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A RELATION-THEORETIC (F,R)-CONTRACTION PRINCIPLE

WITH APPLICATIONS TO MATRIX EQUATIONS

M. IMDAD, Q. H. KHAN, W. M. ALFAQIH AND R. GUBRAN

Abstract. In this paper, we introduce certain notions namely: (F,R)-contraction,

T -orbital transitivity and orbit R-continuity and utilize the same to prove a

relation-theoretic contraction principle under (F,R)-contraction in a metric
space endowed with a binary relation R. We also furnish some examples to

demonstrate the utility of our main results. As applications, we apply our

main results to nonlinear matrix equations.

1. Introduction

The tremendous applications of fixed point theory had always inspired the growth
of this domain. In 1922, Banach formulated his most simple but very natural result
which is now popularly referred as Banach contraction principle. This principle
is a very popular tool for guaranteeing the existence and uniqueness of solution
of a multitude problems arising in several domains of Mathematics and Physical
Sciences. In the course of last several decades, this principle has been extended and
generalized in many directions with several applications in various directions.

In 2012, Wardowski [27] initiated the idea of F -contraction with a view to con-
sider a new class of nonlinear contractions which in turn generalizes Banach contrac-
tion principle. Thereafter, many authors generalized and improved F -contraction
in different ways (see[7, 8, 9, 10, 11, 12, 13, 15, 14, 19, 23, 24, 26, 28] and references
cited therein). One of these extensions is FR-contraction due to Sawangsup et al.
[23], in which the authors established some relation-theoretic fixed point results by
using the idea of F -contraction.

In this paper, we introduce the notions of (F,R)-contraction, T -orbital transi-
tivity and orbit R-continuity and utilize the same to present some existence and
uniqueness of fixed point results for a self-mapping T defined on a metric space
(X, d) endowed with a binary relation R. In our results, the binary relation R
is T -orbitally transitive, so that we restrict the set of pairs of points for which
the contractivity condition must hold as the binary relation is not essentially re-
quired to be reflexive, antisymmetric or transitive. However, we also replace the
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Submitted August 18, 2017. Published December 20, 2017.
Communicated by N. Hussain.

1



2 IMDAD ET AL.

completeness and continuity conditions by relatively weaker assumptions namely:
R-increasingly precompleteness of an appropriate subspace and orbit R-continuity.
We adopt some examples to exhibit the utility of our results. Finally, we apply
our results to prove the existence and uniqueness of solution of a certain class of
nonlinear matrix equations.

2. Relation-theoretic notions and auxiliary results

From now on, N0 = {0} ∪N and R stands for the set of all real numbers. In the
sequel, X is a nonempty set and T : X → X. For brevity, we write Tx instead of
T (x), {xn} → x whenever {xn} converges to x and for all n one means that for
all n ∈ N0. A point x ∈ X is said to be a fixed point of T if Tx = x (Fix(T )
denotes the set of all such points). Let x0 ∈ X, a sequence {xn} ⊆ X defined by
xn+1 = Tnx0 = Txn, for all n, is called a Picard sequence based on x0. Recall
that a sequence {xn} in a metric space (X, d) is said to be asymptotically regular
if {d(xn+1, xn)} → 0.

A nonempty subset R of X ×X is said to be a binary relation on X. Trivially,
X ×X is always a binary relation on X known as universal relation and denoted
by RX . Throughout this work, R stands for a binary relation defined on X. For
simplicity, we write xRy whenever (x, y) ∈ R and xR/y whenever xRy and x 6= y.
Observe that R/ is also a binary relation on X such that R/ ⊆ R. The points x and
y are said to beR-comparable if xRy or yRx, this is denoted by [x, y] ∈ R. A binary
relation R is said to be: amorphous if it has no specific property at all; reflexive
if xRx for all x ∈ X; transitive if xRy and yRz imply xRz for all x, y, z ∈ X;
T -transitive if it is transitive on TX; antisymmetric if xRy and yRx imply x = y
for all x, y ∈ X; preorder if it is reflexive and transitive and partial order if it is
reflexive, transitive and antisymmetric. Following [17], the inverse or dual relation
of R is denoted by R−1 and defined by R−1 = {(x, y) ∈ X2 : (y, x) ∈ R}. The
symmetric closure of R is denoted by Rs and defined by Rs = R∪R−1.

