, λ) ∈ X × T : F(a)(x, λ) = 0 for all a ∈ L}
be the possibly empty set of common zeroes of all transforms of elements of L.
If X consists of one point, and I is an ideal of `1(Z), then Z (I) is the usual hull
of I.

The following is readily established, using Lemma 4.1 for the final statement.

Lemma 4.2. Let L be a linear subspace of `1(Σ). Then:

(1) Z (L) is a closed subset of X × T;
(2) Z (L) = X × T if and only if L = {0}, and Z(L) = ∅ if L = `1(Σ).
(3) If L′ is a linear subspace of `1(Σ), and L′ ⊂ L, then Z (L′) ⊃ Z (L);
(4) Z (L̄) = Z (L);
(5) Z (L) ⊃ H (L)× T;
(6) If L ⊂ C(X), then Z (I) = h(I)× T.

If {Lα : α ∈ A} is a collection of linear subspaces of `1(Σ), then:

(7) Z (
∑

α∈A Lα) =
⋂
α∈A Z (Lα);

(8) Z (
⋂
α∈A Lα) ⊃

⋃
α∈A Z (Lα).

If I is an ideal of `1(Σ), then Z (I) is a σ × idT-invariant closed subset of X × T.

Remark 4.3.

(1) Note that it is not asserted, not even for a closed ideal I, that Z (I) = ∅ if
and only if I = `1(Σ). The question whether Z (I) 6= ∅ for every proper
closed ideal of `1(Σ) touches upon one of the basic issues concerning the
relation between `1(Σ) and C∗(Σ); see Proposition 4.12.

(2) It is not obvious at this point that Z (I) = Z (I∗), for each closed ideal I
of `1(Σ). This will be established later in Corollary 4.18.

The candidate inverse I for Z is defined in two steps. If S ⊂ X × T, define

Ĩ(S) = {a ∈ `1(Σ) : F(a)(x, λ) = 0 for all (x, λ) ∈ S},
and

I(S) = {a ∈ `1(Σ) : a · f ∈ Ĩ(S) for all f ∈ C(X)}.
If X consists of one point, then Ĩ(S) and I(S) coincide and are the usual kernel
of S ⊂ T.
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We have the following elementary properties, which are routine to verify, using
the injectivity of the Fourier transform on `1(Z) for part (6).

Lemma 4.4. Let S ⊂ X × T. Then:

(1) Ĩ(S) is a closed linear subspace of `1(Σ);

(2) Ĩ(S) = `1(Σ) if and only if S = ∅;
(3) If S̄ = X × T, then Ĩ(S) = {0};
(4) If S ′ ⊂ S, then Ĩ(S ′) ⊃ Ĩ(S);

(5) Ĩ(S̄) = Ĩ(S);

(6) Ĩ(A× T) = k (A)((δ)), for all A ⊂ X;

(7) I(S) ⊂ Ĩ(S);
(8) I(S) = `1(Σ) if and only if S = ∅;
(9) If S̄ = X × T, then I(S) = {0};

(10) If S ′ ⊂ S, then I(S ′) ⊃ I(S);
(11) I(S̄) = I(S);
(12) I(A× T) ⊂ k (A)((δ)), for all A ⊂ X.

If S ⊂ X × T is σ × idT-invariant, then:

(13) Ĩ(S) is a closed subspace of `1(Σ), which is invariant under the left action
of C(X), and under left and right multiplication with δk, for k ∈ Z.

(14) I(S) is a closed ideal of `1(Σ);

(15) I(S) = Ĩ(S) if and only if Ĩ(S) is a closed ideal of `1(Σ).

If {Sα : α ∈ A} is a collection of subsets of X × T, then:

(16) Ĩ(
⋃
α∈A Sα) =

⋂
α∈A Ĩ(Sα);

(17) Ĩ(
⋂
α∈A Sα) ⊃

∑
α∈A Ĩ(Sα);

(18) I(
⋃
α∈A Sα) =

⋂
α∈A I(Sα);

(19) I(
⋂
α∈A Sα) ⊃

∑
α∈A I(Sα).

Lemma 4.5.

(1) If L is a linear subspace of `1(Σ), then ĨZ (L) ⊃ L.

