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KENMOTSU PSEUDO-METRIC FINSLER STRUCTURES

A. FUNDA SAGLAMER, NURTEN KILIC*, NESRIN CALISKAN

ABSTRACT. The objective of this article is to introduce (almost) Kenmotsu
pseudo-metric Finsler structures and obtain some integrability (normality) con-
ditions for these structures. Also, many significant results for the curvatures of
indefinite Kenmotsu Finsler manifolds are acquired. Finally, Kenmotsu struc-
tures on indefinite Finsler manifolds are compared with Riemannian case.

1. INTRODUCTION

As well known, after the publication of Finsler’s dissertation about surfaces and
curves, a lot of articles have been dedicated to Finsler manifolds. Indefinite Ken-
motsu manifolds have been investigated by Massamba [10],[T1] and Aktan [I]. Also,
Prasad and Pandey [I5] have analyzed the topic in ” An Indefinite Kenmotsu Man-
ifold Endowed with Quarter Symmetric metric connection.” Miron [13] presented
a complicated approach about the research of Finsler geometry of vector bundles.
Almost Kenmotsu pseudo-metric manifolds have been studied by Wang Y. Liu X.
[19]. On the other hand, there are few papers dealing with the indefinite Finsler
manifolds, see, for example, [3], [4], [8], [9]. To the best of our knowledge, especially,
Kenmotsu structures on indefinite Finsler manifolds have not been studied before
in the literature. So, in this paper we introduce (almost)Kenmotsu structures on
indefinite Finsler manifolds and obtain some results for these structures.

The paper is put in order as following: after introduction, in second section, we
give some preliminaries. Let M be a (2n + 1)-dimensional manifold, then we de-
fine F2"t1 = (M, M°, F*) indefinite Finsler manifold with fundamental function

F* on M° = TM \ (M) vector bundle, where F* is described as g;; = %%
quadratic form g with index of ¢ is a pseudo-Finsler metric. Besides, horizontal
vector bundle (TM%)# (non-linear connection) and vertical vector bundle (T M%)V
of F2"*+1 are determined. Then, Finsler connection, tensor field, the operator of
h-covariant derivation and v-covariant derivation and differential form on M? are
given. Finally, Finsler curvatures are described.

In third section, we use distribution of M% = (M°)" @ (M°)¥. By this way, we

describe (¢, ¢ nH GH) almost Kenmotsu pseudo-metric Finsler structure on
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(M°)" horizontal vector bundle and (¢V,£¢Y,nY,GY) almost Kenmotsu pseudo-
metric Finsler structure on (M) vertical Finsler vector bundle. Hence,

(MO pH ] nH GHY and (M°)?,¢V,¢V 0V, G") are called almost Kenmotsu
indefinite Finsler manifolds. Pseudo-Riemannian metric with index of 2¢ on M is
defined as below,

G =gl di' ®da’ + gl oy ® 6y’ = G + GV

and it is named as Sasaki Finsler metric. ¢* is a pseudo-Finsler metric with index
of ¢ of indefinite Finsler manifold. Shortly, g*" can be considered as a pseudo
Riemannian metric on the Finsler vector bundles (TM°)* and (TM°)V. Then,
we give the normality conditions of (¢, &H n GH) and (¢V,¢V,1nV,GY) almost
Kenmotsu pseudo-metric Finsler structures on (M%)"* and (M°)" Finsler vector
bundles, respectively. For dQ = n A 2 second fundamental form, (¢, ¢H nf GH)
and (¢V,¢Y,nV,GY) Kenmotsu pseudo-metric Finsler structures are described as
below:

(VEOYH = (G (6X "y M)e (v ")ox "),

(VoYY = LGV (6XV, YV )e" ¥ (YV)ox V).

Then, VR = —302X 7, VeV = —302X7, (VEn")YH = Q(ex ", Y1),
(VEV)YY = Q(eX 7, YY),
In fourth section,we find curvatures of indefinite Kenmotsu Finsler manifolds. Lo-
cally symmetric ((M°)", ¢H ¢ nH GH) and ((M°)?,¢",¢V,nV,GV) indefinite
Kenmotsu Finsler manifolds have constant curvatures —5. If &1 and €V are time-
like, then the curvature is %. (If ¢ and ¢V are space-like, then the curvature
is —1.) Finally, we find S¥ horizontal Ricci tensor and SV vertical Ricci tensor
of indefinite Kenmotsu Finsler manifold. As a conclusion, we compare indefinite

Kenmotsu structures with Riemannian case.