Definition 2.1. [16] For x, y ∈ X, a path of length p (p ∈ N) in R from x to y
is a finite sequence {u0, u1, ..., up} ⊆ X such that u0 = x, up = y and uiRui+1 for
each i ∈ {0, 1, ..., p− 1}.

Definition 2.2. [2] A subset E ⊆ X is said to be R-connected if for each x, y ∈ E,
there exists a path in R from x to y.

Definition 2.3. [25] A sequence {xn} ⊆ X is said to be: R-nondecreasing if
xnRxn+1 for all n; R-increasing if xnR/xn+1 for all n.

Here it can be pointed out that Alam and Imdad [2] used the term “R-preserving”
instead of “R-nondecreasing”.

As usual, the set O(x) = {x, Tx, T 2x, ...} is called the orbit of x under T . Now,
we introduce the notion of T -orbital transitivity as follows:

Definition 2.4. A binary relation R on a nonempty set X is said to be T -orbitally
transitive if it is transitive on O(x) for all x ∈ X.

Remark. Transitivity ⇒ T -transitivity ⇒ T -orbital transitivity, the converse is
not true in general.
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Example 2.5. Take X = {0, 1

2
,

1

22
, ...} and define a binary relation R on X as

follows:
xRy ⇐⇒ x > y > 0 or (x, y) ∈ {(0, 0), (0, 14 ), (0, 1

2n ) : n ≥ 4}.
Define T : X → X by: Tx = 1

2x for all x ∈ X. Then R is T -orbitally transitive

which is not T -transitive. To see this, observe that (0, 14 ), ( 1
4 ,

1
8 ) ∈ R and (0, 18 ) /∈ R.

Definition 2.6. [1] If TxRTy for all x, y ∈ X such that xRy, then R is called
T -closed.

Here it can be pointed out that the notion R is T -closed is equivalent to say that
T is R-nondecreasing used by Roldán and Shahzad [22].

Definition 2.7. A sequence {xn} is said to be: a (T,R)-Picard sequence if it is a
Picard sequence and xnRxn+1 for all n; a (T,R)-increasing-Picard sequence if it
is a Picard sequence and xnR/xn+1 for all n.

Definition 2.8. [6] Let (X, d) be a metric space. A self-mapping T on X is said
to be an orbitally continuous if for each x, u ∈ X and any sequence {ni} of positive
integers with limi→∞ Tnix = u ∈ X, we have limi→∞ TTnix = Tu.

Definition 2.9. [22] Let (X, d) be a metric space endowed with a binary relation
R. A self-mapping T on X is said to be R-continuous if {Txn} → Tx for all
sequence {xn} ⊆ X such that {xn} → x and xnRxm for all n,m with n < m.

Now, we introduce the notion of orbital R-continuity as follows:

Definition 2.10. Let (X, d) be a metric space endowed with a binary relation R.
A self-mapping T on X is said to be an orbitally R-continuous if for all x, u ∈ X
and any sequence {ni} of positive integers, we have

{Tnix} → u and TnixRTni+1x (for all i ∈ N) imply {TTnix} → Tu.

The following implications are obvious:

Continuity =⇒ orbital continuity
⇓ ⇓

R-continuity =⇒ orbitally R− continuity.

Lemma 2.11. [21] Let (X, d) be a metric space and {xn} a sequence in X. If
{xn} is not Cauchy in X, then there exist ε0 > 0 and two subsequences {xn(k)}
and {xm(k)} of {xn} such that k ≤ n(k) ≤ m(k), d(xn(k), xm(k)−1) ≤ ε0 <
d(xn(k), xm(k)) ∀k ∈ N0. Moreover, if {xn} is asymptotically regular, then

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)−1, xm(k)−1) = ε0.

Definition 2.12. [25] Let (X, d) be a metric space. A subset B ⊆ X is said to be
precomplete if each Cauchy sequence {xn} ⊆ B converges to some x ∈ X.