(2) If S ⊂ X × T, then Z I(S) ⊃ Z Ĩ(S) ⊃ S;
(3) If I is an ideal of `1(Σ), then IZ (I) ⊃ I;

Proof. The first part is obvious, and so is the inclusion Z Ĩ(S) ⊃ S. Since

I(S) ⊂ Ĩ(S), part (2) follows. As to the third part, we know that I ⊂ Ĩ(Z (I)).

Since I is an ideal, I · C(X) = I ⊂ Ĩ(Z (I)), so that I ⊂ I(Z (I)). �

Part (3) of Lemma 4.2, part (10) of Lemma 4.4, and part (2) and (3) of
Lemma 4.5 together imply that we are in the context of Appendix A, when
we let Z assign a σ × idT-invariant subset of X × T to an ideal of `1(Σ), with I
going in the opposite direction. Consequently,

Z IZ (I) = Z (I),

for each ideal I of `1(Σ), and

IZ I(S) = I(S),
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for each σ × idT-invariant subset S of X × T. Of course, one can restrict the
domain of Z to the closed ideals of `1(Σ), and that of I to the closed σ × idT-
invariant subsets of X × T; that is also a context for Appendix A.

Before invoking the results of Appendix A we need to collect more material,
such as a description of the fixed points of IZ in the set of closed ideals of `1(Σ).
The first step is to consider well behaved ideals.

Proposition 4.6. If I is a well behaved ideal of `1(Σ), then Z (I) = H (I)× T.
The map Z and I are mutually inverse bijections between the set of all well
behaved closed ideals of `1(Σ) on the one hand, and the subset {A × T : A ⊂
X closed and σ-invariant} of the set of all σ × idT-invariant closed subsets of
X × T on the other hand.

Proof. Lemma 4.2 shows that Z (I) ⊃ H (I)×T. On the other hand, since E(I) ⊂
I, it is immediate that Z (I) ⊂ Z (E(I)) = h(E(I)) × T = H (I) × T. Hence
Z (I) = H (I)× T. Since H is injective on the set of well behaved closed ideals
of `1(Σ), so is Z . For surjectivity, assume that A ⊂ X is closed and σ-invariant.

Lemma 4.4 shows that Ĩ(A× T) = k (A)((δ)), but, since A is σ-invariant, this is

already an ideal, so I(A × T) = Ĩ(A × T) = k (A)((δ)) is a well behaved closed
ideal, and clearly H (I(A × T)) = H (k (A)((δ))) = hk (A) = A. From what we
have already seen, we conclude that Z (I(A×T )) = [H (I(A×T))]×T = A×T.
Hence Z is surjective, and Z and I are mutually inverse bijections between these
restricted domains. �

Hence the well behaved ideals are fixed under IZ but, quite contrary to Sec-
tion 3, there are others. In order to obtain a full description of these fixed points,
we investigate our three standard families of ideals.

We start with the well behaved (self-adjoint) closed ideals Px, for x ∈ Aper(σ).
The following is immediate from Proposition 4.6 and (for part (3)) Lemma A.5.

Corollary 4.7. Let x ∈ Aper(σ). Then:

(1) Z (Px) =
[
Z · x

]
× T;

(2) I(
[
Z · x

]
× T) = Px;

(3) If I is an ideal of `1(Σ), then I ⊂ Px if and only if Z (I) ⊃ Z (Px).

Actually, part (3) can be improved quite a bit, which will be instrumental in
the proof of the key Proposition 4.15.

Proposition 4.8. Let x ∈ Aper(σ), and let I be an ideal of `1(Σ). Then the
following are equivalent:

(1) Z (I) ∩ [Z · x ]× T 6= ∅;
(2) Z (I) ∩ {x} × T 6= ∅;
(3) Z (I) ⊃ {x} × T;
(4) Z (I) ⊃

[
Z · x

]
× T;

(5) I ⊂ Px.

