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Abstract. In this paper we show that a bounded linear operator on a Ba-
nach space X is polaroid if and only if p(T ) is polaroid for some polynomial
p. Consequently, algebraically paranormal operators defined on Banach spaces
are hereditarily polaroid. Weyl type theorems are also established for pertur-
bations f(T + K), where T is algebraically paranormal, K is algebraic and
commutes with T , and f is an analytic function, defined on an open neigh-
borhood of the spectrum of T +K, such that f is nonconstant on each of the
components of its domain. These results subsume recent results in this area.

1. Paranormal operators

There is a growing interest concerning paranormal operators, ([12, 14, 19, 7, 23])
and subclasses of paranormal operators ([17]), since the class of paranormal op-
erators properly contains a relevant number of Hilbert space operators.

Paranormal operators are polaroid, where a bounded operator T ∈ L(X) de-
fined on a Banach space is said to be polaroid if every isolated point of the
spectrum σ(T ) is a pole of the resolvent. Polaroid operators have been studied in
recent papers in relation with Weyl type theorems, see [16, 15, 3, 6]. In this note
we show that algebraically paranormal operators on Banach spaces are hereditar-
ily polaroid, extending previous results known for Hilbert space operators. This
is a consequence of the following more general result: T ∈ L(X) is polaroid if and
only if f(T ) is polaroid for some analytic function f (or equivalently, for some
polynomial p), defined on an open neighborhood of σ(T ), such that f is noncon-
stant on each of the components of its domain. These results are, in the final
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part, applied for obtaining Weyl type theorems for operators f(T +K), where T
is algebraically paranormal and K is an algebraic operator which commutes with
T .

We introduce the relevant terminology. A bounded linear operator T ∈ L(X),
X an infinite dimensional complex Banach space, is said to be paranormal if

‖Tx‖ ≤ ‖T 2x‖‖x‖ for all x ∈ X.
It is known that the property of being paranormal is not translation-invariant

by scalars. The quasi-nilpotent part of an operator T ∈ L(X) is the set

H0(T ) := {x ∈ X : lim
n→∞

‖T nx‖
1
n = 0}.

Clearly, ker T n ⊆ H0(T ) for every n ∈ N.
An operator T ∈ L(X) is said to have the single valued extension property at

λ0 ∈ C (abbreviated SVEP at λ0), if for every open disc U of λ0, the only analytic
function f : U → X which satisfies the equation (λI − T )f(λ) = 0 for all λ ∈ U
is the function f ≡ 0.
An operator T ∈ L(X) is said to have SVEP if T has SVEP at every point
λ ∈ C. Note that, that both T and its dual T ∗ (or in the case of Hilbert space
operators, the adjoint T ′) have SVEP at every isolated point of the spectrum
σ(T ) = σ(T ∗). Furthermore, the SVEP is inherited by the restrictions to closed
invariant subspaces, i.e. if T ∈ L(X) has the SVEP at λ0 and M is a closed
T -invariant subspace then T |M has SVEP at λ0.

The quasi-nilpotent part of an operator generally is not closed. We have

H0(λI − T ) closed⇒ T has SVEP at λ, (1.1)

see [5].

The following result is well-known, see [12, Corollary 2.10] and [7, p. 2445].

Theorem 1.1. Every paranormal operator on a separable Banach space has
SVEP. Paranormal operators on Hilbert spaces have SVEP.

It is known that every paranormal operator T ∈ L(X) is normaloid, i.e. ‖T‖
is equal to the spectral radius of T . Consequently, if T ∈ L(X)

T quasi-nilpotent paranormal⇒ T = 0. (1.2)

An operator T ∈ L(X) for which there exists a complex nonconstant polynomial
h such that h(T ) is paranormal is said to be algebraically paranormal. Note that
algebraic paranormality is preserved under translation by scalars and under re-
striction to closed invariant subspaces.