Definition 2.13. [3] Let (X, d) be a metric space endowed with a binary relation R.
A subset B ⊆ X is said to be (R, d)-increasingly precomplete if each R-increasing
Cauchy sequence {xn} ⊆ B converges to some x ∈ X.

Remark. Every precomplete subset of X is (R, d)-increasingly precomplete what-
ever the binary relation R.
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Definition 2.14. (see [22]) Let (X, d) be a metric space equipped with a binary
relation R. A subset B ⊆ X is said to be (R, d)-increasingly regular if for every
R-increasing sequence {xn} ⊆ X such that {xn} → x ∈ X, we have xnRx for all
n.

3. (F,R)-contraction and auxiliary results

In 2012 Wardowski [27] introduced F -contraction as follows:

Definition 3.1. [27] Let F be the family of all functions F : (0,∞) → R which
satisfy the following conditions:

(F1) F is strictly increasing;
(F2) for every sequence {βn} ⊂ (0,∞),

lim
n→∞

βn = 0⇔ lim
n→∞

F (βn) = −∞;

(F3) there exists k ∈ (0, 1) such that limα→0+ α
kF (α) = 0.

Definition 3.2. [27] Let (X, d) be a metric space. A self-mapping T on X is said
to be an F -contraction if there exists τ > 0 and F ∈ F such that

[d(Tx, Ty) > 0] =⇒ [τ + F (d(Tx, Ty)) ≤ F (d(x, y))], ∀x, y ∈ X.

Wardowski [27] proved that every F -contraction mapping on a complete metric
space has a unique fixed point. Thereafter, Piri and Kumam [19] replaced condition
(F3) by the continuity of F and proved a theorem which is analogous to Wardowski′s
theorem. In 2016 Durmaz et al. [7] proved order-theoretic fixed point results using
F -contraction. Very recently, Sawangsup et al. [23] introduced the notion of FR-
contraction and utilized the same to prove a relation-theoretic fixed point results.

We observe that (F1) can be withdrawn and all the related results can survive
without it. In fact condition (F1) is used only to show that the F -contraction
mapping is contractive and hence continuous. We notice that the continuity of the
F -contraction mappings is coming by making use of (F2).

Inspired by the above mentioned articles, we introduce the notion of (F,R)-
contraction as follows:

Definition 3.3. Let (X, d) be a metric space. A self-mapping T on X is said to
be an (F,R)-contraction if there exists τ > 0 such that

τ + F (d(Tx, Ty)) ≤ F (d(x, y)) for all x, y ∈ X with xR/y and TxR/Ty, (3.1)

where F : (0,∞) → R is a continuous mapping such that, for every sequence
{βn} ⊂ (0,∞), we have

lim
n→∞

βn = 0⇔ lim
n→∞

F (βn) = −∞. (3.2)

Remark. Observe that in Definition 3.3 the condition (F1) is absence.

Example 3.4. (see [27, 19]) Let us define Fi : (0,∞)→ R, i = 1, 2, 3, 4 by:
(i) F1(β) = lnβ;
(ii)F2(β) = − 1

β ;

(iii)F3(β) = β − 1
β ;

Clearly, the functions F1, F2 and F3 are continuous beside satisfying (3.2). Thus,
each mapping T : X → X satisfying (3.1) with F1, F2 or F3 is an (F,R)-contraction.
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Example 3.5. Let F : (0,∞) → R be given by: F (α) = ln
(
α
3 + sinα

)
. It is clear

that F is continuous beside satisfying (3.2). However, it dose not satisfy F1. Thus,
each mapping T : X → X satisfying (3.1) with such F is an (F,R)-contraction.

The following proposition immediate due to the symmetricity of d.

Proposition 3.6. Let (X, d) be a metric space endowed with a binary relation R
and T : X → X. Then for each continuous mapping F : (0,∞) → R satisfying
(3.2), the following are equivalent:

τ + F (d(Tx, Ty)) ≤ F (d(x, y)) for all x, y ∈ X such that (x, y) ∈ R;

τ + F (d(Tx, Ty)) ≤ F (d(x, y)) for all x, y ∈ X such that [x, y] ∈ R.