Proof. Obviously (5) implies (4), (4) implies (3), and (3) implies (2); (2) and (1)
are equivalent since Z (I) is σ × idT-invariant. We will prove that (2) implies
(5); so assume that (x, λ) ∈ Z (I) for some λ ∈ T . Let a =

∑
n anδ

n ∈ I. We
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will start by showing that a0(x) = 0. Let ε > 0, and choose N ≥ 1 such that∑
|n|>N ‖an‖ < ε. Since x ∈ Aper(σ), there exists f ∈ C(X) with ‖f‖ = 1

and such that f(σnx) = 0, for 0 < |n| ≤ N , while f(x) = 1. Now a · f =∑
n an · (f ◦ σ−n)δn, and since a · f is in I we have

0 = F(a · f)(x, λ)

=
∑
n

λnan(x)f(σ−nx)

= a0(x) +
∑
|n|>N

λnan(x)f(σ−nx).

Since the latter term is at most ε in absolute value, |a0(x)| ≤ ε. Hence a0(x) = 0.
Since we know Z (I) to be a closed σ × idT-invariant subset of X × T, (x′, λ)

is likewise in Z (I), for all x′ ∈ Z · x. Hence the above argument shows that
a0�Z·x = 0. Since a · δk is in I, for all k ∈ Z, we can now conclude that an�Z·x = 0,
for all n ∈ Z. Hence, by part (1) of Proposition 2.10, a is in Px. �

We now turn to the badly behaved self-adjoint closed ideals Px,λ, for x ∈ Per(σ)
and λ ∈ T. As we will see in Corollary 4.10, they are quite well behaved as far
as I and Z are concerned.

Proposition 4.9. Let x ∈ Perp(σ), λ ∈ T, and let I be an ideal of `1(Σ). Then
the following are equivalent:

(1) Z (I) ∩ {x} × {µ ∈ T : µp = λ} 6= ∅;
(2) Z (I) ⊃ {x} × {µ ∈ T : µp = λ};
(3) Z (I) ⊃ [Z · x ]× {µ ∈ T : µp = λ};
(4) I ⊂ Px,λ.

Proof. Assume that (4) holds, and that µp = λ. Suppose a =
∑

n anδ
n ∈ I ⊂ Px,λ.

Then (2.1) shows that ∑
l∈Z

µlpalp+j(x
′) = 0,

for all j ∈ {0, 1, . . . , p − 1}, and all x′ ∈ Z · x. Multiplying this relation by µj,
and summing the result over the set of all j, shows that F(a)(x′, µ) = 0. Hence
(4) implies (3). Certainly (3) implies (2), and (2) implies (1). We will show that
(1) implies (4). Suppose, then, that µp = λ and that (x, µ) ∈ Z (I). Fix a ∈ I.
For all f ∈ C(X), a · f is in I, hence as in the proof of Proposition 4.8 we know
that

0 = F(a · f)(x, µ)

=
∑
n

µnan(x)f(σ−nx)

=

p−1∑
j=0

[∑
l∈Z

µlp+jalp+j(x)f(σ−jx)

]
.

For j0 ∈ {0, 1, . . . , p − 1} fixed, choose f such that f(σ−jx) = 0 for j0 6= j ∈
{0, 1, . . . , p − 1}, and f(σ−j0x) = 1. Then in the above equation only the inner
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summation for j = j0 survives, and together with µp = λ this yields∑
l∈Z

λlalp+j0(σ
−j0x) = 0.

The second part of Proposition 2.10 then shows that a ∈ Px,λ. �

Corollary 4.10. Let x ∈ Perp(σ), and λ ∈ T. Then:

(1) Z (Px,λ) = [Z · x ]× {µ ∈ T : µp = λ};
(2) I([Z · x ]× {µ ∈ T : µp = λ}) = Px,λ;
(3) If I is an ideal of `1(Σ), then the following are equivalent:

(a) Z (I) ∩ Z (Px,λ) 6= ∅;
(b) Z (I) ⊃ Z (Px,λ);
(c) I ⊂ Px,λ.