Two classical quantities associated with a linear operator T are the ascent
p := p(T ), defined as the smallest non-negative integer p (if it does exist) such
that ker T p = ker T p+1, and the descent q := q(T ), defined as the smallest non-
negative integer q (if it does exists) such that T q(X) = T q+1(X). It is well-known
that if p(λI − T ) and q(λI − T ) are both finite then p(λI − T ) = q(λI − T ) and
λ is a pole of the the function resolvent λ→ (λI−T )−1, in particular an isolated
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point of the spectrum σ(T ), see Proposition 38.3 and Proposition 50.2 of Heuser
[18].

Recall that an invertible operator T ∈ L(X) is said to be doubly power-bounded
if sup{‖T n‖ : n ∈ Z} <∞.

The following result, for Hilbert spaces operators, has been proved in [7, Theo-
rem 2.4] , but the argument used in the proof is not correct (indeed, paranormality
is not translation invariant). Now we give a correct proof of this result in the
more general case of Banach space operators.

Lemma 1.2. Suppose that T ∈ L(X) is algebraically paranormal and quasi-
nilpotent. Then T is nilpotent.

Proof. Suppose that h is a polynomial for which h(T ) is paranormal. From the
spectral mapping theorem we have

σ(h(T )) = h(σ(T )) = {h(0)}.
We claim that h(T ) = h(0)I. To see that let us consider the two possibilities:
h(0) = 0 or h(0) 6= 0.

If h(0) = 0 then h(T ) is quasi-nilpotent, so from the implication (1.2), we
deduce that h(T ) = 0, hence the equality h(T ) = h(0)I trivially holds.

Suppose the other case h(0) 6= 0, and set h1(T ) := 1
h(0)

h(T ). Clearly, h1(T ) has

spectrum {1} and ‖h1(T )‖ = 1. Moreover, h1(T ) is invertible and also its inverse
h1(T )−1 has norm 1. The operator h1(T ) is then doubly power-bounded and by
a classical theorem due to Gelfand, see [20, Theorem 1.5.14] for a proof, it then
follows that h1(T ) = I, and hence h(T ) = h(0)I, as claimed.

Now, from the equality h(0)I − h(T ) = 0, we see that there exist some natural
n ∈ N and µ ∈ C for which

0 = h(0)I − h(T ) = µTm
n∏
i=1

(λiI − T ) with λi 6= 0,

where all λiI − T are invertible. This obviously implies that Tm = 0, so T is
nilpotent. �

Recall first that if T ∈ L(X), the analytic core K(T ) is the set of all x ∈ X
such that there exists a constant c > 0 and a sequence of elements xn ∈ X such
that x0 = x, Txn = xn−1, and ‖xn‖ ≤ cn‖x‖ for all n ∈ N.

Theorem 1.3. If T ∈ L(X) is algebraically paranormal then every isolated point
of the spectrum σ(T ) is a pole of the resolvent; i.e. T is polaroid.

Proof. We show that for every isolated point λ of σ(T ) we have p(λI − T ) =
q(λI − T ) < ∞. Let λ be an isolated point of σ(T ), and denote by Pλ denote
the spectral projection associated with {λ}. Then M := K(λI − T ) = ker Pλ
and N := H0(λI − T ) = Pλ(X), see [1, Theorem 3.74]. Therefore, H = H0(λI −
T )⊕K(λI −T ). Furthermore, since σ(T |N) = {λ}, while σ(T |M) = σ(T ) \ {λ},
so the restriction λI − T |N is quasi-nilpotent and λI − T |M is invertible. Since
λI − T |N is algebraically paranormal then Lemma 1.2 implies that λI − T |N is
nilpotent. In other worlds, λI − T is an operator of Kato Type, see [1, Chapter
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1] for details.
Now, both T and its dual T ∗ have SVEP at λ, since λ is isolated in σ(T ) =

σ(T ∗), and this implies, by Theorem 3.16 and Theorem 3.17 of [1], that both
p(λI − T ) and q(λI − T ) are finite. Therefore, λ is a pole of the resolvent. �

The concept of Drazin invertibility has been introduced in a more abstract
setting than operator theory. In the case of the Banach algebra L(X), T ∈ L(X)
is said to be Drazin invertible (with a finite index) if and only if p(T ) = q(T ) <∞.