Proposition 3.7. Let (X, d) be a metric space endowed with a binary relation R
and T : X → X. If T is (F,R)-contraction, R is T -orbitally transitive and X is
(R, d)-increasingly regular, then T is orbitally R/-continuous.

Proof. Let x, u ∈ X and {ni} be a sequence of positive integers. Assume that
{Tnix} → u and TnixR/Tni+1x for all i ∈ N. Then, we have TnixR/u for all i
(due to (R, d)-increasing regularity of X). As R is T -orbitally transitive, we obtain
TTnixR/Tu for all i ∈ N. Applying (3.1), we have (for all i ∈ N)

τ + F (d(TTnix, Tx)) ≤ F (d(Tnix, x)),

implying thereby F (d(TTnix, Tx)) < F (d(Tnix, x)). Since {Tnix} → x, so, on
letting i → ∞ and using (3.2), we obtain limi→∞ d(TTnix, Tx) = 0. Thus, T is
orbitally R/-continuous. �

Proposition 3.8. Let (X, d) be a metric space endowed with a binary relation
R and T : X → X. If T is (F,R)-contraction, Fix(T ) is non-empty and Rs-
connected, then T has a unique fixed point.

Proof. On contrary, let us assume that there exist x, y ∈ Fix(T ) such that x 6= y.
Then there exists a path in Rs (say {u0, u1, ..., up} ⊆ Fix(T )) of some finite length
p from x to y (with ui 6= ui+1 for each i, (0 ≤ i ≤ k − 1), otherwise x = y, a
contradiction) so that

u0 = x, up = y and [ui, ui+1] ∈ R for each i, (0 ≤ i ≤ p− 1).

As ui ∈ Fix(T ), Tui = ui for each i ∈ {0, 1, ..., p}. Hence, on using (3.1), we obtain
τ +F (ui, ui+1) ≤ F (ui, ui+1), for all i (0 ≤ i ≤ k− 1) which is a contradiction. �

Proposition 3.9. Let R be a binary relation on a non-empty set X and T : X →
X. If R is T -closed and there exists x0 ∈ X such that x0RTx0, then there exists a
(T,R)-Picard sequence based at the initial point x0.

Proof. Since x0 ∈ X and T is self-mapping on X, one can find x1 ∈ X such
that x1 = Tx0. Hence, we have x0Rx1 and as T is R-closed, we have Tx0RTx1.
Similarly, there exists x2 ∈ X such that x2 = Tx1 and x1Rx2 . Thus, inductively,
we can construct a sequence {xn} ⊆ X such that xn+1 = Txn and xnRxn+1 for all
n. �
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4. Fixed point results

In this section, we present our main fixed point results as follows:

Theorem 4.1. Let (X, d) be a metric space endowed with a binary relation R
and T a self-mapping on X such that R is T -orbitally transitive. Suppose that the
following conditions are satisfied:

(a) there exists a (T,R)-Picard sequence;
(b) TX is R-increasingly precomplete;
(c) T is an (F,R)-contraction;
(d) T is orbitally R/-continuous.

Then T has a fixed point. Indeed, if {xn} is any (T,R)-Picard sequence, then either
{xn} contains a fixed point of T or {xn} converges to a fixed point of T .

Before giving the proof, let us highlight the improvements accomplished in the
result which are described in the following lines:

• TX is taken to be R-increasingly precomplete, which is relatively weaker
than the following conditions:
(1) TX is precomplete;
(2) X or TX is complete;
(3) there exists a complete subset Y ⊆ X such that TX ⊆ Y ⊆ X;
(4) X is complete and TX is closed.

Observe that if any one of these four conditions holds, then TX is (R, d)-
increasingly precomplete;

• T is hypothesized to be orbitally R-continuous. Indeed, orbit R-continuity
is weaker as compare to orbital continuity as well as R-continuity;

• R is considered to be T -orbitally transitive. In fact, T -orbital transitivity
is weaker than transitivity as well as T -transitivity.