Proof. Proposition 4.9 shows that Z (Px,λ) ⊃ [Z · x ]×{µ ∈ T : µp = λ}. For the
reverse inclusion, assume that (x′, µ) ∈ Z (Px,λ), for some x′ ∈ X and µ ∈ T.
Since 1− (1/λ)δp is in Px,λ, we see that 1− (µp/λ) = 0, hence µp = λ. In order to
show that we must have x′ ∈ Z · x, note that Px,λ ⊃ Qx, hence Z (Px,λ) ⊂ Z (Qx),
implying that (x′, µ) ∈ Z (Qx). Since Qx is a well behaved ideal, Lemma 4.2 shows
that Z (Qx) = H (Qx) × T = [Z · x ] × T. Hence x′ ∈ Z · x. This concludes the
proof of part (1). For part (2), we note that certainly IZ (Px,λ) ⊃ Px,λ. On
the other hand, Z (IZ (Px,λ)) = Z (Px,λ) = [Z · x ] × {µ ∈ T : µp = λ} by part
(1), hence Proposition 4.9 shows that IZ (Px,λ) ⊂ Px,λ. Therefore, IZ (Px,λ) =
Px,λ. Then (2) follows from this and an application of I to the equality in
(1). Part (3) follows easily from part (1), the σ × idT-invariance of Z (I), and
Proposition 4.9. �

Finally, for our third family, Proposition 4.6 and Lemma A.5 imply the follow-
ing.

Corollary 4.11. Let x ∈ Per(σ). Then:

(1) Z (Qx) = [Z · x ]× T;
(2) I([Z · x ]× T) = Qx;
(3) If I is an ideal of `1(Σ), then I ⊂ Qx if and only if Z (I) ⊃ Z (Qx).

Before proceeding, let us collect a few consequences of the results thus far.

Proposition 4.12. Let I be an ideal of `1(Σ). Then the closure of I in C∗(Σ) is
a proper closed ideal of C∗(Σ) if and only if Z (I) 6= ∅.
Proof. If Z (I) 6= ∅, then Proposition 4.8 and Proposition 4.9 imply that I is
contained in an ideal Px, for some x ∈ Aper(σ), or in an ideal Px,λ, for some
x ∈ Per(σ) and λ ∈ T. Hence it is contained in the kernel of the extension of
the involutive representation πx or πx,λ to C∗(Σ). As these kernels are proper
closed ideals of C∗(Σ), the closure of I in C∗(Σ) is also proper. Conversely, if the
closure of I in C∗(Σ) is proper, then by [15, Proposition 2], this closure is the
intersection of a number of kernels of such extended involutive representations.
Taking the intersection with `1(Σ) then implies that I is contained in an ideal
Px, for some x ∈ Aper(σ), or in an ideal Px,λ, for some x ∈ Per(σ) and λ ∈ T.
Proposition 4.8 and Proposition 4.9 then show that Z (I) 6= ∅. �
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Remark 4.13. If it were true that Z (I) 6= ∅, for all proper ideals of `1(Σ), then
many of the known results for C∗(Σ) that relate the dynamics to the ideal struc-
ture of the algebra would have immediate counterparts for `1(Σ). For example, it
is known (cf. [5, Theorem 4.2]) that `1(Σ) has only trivial closed ideals precisely
when X has an infinite number of points, and Σ is minimal. The difficult part is
to conclude the minimality from the dynamics, but if we could pass from proper
closed ideals of `1(Σ) to proper closed ideals of C∗(Σ), then this would be obvious
from its counterpart for C∗(Σ) (cf. [13, Theorem 5.3])

Proposition 4.14. If I is a badly behaved ideal of `1(Σ), then Z (I) ⊂ Per(σ)×T.

Proof. If Z (I) $ Per(σ)× T then Proposition 4.8 implies that I ⊂ Px, for some
x ∈ Aper(σ). This contradicts that Px is not badly behaved. �

We will now use the fact that we are in the setup of Appendix A, when we let
A be the closed ideals of `1(Σ), and B the σ × idT-invariant subsets of X × T,
with Z mapping the former into the latter, and I going in the opposite direction.
It is then possible to describe the fixed points of IZ : according to Corollary A.2,
these are precisely the closed ideals of the form I(S), with S a σ × idT-invariant
subset of X × T. To make such ideals explicit, the following result is needed.

Proposition 4.15.

(1) Let x ∈ Aper(σ), and suppose ∅ 6= S ⊂ [Z · x ] × T is σ × idT-invariant.
Then I(S) = Px.

(2) Let x ∈ Perp(σ), and suppose ∅ 6= S⊂Z (Px,λ) = [Z · x ]×{µ ∈ T : µp = λ}
is σ × idT-invariant. Then I(S) = Px,λ.