Definition 1.4. T ∈ L(X) is said to be left Drazin invertible if p := p(T ) < ∞
and T p+1(X) is closed, while T ∈ L(X) is said to be right Drazin invertible if
q := q(T ) <∞ and T q(X) is closed.

Clearly, T ∈ L(X) is both right and left Drazin invertible if and only if T is
Drazin invertible. In fact, if 0 < p := p(T ) = q(T ) then T p(X) = T p+1(X) is
the kernel of the spectral projection associated with the spectral set {0}, see [18,
Prop. 50.2].

The concepts of left or right Drazin invertibility lead to the concepts of left
or right pole. Let us denote by σa(T ) the classical approximate point spectrum
and by σs(T ) the surjectivity spectrum. It is well known that σa(T

∗) = σs(T ) and
σs(T

∗) = σa(T ).

Definition 1.5. Let T ∈ L(X), X a Banach space. If λI − T is left Drazin
invertible and λ ∈ σa(T ) then λ is said to be a left pole of the resolvent of T . A
left pole λ is said to have finite rank if α(λI − T ) <∞. If λI − T is right Drazin
invertible and λ ∈ σs(T ) then λ is said to be a right pole of the resolvent of T .A
right pole λ is said to have finite rank if β(λI − T ) <∞.

Evidently, λ is a pole of T if and only if λ is both a left and a right pole of T .
Moreover, λ is a pole of T if and only if λ is a pole of T ′. In the case of Hilbert
space operators, λ is a pole of T ′ if and only if λ is a pole of T ∗.

Definition 1.6. Let T ∈ L(X). Then

(i) T is said to be left polaroid if every isolated point of σa(T ) is a left pole of
the resolvent of T .

(ii) T ∈ L(X) is said to be right polaroid if every isolated point of σs(T ) is a
right pole of the resolvent of T .

(iii) T ∈ L(X) is said to be a-polaroid if every isolated point of σa(T ) is a pole
of the resolvent of T .

Let isoσ(T ) denote the set of all isolated points of σ(T ). The condition of
being polaroid may be characterized as follows:

Theorem 1.7. [6, Theorem 2.2] Suppose that T ∈ L(X). Then we have:

(i) T is polaroid if and only if for every λ ∈ isoσ(T ), there exists ν := ν(λI −
T ) ∈ N such that H0(λI − T ) = ker (λI − T )ν .

(ii) Suppose that T is left polaroid. Then, for every λ ∈ isoσa(T ), there exists
ν := ν(λI − T ) ∈ N such that H0(λI − T ) = ker (λI − T )ν .
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Note that the concepts of left and right polaroid are dual each other, see [3].
If T ∈ L(X) then the following implications hold:

T a-polaroid⇒ T left polaroid⇒ T polaroid.

Furthermore, if T is right polaroid then T is polaroid. The first implication is
clear, since a pole is always a left pole. Assume that T is left polaroid and let
λ ∈ isoσ(T ). It is known that the boundary of the spectrum is contained in
σa(T ), in particular every isolated point of σ(T ), thus λ ∈ isoσa(T ) and hence λ
is a left pole of the resolvent of T . By part (ii) of Theorem 1.7, then there exists
a natural ν := ν(λI − T ) ∈ N such that H0(λI − T ) = ker (λI − T )ν . But λ is
isolated in σ(T ), so T is polaroid, by part (i) of Theorem 1.7.

To show the last assertion suppose that T is right polaroid. Then T ∗ is left
polaroid and hence, by the first part, T ∗ is polaroid, or equivalently T is polaroid.