Proof. Observe that hypothesis (a) guarantees the existence of a (T,R)-Picard se-
quence, i.e., there exists a sequence {xn} ⊆ X such that xn+1 = Txn and xnRxn+1

for all n. Denote βn = d(xn+1, xn) for all n. If there exists n0 ∈ N0 such that
βn0

= 0, then xn0
= Txn0

and the result is established. Assume that βn > 0 (i.e.,
xn+1 6= xn) for all n. Then {xn} is R-increasing sequence. On using condition (c),
for all n, we have

F (βn) ≤ F (βn−1)− τ ≤ F (βn−2)− 2τ ≤ ... ≤ F (β0)− nτ,
which on letting n→∞ gives rise limn→∞ F (βn) = −∞, which together with (3.2)
imply that

lim
n→∞

βn = 0. (4.1)

Now, we show that {xn} is a Cauchy sequence via contradiction. To do so,
assume that {xn} is not Cauchy sequence, then Lemma 2.11 and equation (4.1)
guarantee the existence of ε0 > 0 and two subsequences {xn(k)} and {xm(k)} of {xn}
such that k ≤ n(k) ≤ m(k), d(xn(k), xm(k)−1) ≤ ε0 < d(xn(k), xm(k)) ∀k ∈ N0 and

lim
k→∞

d(xn(k), xm(k)) = lim
k→∞

d(xn(k)−1, xm(k)−1) = ε0. (4.2)

AsR is T -orbitally transitive, we obtain xn(k)−1R/xm(k)−1 and Txn(k)−1R/Txm(k)−1.
Hence, applying (3.1), we have

τ + F (d(Txn(k)−1, Txm(k)−1)) ≤ F (d(xn(k)−1, xm(k)−1)). (4.3)
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As F is continuous, on letting n → ∞ in (4.3) and using (4.2), we obtain τ +
F (ε0) ≤ F (ε0), a contradiction. Hence, {xn} is a Cauchy sequence which is also R-
increasing. As xn+1 = Txn for all n, {xn}n≥1 ⊆ TX. Since TX is R-increasingly
precomplete, there exists z ∈ X such that {xn} → z.

Finally, we prove that z is a fixed point of T . As {Tnx0 = xn} → z, Tnx0R/Tn+1x0
and T is orbitally R/-continuous, we obtain {TTnx0 = xn+1} → Tz. Now, owing
to the uniqueness of the limit, we obtain Tz = z, i.e., z is a fixed point of T . This
concludes the proof. �

Next, we present analogous theorem for Theorem 4.1 using (R, d)-increasing
regularity.

Theorem 4.2. Conclusions of Theorem 4.1 remain true if condition (d) is replaced
by the following:

(e) X is (R, d)-increasingly regular.

Proof. This theorem is immediate in view of Proposition 3.7 and Theorem 4.1. �

Now, we present a corresponding uniqueness result as follows:

Theorem 4.3. If in addition to the hypotheses of Theorem 4.1(or Theorem 4.2),
we assume that Fix(T ) is Rs-connected, then the fixed point of T is unique.

Proof. This theorem is immediate in view of Theorem 4.1 (or Theorem 4.2) and
Proposition 3.8. �

The following examples exhibit that Theorems 4.1 and 4.3 are a genuine exten-
sion of all relevant results specially due to Wardowski [27], Piri and Kumam [19],
Durmaz et al. [7] and Sawangsup et al. [23].

Example 4.4. Let X = [0,∞) endowed with the usual metric. Consider a sequence

{πn} ⊆ X defied by πn = n(n+1)(n+2)
3 for all n ≥ 1. Define a binary relation R on

X by: R = {(π1, π1), (πi, πi+1) : i ≥ 1}. Define a mapping T : X → X as follows:

Tx =


x, if 0 ≤ x ≤ 2;
π1, if 2 ≤ x ≤ π2;

πi +
(

πi+1−πi

πi+2−πi+1

)
(x− πi+1), if πi+1 ≤ x ≤ πi+2, i = 1, 2, ... .

Then for the function F3 given in Example 3.4, T is (F,R)-contraction for τ = 6.
Observe that if xR/y and TxR/Ty, then x = πi, y = πi+1 for some i ∈ N − {1}.
Further, for all n,m ∈ N such that m > n > 1, we have

6 + |T (πm)− T (πn)| − 1

|T (πm)− T (πn)|
≤ |πm − πn| −

1

|πm − πn|
.