Proof. As to (1), since Z I(S) ⊃ S 6= ∅, the condition in part (1) of Proposi-
tion 4.8 is satisfied for I(S), and we conclude that I(S) ⊂ Px. On the other
hand, certainly S ⊂ [Z · x ] × T = Z (Px), hence I(S) ⊃ IZ (Px) = Px. Thus
I(S) = Px. The second part is proved similarly, using Proposition 4.9. �

Theorem 4.16. Let I be an ideal of `1(Σ). Then the following are equivalent:

(1) IZ (I) = I;
(2) There exist (possibly empty) sets Sap ⊂ Aper(σ), Sp ⊂ Per(σ), and, for

each x ∈ Sp, a set Tx ⊂ T, such that

I =
⋂
x∈Sap

Px
⋂
x∈Sp

⋂
λ∈Tx

Px,λ; (4.1)

(3) I is the kernel of an involutive representation of `1(Σ);
(4) If I ′ is an ideal of `1(Σ), then I ′ ⊂ I if and only if Z (I ′) ⊃ Z (I).

In that case, I is a self-adjoint closed ideal of `1(Σ). If Sap ⊂ Aper(σ), Sp ⊂
Per(σ), and, for each x ∈ Sap ∪ Sp, Tx ⊂ T, are such that

Z (I) =
⋃
x∈Sap

⋃
λ∈Tx

[Z · x ]× {λ}
⋃
x∈Sp

⋃
µ∈Tx

[Z · x ]× {µ},

then
I =

⋂
x∈Sap

Px
⋂
x∈Sp

⋂
µ∈Tx

Px,µp
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is an explicit intersection as in part (2).

Proof. From Appendix A we know that the ideals as in part (1) are precisely the
ideals of the form I(S), for S a σ × idT-invariant subset of X × T. We will show
that these ideals are precisely the intersections as in the right hand side of (4.1).

If S ⊂ X × T is σ × idT-invariant, then it is evidently possible to find subsets
Sap ⊂ Aper(σ), Sp ⊂ Per(σ), and, for each x ∈ Sap ∪ Sp a set Tx ⊂ T such that

S =
⋃
x∈Sap

⋃
λ∈Tx

[Z · x ]× {λ}
⋃
x∈Sp

⋃
µ∈Tx

[Z · x ]× {µ}.

Now Proposition 4.15 shows that I([Z · x ] × {λ}) equals Px, if x ∈ Aper(σ),
and that it equals Px,µp , if x ∈ Per(σ). Hence the penultimate statement in
Lemma 4.4 shows that I(S) is an intersection as in the right hand side of (4.1).
Conversely, all ideals I that can be written as an intersection in (4.1) can be
obtained as I(S) for a suitable σ × idT-invariant S ⊂ X × T: according to
Corollary 4.7, Corollary 4.10, and the penultimate statement of Lemma 4.4, if
S =

⋃
x∈Sap

Z (Px)
⋃
x∈Sp

⋃
λ∈Tx

Z (Px,λ), then I(S) = I. Thus (1) and (2) are
equivalent.

If I is an intersection as in (4.1), note that each of these ideals is the kernel
of an involutive representation. Hence I is the kernel of the Hilbert sum of these
representations. Hence (2) implies (3). If (3) holds, then we need only extend
the given involutive representation π to an involutive representation π̃ of C∗(Σ),
use [15, Proposition 2] to write Ker π̃ as an intersection of the counterparts of
the Px and Px,λ for C∗(Σ), and take the intersection of the ensuing relation with
`1(Σ) to see that (3) implies (2). The equivalence of (1) and (4) is a restatement
of Lemma A.5 in the present context.

This completes the proof of the equivalences. Any such ideal is clearly self-
adjoint, and the remaining statement has been established during the previous
part of the proof. �

Now that the fixed points of IZ have been identified, the results in Appendix A
yield the following.