2. Weyl type theorems for perturbations of paranormal
operators

Recall that an operator T ∈ L(X) is said to be Weyl (T ∈ W (X)), if T is
Fredholm (i.e. α(T ) := dim ker T and β(T ) := codimT (X) are both finite) and
the index indT := α(T )− β(T ) = 0. The Weyl spectrum of T ∈ L(X) is defined
by

σw(T ) := {λ ∈ C : λI − T /∈ W (X)}.
Following Coburn [13], we say that Weyl’s theorem holds for T ∈ L(X) if

σ(T ) \ σw(T ) = π00(T ), (2.1)

where
π00(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T ) <∞}.

The concept of Fredholm operators has been generalized by Berkani ([10]) in the
following way: for every T ∈ L(X) and a nonnegative integer n let us denote by
T[n] the restriction of T to T n(X) viewed as a map from the space T n(X) into
itself (we set T[0] = T ). T ∈ L(X) is said to be B-Fredholm if for some integer
n ≥ 0 the range T n(X) is closed and T[n] is a Fredholm operator. In this case
T[m] is a Fredholm operator for all m ≥ n ([10]). This enables one to define the
index of a Fredholm as ind T = ind T[n]. A bounded operator T ∈ L(X) is said
to be B-Weyl (T ∈ BW (X)) if for some integer n ≥ 0 T n(X) is closed and T[n]
is Weyl. The B-Weyl spectrum σbw(T ) is defined

σbw(T ) := {λ ∈ C : λI − T /∈ BW (X)}.
Another version of Weyl’s theorem has been introduced by Berkani and Koliha
([11] as follows: T ∈ L(X) is said to verify generalized Weyl’s theorem, (abbrevi-
ated, (gW )), if

σ(T ) \ σbw(T ) = E(T ), (2.2)

where
E(T ) := {λ ∈ iso σ(T ) : 0 < α(λI − T )}.

Note the generalized Weyl’s theorem entails Weyl’s theorem.
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The following result shows that in presence of SVEP the polaroid condition
entails Weyl’s type theorems.

Theorem 2.1. Let T ∈ L(X) be polaroid and suppose that either T or T ∗ has
SVEP. Then both T and T ∗ satisfy generalized Weyl’s theorem.

Proof. If T is polaroid also T ∗ is polaroid, and Weyl’s theorem and generalized
Weyl’s theorem for T , or T ∗, are equivalent, see [3, Theorem 3.7]. The assertion
then follows from [3, Theorem 3.3]. �

As an immediate consequence of Theorem 2.1 we obtain that, for every alge-
braically paranormal operator T defined on a separable Banach space, or defined
on a Hilbert space (in this case, the dual T ∗ may be replaced by the Hilbert
adjoint T ′), then both T and T ∗ satisfy generalized Weyl’s theorem. This result,
for algebraically paranormal operators on Hilbert spaces, has been proved in [14].
It should be noted that if T is paranormal on a Banach space X then Weyl’s the-
orem holds for T and T ∗, without assuming separability on X, see [12, Theorem
2.12].

Let Hnc(σ(T )) denote the set of all analytic functions, defined on an open
neighborhood of σ(T ), such that f is nonconstant on each of the components
of its domain. Define, by the classical functional calculus, f(T ) for every f ∈
Hnc(σ(T )).

The proof of the following results may be found in Lemma 1.76 and Lemma
3.101 of [1].

Lemma 2.2. Let {λ1, . . . , λk} be a finite subset of C, with λi 6= λj for i 6= j. If
{ν1, . . . νk} ⊂ N and p(λ) := Πk

i=1(λi − λ)νi then

ker p(T ) =
k⊕
i=1

ker (λiI − T )νi .

Furthermore, if p(λ0) 6= 0 for some λ0 ∈ C then H0(λ0I − T ) ∩ ker p(T ) = {0}.

Remark 2.3. It is easy to check from the definition of a quasi-nilpotent part the
following properties:

(i) H0(T ) ⊆ H0(T
k), for all k ∈ N.

(ii) If T, U ∈ L(X) commutes and S = TU then H0(T ) ⊆ H0(S).

We are now ready for the main result of this section.