Therefore, 6 + F (d(Tx, Ty)) ≤ F (d(x, y)) for all x, y ∈ X such that xR/y and
TxR/Ty. Hence, T is an (F,R)-contraction. Moreover, by a routine calculation
one can show that all the hypotheses of Theorem 4.1 are satisfied ensuring the
existence of a fixed point of T . Furthermore, Fix(T ) is not Rs-connected as there
is no path in Rs joining the fixed points 0 and 1 so that the uniqueness condition
is not satisfied. Notice that T has infinitely many fixed points.
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Here it can be pointed out that in the context of the present example fixed
point results of Wardowski [27] and Piri and Kumam [19] are not applicable as
the Wardowski′s F -contractive condition dose not hold for each τ > 0 and for any
arbitrary function F . Indeed, for each x, y ∈ [0, 2] with d(Tx, Ty) > 0 we get x 6= y
and for any τ > 0 we have

τ + F (d(Tx, Ty)) = τ + F (d(x, y)) > F (d(x, y)).

Example 4.5. Take X = [0,∞) endowed with the usual metric. Define a binary
relation R on X by:

xRy ⇐⇒ (x, y) ∈ {(0, 0), (n, n+ 2) : n ∈ N}.

Define a mapping T : X → X by:

Tx =


x
2 , if 0 ≤ x < 1;
2, if x is an odd number in [1,∞);
3, if x is an even number in [1,∞);
4, if x is non-integer in [1,∞).

Then for F1 given in Example 3.4, T is (F,R)-contraction with any τ > 0. More-
over, by a routine calculation one can show that all the hypotheses of Theorem 4.3
are satisfied. Observe that T has a unique fixed point (namely x = 0).

Here it can be pointed out that in the context of the present example R is
not transitive, hence results of Durmaz et al. [7] and Sawangsup et al. [23] are
not applicable. Furthermore, fixed point results of Wardowski [27] and Piri and
Kumam [19] are not applicable as the Wardowski′s F -contractive condition dose
not hold for each τ > 0 and for any arbitrary function F . Indeed, for x = 3 and
y = 4 we get Tx 6= Ty and for any τ > 0 we have

τ + F (d(Tx, Ty)) = τ + F (1) > F (1).

5. Applications to nonlinear matrix equations

In what follows we require the following notations:
Let us denote M(n) := set of all n × n complex matrices, H(n) := set of all Her-
mitian matrices in M(n), P(n) := set of all positive definite matrices in M(n)
and H+(n) := set of all positive semidefinite matrices in M(n). For X ∈ P(n) (
X ∈ H+(n)), we write X � 0 ( X � 0). Furthermore, X � Y ( X � Y ) means
X − Y � 0 (X − Y � 0). The symbol ‖.‖ stands for the spectral norm of a matrix

A defined by ‖A‖ =
√
λ+(A∗A), where λ+(A∗A) is the largest eigenvalue of A∗A,

where A∗ is the conjugate transpose of A. Also, ‖A‖tr =
∑n
k=1 sk(A), where sk(A)

(1 ≤ k ≤ n) are the singular values of A ∈ M(n). Here, (H(n), ‖.‖tr) is complete
metric space (for more details see [20, 5, 4]). Moreover, the binary relation � on
H(n) defined by: X � Y ⇔ Y � X for all X,Y ∈ H(n) is a T -orbitally transitive
w.r.t any self-mapping T on H(n), in fact it is a transitive relation.

In this section, we apply our results to prove the existence and uniqueness of a
solution of the nonlinear matrix equation

X = H +

m∑
k=1

A∗kQ(X)Ak, (5.1)
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where H is a Hermitian positive definite matrix and Q is a continuous order pre-
serving1 mapping from H(n) into P(n) such that Q(0) = 0, Ak are arbitrary n× n
matrices and A∗k their conjugates.

The following lemmas are needed in the sequel.

Lemma 5.1. [20] If A � 0 and B � 0 are n × n matrices, then 0 ≤ tr(AB) ≤
‖A‖tr(B).