Theorem 4.17. Let A be the set of all closed ideals of `1(Σ) and let B = {Z (I) :
I ∈ A} be the ensuing subset of the set of all σ × idT-invariant closed subsets of
X × T, both ordered by inclusion. Then Z : A → B and I : B → A are
decreasing, I ◦Z (I) � I for all I ∈ A, and Z ◦ I = idB . Let Ainvrep be the set of
all kernels of involutive representations of `1(Σ). Then:

(1) Z : Ainvrep → B and I : B → Ainvrep are mutually inverse bijections;
(2) The following are equivalent:

(a) Z is injective on A;
(b) Each closed ideal I of `1(Σ) is of the form I(S) for some S ∈ B;
(c) Each closed ideal of `1(Σ) is the kernel of an involutive representation

of `1(Σ);
(d) For each S ∈ B, I(S) is the unique closed ideal I ′ of `1(Σ) such that

Z (I ′) = S.
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(3) For each ideal I that is the kernel of an involutive representation of `1(Σ),
Z (I) is the unique element S of B such that Z (S) = I;

(4) If I is a closed ideal of `1(Σ), then IZ (I) is the smallest kernel of an
involutive representation of `1(Σ) that contains I, and it also the largest
closed ideal I ′ of `1(Σ) such that Z (I ′) = Z (I). It is self-adjoint and, if
Sap ⊂ Aper(σ), Sp ⊂ Per(σ), and, for each x ∈ Sap ∪ Sp, Tx ⊂ T, are
such that

Z (I) =
⋃
x∈Sap

⋃
λ∈Tx

[Z · x ]× {λ}
⋃
x∈Sp

⋃
µ∈Tx

[Z · x ]× {µ},

then

IZ (I) =
⋂
x∈Sap

Px
⋂
x∈Sp

⋂
µ∈Tx

Px,µp

Proof. Everything is clear from the results in Appendix A, except for the explicit
intersection in part (4). As to this, note that IZ (IZ (I)) = IZ (I), hence
Theorem 4.16 shows how IZ (I) can be written as an intersection corresponding
to a decomposition of Z (IZ (I)) = Z (I). �

We can now resolve the second issue raised in Remark 4.3.

Corollary 4.18. Let I be an ideal of `1(Σ). Then Z (I) = Z (I∗).

Proof. We may assume that I is closed. Part (4) of Theorem 4.17 furnishes a self-
adjoint ideal I ′ ⊃ I such that Z (I ′) = Z (I) (where I ′ = `1(Σ) if Z (I) = ∅). Since
I ′ ⊃ I∗, we have Z (I∗) ⊃ Z (I ′) = Z (I). Likewise, Z (I∗) ⊃ Z (I∗∗) = Z (I). �

It is now possible to give conditions equivalent to spectral synthesis holding
in this model. Of course, Theorem 4.16 is then applicable to all closed ideals of
`1(Σ). Moreover, since the freeness of Σ is one of the conditions, all equivalent
conditions of Theorem 3.13 are also valid, and Theorem 3.6 is applicable to all
closed ideals.

Theorem 4.19. The following are equivalent:

(1) The maps I → Z (I) and S → I(S) are mutually inverse bijections be-
tween the set of closed ideals of `1(Σ) on the one hand, and the subset
{Z (I) : I a closed ideal of `1(Σ)} of all σ × idT-invariant closed subsets
of X × T on the other hand;

(2) Every closed ideal of `1(Σ) is the kernel of an involutive representation of
`1(Σ);

(3) Every closed ideal of `1(Σ) is self-adjoint;
(4) Every closed ideal of `1(Σ) is the intersection of primitive ideals;
(5) Σ is free.

Proof. The equivalence of (1) and (2) is immediate from Theorem 4.17. Certainly
(2) implies (3), which by Theorem 3.13 is equivalent with (4) and (5). If (5)
holds, then Theorem 3.13 shows that each closed ideal of `1(Σ) is an intersection
of kernels of involutive representations, hence is itself such a kernel. Thus (5)
implies (2). �
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Remark 4.20. The above result can be interpreted, as follows. The corresponding
properties under (2), (3), and (4) in Theorem 4.19 are valid for all C∗-algebras.
For the Banach algebras with isometric involution under consideration, these
three properties are either all present or all absent, and they are all present
precisely when the underlying dynamical system is free.