Theorem 2.4. For an operator T ∈ L(X) the following statements are equiva-
lent.

(i) T is polaroid;

(ii) f(T ) is polaroid for every f ∈ Hnc(σ(T ));

(iii) there exists a non-trivial polynomial p such that p(T ) is polaroid;

(iv) there exists f ∈ Hnc(σ(T )) such that f(T ) is polaroid.

Proof. The implication (i) ⇒ (ii) has been proved in [6, Theorem 2.5]. The
implications (ii) ⇒ (iii) ⇒ (iv) are obvious.
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(iv) ⇒ (i) Suppose f(T ) polaroid for some f ∈ Hnc(σ(T )) and let λ0 ∈
isoσ(T ) be arbitrary. Then µ0 := f(λ0) ∈ f(isoσ(T )). It is easily seen that
µ0 ∈ iso f(σ(T )). Indeed, suppose that µ0 is not isolated in f(σ(T )). Then
there exists a sequence (µn) ⊂ f(σ(T )) of distinct scalars such that µn → µ0 as
n → +∞. Let λn ∈ σ(T ) such that µn = f(λn) for all n. Clearly, λn 6= λm
for n 6= m, and since µn = f(λn) → µ0 = p(λ0) then λn → λ0, and this is im-
possible since, by assumption, λ0 ∈ isoσ(T ). By the spectral mapping theorem
then µ0 ∈ iso f(σ(T ) = iso σ(f(T )). Now, since f(T ) is polaroid, the part (i) of
Theorem 1.7 entails that there exists a natural ν such that

H0(µI − f(T )) = ker (µI − f(T ))ν . (2.3)

Let g(λ) := µ0 − f(λ). Trivially, λ0 is a zero of g, and g may have only a finite
number of zeros. Let {λ0, λ1, . . . , λn} be the set of all zeros of g, with λi 6= λj, for
all i 6= j. Define p(λ) := Πn

i=1(λi − λ)νi , where νi is the multiplicity of λi. Then
we can write, for some k ∈ N,

g(λ) = (λ0 − λ)k p(λ)h(λ),

where h(λ) is an analytic function which does not vanish in σ(T ). Consequently,

g(T ) = µ0I − f(T ) = (λ0I − T )kp(T )h(T ),

where h(T ) is invertible, and hence

H0(µ0I − f(T )) = H0((λ0I − T )kp(T )h(T )) = H0((λ0I − T )kp(T )).

By Remark 2.3, we then have

H0(λ0I − T ) ⊆ H0((λ0I − T )k) ⊆ H0((λ0I − T )kp(T ))

= H0(µ0I − f(T )),

and, evidently,
ker g(T ) = ker [(λ0I − T )kp(T )].

By Lemma 2.2, we also have

ker g(T ) = ker (µ0I − f(T )) = ker [(λ0I − T )k ⊕ ker p(T ).

and hence, from (2.3),

H0(µ0I − f(T )) = ker (λ0I − T )kν ⊕ ker p(T )k.

Therefore,
H0(λ0I − T ) ⊆ ker (λ0I − T )kν ⊕ ker p(T )k.

Since, by Lemma 2.2, we have H0(λ0I − T ) ∩ ker p(T )k = {0}, we then conclude
that H0(λ0I − T ) ⊆ ker (λ0I − T )kν . The opposite of the latter inclusion also
holds, so we have H0(λ0I − T ) = ker (λ0I − T )kν . Theorem 1.7 then entails that
T is polaroid. �

A natural question is if the analogous of Theorem 2.4 holds for left polaroid
operators. The implication

T left polaroid⇒ f(T ) left polaroid,

holds for every f ∈ Hnc(σ(T )), see [3, Lemma 3.11]. Denote by Hi
nc(σ(T )) the

subset of all f ∈ Hnc(σ(T )) such that f is injective.
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Theorem 2.5. For an operator T ∈ L(X) the following statements are equiva-
lent.