Lemma 5.2. [18] If A ∈ H(n) such that A ≺ In, then ‖A‖ < 1.

Theorem 5.3. Consider the matrix equation (5.1). Assume that there exist two
positive real numbers τ and c such that:

(i) for every X,Y ∈ H(n) such that X � Y with
∑n
k=1A

∗
kQ(X)Ak 6=

∑n
k=1A

∗
kQ(Y )Ak,

we have
∣∣tr(Q(Y )−Q(X)

)∣∣ ≤ |tr(Y−X)|
c
(
1+τ |tr(Y−X)|

) ;

(ii)
∑m
k=1AkA

∗
k ≺ cIn and

∑m
k=1A

∗
kQ(H)Ak � 0.

Then the matrix equation (5.1) has a solution. Moreover, the iteration Xn = H +∑n
k=1A

∗
kQ(Xn−1)Ak converges in the sense of trace norm ‖.‖tr to the solution of

the matrix equation (5.1), where X0 ∈ H(n) such that X0 �
∑m
k=1A

∗
kQ(X0)Ak.

Proof. Define a mapping T : H(n)→ H(n) by:

T (X) = H +

n∑
k=1

A∗kQ(X)Ak, for all X ∈ H(n). (5.2)

Observe that T is well defined, continuous, � is T -closed and X is a fixed point of
T if and only if it is a solution of the matrix equation (5.1). To accomplish this, we
need to show that T is (F,R)-contraction with respect to τ , R (=�) wherein the
mapping F : (0,∞)→ R given by: F (β) = −1

β for all β ∈ (0,∞).

Let X,Y ∈ H(n) be such that X � Y and Q(X) 6= Q(Y ). Then, X ≺ Y and since
Q is an order preserving mapping, therefore we obtain Q(X) ≺ Q(Y ). Hence, we

1Q is order preserving if A,B ∈ H(n) such that A � B implies that Q(A) � Q(B).
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have

‖T (Y )− T (X)‖tr = tr
(
T (Y )− T (X)

)
= tr

( m∑
k=1

A∗k
(
Q(Y )−Q(X)

)
Ak

)
=

m∑
k=1

tr
(
A∗k
(
Q(Y )−Q(X)

)
Ak
)

=

m∑
k=1

tr
(
A∗kAk

(
Q(Y )−Q(X)

))
= tr

(( m∑
k=1

A∗kAk

)(
Q(Y )−Q(X)

))

≤
∥∥∥ m∑
k=1

A∗kAk

∥∥∥‖Q(Y )−Q(X)‖tr

≤ 1

c

∥∥∥ m∑
k=1

A∗kAk

∥∥∥( ‖Y −X‖tr
1 + τ‖Y −X‖tr

)
<

‖Y −X‖tr
1 + τ‖Y −X‖tr

,

so that
1 + τ‖Y −X‖tr
‖Y −X‖tr

≤ 1

‖T (Y )− T (X)‖tr
,

which implies that

τ − 1

‖T (Y )− T (X)‖tr
≤ − 1

‖Y −X‖tr
.

This yields that

τ + F
(
‖T (Y )− T (X)‖tr

)
≤ F

(
‖Y −X‖tr

)
,

which shows that T is an (F,�)-contraction. Since
∑m
k=1A

∗
kQ(H)Ak � 0, therefore

H � T (H). So that, there exists a (T,�)-Picard sequence in H(n) (in view of
Proposition 3.9). Thus, all the hypotheses of Theorem 4.1 are satisfied. Hence
there exists X ∈ H(n) such that T (X) = X, i.e., the matrix equation (5.1) has a
solution in H(n). �

Theorem 5.4. Under the assumptions of Theorem 5.3, equation (5.1) has a unique
solution.

Proof. In view of Theorem 5.3, the set Fix(T ) is nonempty. According to [20]
there always exist a greatest lower bound as well as a least upper bound for each
X,Y ∈ H(n), so that Fix(T ) is �s-connected. Therefore using Theorem 4.3 we
conclude that T has a unique solution, i.e., equation (5.1) has a unique solution in
H(n). �
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