Remark 4.21. For general locally compact abelian G, L1(G) is a regular commu-

tative Banach algebra, i.e., every closed subset of Ĝ is the hull of a closed ideal of
L1(G). One might surmise that, in our case, the set B in Theorem 4.19 consists
of all σ × idT-invariant closed subsets of X × T. This is, however, not the case.
If the system is free, then the combination of Theorem 4.19, Theorem 4.16 and
Proposition 4.6 shows that B = {A × T : A ⊂ X σ-invariant and closed}, and
this set does not exhaust the σ × idT-invariant closed subsets of X × T.

Appendix A. Hulls and kernels: abstract framework

In this Appendix, we collect some basic results on the general set-theoretical
framework underlying hull-kernel-type constructions. Although the results and
arguments are elementary and have been used in many particular cases, we are
not aware of a general reference, and in view of their occurrence in both Section 3
and Section 4, we find it worthwhile to make them explicit.

Let A and B be sets, supplied with a binary relation ≺ which is anti-symmetric,
i.e., if a1, a2 ∈ A, a1 ≺ a2 and a2 ≺ a1, then a1 = a2, and likewise for B. We
use a2 � a1 as an equivalent notation for a1 ≺ a2, and likewise for B. We do
not assume ≺ to be reflexive or transitive. Furthermore, let α : A → B and
β : B → A be maps with the following properties.

Assumption.

(1) (a) β ◦ α(a) � a, for all a ∈ A;
(b) if a1, a2 ∈ A and a1 � a2, then α(a1) ≺ α(a2);

(2) (a) α ◦ β(b) � b, for all b ∈ B;
(b) if b1, b2 ∈ B and b1 � b2, then β(b1) ≺ β(b2).

Thus there is full symmetry in A and α on the one hand, and B and β on
the other hand. Hence in the results below it would be sufficient to give just one
of the statements, but it seems convenient for practical situations to formulate
both. Naturally, we prove only one of them.

A typical example of this setup occurs when A is the set of closed ideals of a
commutative Banach algebra, and B is the power set of its maximal ideal space,
with ≺ denoting inclusion in both cases. If I ∈ A, then one lets α(I) be the
usual hull h(I) of I, and if S ∈ B, then β(S) is the usual kernel k (S) of S. The
fixed elements in B of α ◦ β = h ◦ k constitute the closed subsets in the hull-
kernel topology on the maximal ideal space. The collection of such closed subsets
coincides with the collection of hulls of closed ideals, (cf. part (2) of Corollary A.2)
and one of the main issues in spectral synthesis for commutative Banach algebras
is the injectivity of the map α = h on the set A of closed ideals.

Likewise, the introduction of the Jacobson topology on the primitive ideal
space of a general algebra falls within this framework, and the same holds true
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for the operations in Sections 3 and 4. In Section 3 one takes for A the set of
ideals of `1(Σ) (ordered by inclusion), with α = H , and for B the subsets of
X (ordered by inclusion), with β = K . In Section 4 one takes for A the set
of ideals (or: closed ideals) of `1(Σ) (ordered by inclusion) again, but now with
α = Z , and for B the subsets (or: closed subsets) of X × T invariant under
σ × idT (ordered by inclusion), with β = I. That the above Assumption is then
satisfied is the content of Lemma 3.2, Lemma 3.3, and Lemma 3.4 for Section 3,
and of Lemma 4.2, Lemma 4.4 and Lemma 4.5 for Section 4.

Lemma A.1. α ◦ β ◦ α = α and β ◦ α ◦ β = β.

Proof. Let a ∈ A. Then β ◦ α(a) � a by part (1)(a) of the Assumption, hence
part (1)(b) of the Assumption implies α ◦ β ◦ α(a) ≺ α(a). On the other hand,
part (2)(a) of the Assumption shows that α ◦ β ◦ α(a) = α ◦ β(α(a)) � α(a).
Hence we have equality. �

Corollary A.2 and Corollary A.3 are based only on the properties of α and β in
Lemma A.1. We let Fix(α◦β) denote the fixed points in B of α◦β, and similarly
for Fix(β ◦ α).

Corollary A.2.