(i) T is left polaroid;

(ii) f(T ) is left polaroid for every f ∈ Hi
nc(σ(T ));

(iii) there exists f ∈ Hi
nc(σ(T )) such that f(T ) is left polaroid.

Proof. We have only to show that (iii) ⇒ (i). Let λ0 be an isolated point of
σa(T ) and let µ0 := f(λ0) As in the proof of Theorem 2.4 it then follows that
µ0 ∈ isoσa(f(T )), so µ0 is a left pole of f(T ). By Theorem 2.9 of [9] there exists
a left pole η of T such that f(η) = µ0 and since f is injective then η = λ0.
Therefore, T is left polaroid. �

A bounded operator T ∈ L(X) is said to be hereditarily polaroid, i.e. any
restriction to an invariant closed subspace is polaroid. This class of operators
has been first considered in [16]. Examples of hereditarily polaroid operators are
H(p)-operators (i.e. operators on Banach spaces for which for every λ ∈ C there
exists a natural p := p(λ) such that H0(λI − T ) = ker(λI − T )p). Property H(p)
is satisfied by every generalized scalar operator, see [20] for details of this class of
operators), and in particular for p-hyponormal, log-hyponormal or M-hyponormal
operators on Hilbert spaces, see [21]. An example of polaroid operator which is
not hereditarily polaroid may be found in [16, Example 2.6].

Corollary 2.6. Algebraically paranormal operators on Banach spaces are hered-
itarily polaroid.

Proof. Let T ∈ L(X) be algebraically paranormal and M a closed T -invariant
subspace of X. By assumption there exists a nontrivial polynomial h such that
h(T ) is paranormal. The restriction of any paranormal operator to an invariant
closed subspace is also paranormal, so h(T |M) = h(T )|M is paranormal and
hence polaroid, by Theorem 1.3. From Theorem 2.4 we then conclude that T |M
is polaroid. �

Recall that a bounded operator K ∈ L(X) is said to be algebraic if there exists
a non-constant polynomial h such that h(K) = 0. Trivially, every nilpotent
operator is algebraic and it is well-known that if Kn(X) has finite dimension
for some n ∈ N then K is algebraic. In [4] it is shown that if T is hereditarily
polaroid and has SVEP, and K is an algebraic operator which commutes with T
then T +K is polaroid and T ∗ +K∗ is a-polaroid.

Theorem 2.7. Let T ∈ L(X) be an algebraically paranormal operator on a
separable Banach space X, and let K ∈ L(X) be an algebraic operator com-
muting with T . Then both f(T + K) and f(T ∗ + K∗) satisfies (gW ) for every
f ∈ Hnc(σ(T +K)). An analogous result holds if T is an algebraically paranormal
operator on a Hilbert space.

Proof. Suppose that T ∈ L(X) is algebraically paranormal operator, and let h
be a non-trivial polynomial for which h(T ) is paranormal, and hence has SVEP,
since T has SVEP. From Theorem [1, Theorem 2.40] it the follows that also T
has SVEP. Now, by Corollary 2.6 T is hereditarily polaroid. By Theorem 2.15
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of [4] then T + K is polaroid and T ∗ + K∗ is a-polaroid (and hence polaroid).
By Theorem 2.4 then f(T + K) is polaroid. Moreover, T + K has SVEP, by [8,
Theorem 2.14] and hence f(T +K) has SVEP, again by [1, Theorem 2.40]. The
assertions then follows by Theorem 2.1.
The last assertion is proved with the same argument, since T has SVEP. �

Theorem 2.7 considerably improves the results of Theorem 2.4 of [14] proved
for algebraically paranormal operators defined on a separable Hilbert spaces H,
and also improves Theorem 2.5 of [7], proved in the case of paranormal operators
on Hilbert spaces. Observe that, always in the situation of Theorem 2.7, the fact
that f(T +K) is polaroid entails that all Weyl type theorems (as properties (gw)
and (gaW )) hold for f(T ∗ +K∗), see [3] for definitions and details, in particular
Theorem 3.10.
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