(1) (β ◦ α)2 = β ◦ α and (α ◦ β)2 = α ◦ β.
(2) α(A) = Fix(α ◦ β) and β(B) = Fix(β ◦ α).
(3) The restricted maps α : Fix(β ◦ α) → Fix(α ◦ β) and β : Fix(α ◦ β) →

Fix(β ◦ α) are mutually inverse bijections.
(4) (a) The following are equivalent:

(i) α is injective on A;
(ii) A = β(B);
(iii) A = Fix(β ◦ α);
(iv) {a ∈ A : α(a) = b} = {β(b)}, for all b ∈ Fix(α ◦ β).

(b) The following are equivalent:
(i) β is injective on B;

(ii) B = α(A);
(iii) B = Fix(α ◦ β);
(iv) {b ∈ B : β(b) = a} = {α(a)}, for all a ∈ Fix(β ◦ α).

Proof. Part (1) is immediate from Lemma A.1. As to part (2), if b ∈ α(A), say
b = α(a) for a ∈ A, then α ◦ β(b) = (α ◦ β ◦ α)(a) = α(a) = b by Lemma A.1.
Hence α(A) ⊂ Fix(α◦β). Since the reverse inclusion is obvious, we have equality.
For part (3), we need only remark that the codomains are appropriate as a conse-
quence of part (2), since it is then obvious that the restricted maps are mutually
inverse bijections. The parts (2) and (3) yield α(A) = Fix(α◦β) = α(Fix(β ◦α)),
and this implies the equivalence in part (4)(a). �

The picture to keep in mind is the following.
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The following is now clear.

Corollary A.3. If a ∈ A, then {a′ ∈ Fix(β ◦ α) : α(a′) = α(a)} = {β ◦ α(a)}.
If b ∈ B, then {b′ ∈ Fix(α ◦ β) : β(b′) = β(b)} = {α ◦ β(b)}.

Lemma A.4.

(1) Let a ∈ A. Then

β ◦ α(a) = min{a′ ∈ Fix(β ◦ α) : a′ � a}
= max{a′ ∈ A : α(a′) = α(a)}.

(2) Let b ∈ B. Then

α ◦ β(b) = min{b′ ∈ Fix(α ◦ β) : b′ � b}
= max{b′ ∈ B : β(b′) = β(b)}.

Proof. Let a ∈ A, and put S1 = {a′ ∈ Fix(β◦α) : a′ � a}. From part (1)(a) of the
Assumption we have β◦α(a) � a. Since furthermore β◦α(a) ∈ β(B) = Fix(β◦α),
we see that β ◦ α(a) ∈ S1. If a′ ∈ S1, then a′ � a implies α(a′) ≺ α(a),
hence β ◦ α(a′) � β ◦ α(a). Since additionally a′ ∈ Fix(β ◦ α), we see that
a′ � β ◦ α(a). Hence β ◦ α is the (automatically unique) smallest element of S1,
as required. Turning to the second equality, let S2 = {a′ ∈ A : α(a′) = α(a)}.
Since α(β ◦ α(a)) = α(a) by Lemma A.1, we see that β ◦ α(a) ∈ S2. If a′ ∈ S2,
then α(a′) = α(a) implies β ◦ α(a) = β ◦ α(a′) � a′. Hence β ◦ α(a) is the
(automatically unique) largest element of S2, as required. �

Lemma A.5. Let a ∈ A. Then the following are equivalent:

(1) For all a′ ∈ A, a′ ≺ a if and only if α(a′) � α(a);
(2) a ∈ Fix(β ◦ α);
(3) a ∈ β(B).
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Let b ∈ B. Then the following are equivalent:

(4) For all b′ ∈ B, b′ ≺ b if and only if β(b′) � β(b);
(5) b ∈ Fix(α ◦ β);
(6) b ∈ α(A).

Proof. We prove the statement forA. Suppose (1) holds. Since α(β◦α(a)) = α(a),
we then have β ◦ α(a) ≺ a. As always β ◦ α(a) � a, we have equality. Hence (1)
implies (2). Assume that (2) holds, and suppose a′ ∈ A. Certainly a′ ≺ a implies
α(a′) � α(a). If α(a′) � α(a), then β ◦α(a′) ≺ β ◦α(a) = a. Since β ◦α(a′) � a′,
we have a′ ≺ a. Hence (2) implies (1). The equivalence of the second and third
part has already been noted in Corollary A.2. �
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