2. SOME PRELIMINARIES

We recall brief information about indefinite Finsler manifolds in this section.

2.1. Indefinite Finsler Manifolds. Let M be a real smooth manifold with

(2n + 1)- dimensional and TM be the tangent bundle of M. A coordinate system
in M is referred by {(U, ) : 2%, ...,2?"*1}, where U is an open subset of M; for
any z € U ¢ : U — R?"*! is a diffeomorphism of U to p(U) and (z1,...,22"+1) =
©(z). Denote by 7 the canonical projection of TM on M and by T, M the fibre
at ¥ € M, T,M = 7~ *(z). The coordinate system {(U,¢) : '} in M describes
a coordinate system {(U*,®) : x!,.. 22" ¢t 2t} = L(U* @) : 2%y} in
TM, where U* = 7=1(U) and for any z € U and y, € T,M ® : U* — R¥"*+2 is
a diffeomorphism of U* on ¢(U) x R?2"*! and (21, ..., 2"t ¢!, .., 2"t = ®(y,),
[9]. Let M° be a nonempty open submanifold of TM such that 7(M°%) = M and
O(M)NMP° = (), where 0 is the zero section of TM. Assume that for any k > 0 and
y e M2,M? =T,M N M is a positive conic set, we have k, € M2. Obviously, the
largest M° holding the above circumstances is TM \ (M), ordinarily taken for the
description of a Finsler manifold. Now, we deal a smooth function F* : M? — R and
be F* = F2. Also, assume that {(U°, ®°) : 2%, y*} in M the following conditions
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are satisfied for any coordinate system.
(F1*) F* is positively homogeneous of degree two with respect to (y!,..., 2" 1) |
we get,

Fr(zt, . 2® T kyt k) = BPEE (2t L 2yt P (2.1)
for all (z,y) € ®°(U°) and k > 0.
(F2*) At all point (z,y) € ®°(U?),
1 0*F*
99 = 3 oyioyi
are the components of a quadratic form on R?"+! with (2n + 1) — ¢ positive eigen-
values and ¢ negative eigenvalues for 0 < ¢ < 2n + 1. In this state, F?"t! =

(M, M°, F*) is called an indefinite Finsler manifold of index q. Particularly, if
q =1, F?"*1 is called a Finsler manifold with Lorentzian signature [9].

——i,5€{,2,...,2n+ 1} (2.2)

2.2. Vectorial Finsler Connections and Curvatures. Consider the structure
of F?2"*1 = (M, M° F*) an indefinite Finsler manifold of index q. Then, the
tangent mapping 7, : TM® — T M of the submersion 7 : M 0 - M and describe the
vector bundle (TM°)Y = kerm,. As locally ©(x,y) = z*, we obtain 7 ( 7) =0}
and 7 (a -) = 0, on a coordinate neighbourhood U° C MO Thus, {a -} is a ba81s
of F(TMO|U0) We call (TM®)V the vertical vector bundle of F2"“‘1

Locally, we have XV = X(z, y) 7 where X* are smooth functions on U° on a
coordinate neighbourhood U°® C M 0. Afterwards, we note by (T*M°)V the dual
vector bundle of (TM°)V. Thus, a Finsler 1-form is a smooth section of (7* M%)V
Assume {dy!,...,6y?" "1} is a dual basis to {%,...,%}, ie, 5yi(%) = 0k
Then each w € T'(T* M)V is locally showed as w" = w;(x,y)dy’ where w;(z,y) =
w91

A complementary distribution (TM®)# to (TM°)V in TMP? is said a non-linear
connection or a horizontal distribution on M°. Thus we can write

TM® = (TM°)H ¢ (TM%)V. (2.3)

The set of the local vector fields {52r, ..., 5z2+r } is a basis in T'(T'M°|y0)®. Thus
we have

59 0

Let X be a vector field on M°. Then,

; 0 0
X:Xl(x,y)éz—i—Xl(x y)8 ,1<i<2n+41 (2.5)

Y
is obtained. Clearly, for X(x,y) = 0, we get the subbundle of (M?)" ¢ M° and for
Xi(z,y) = 0, we obtain the subbundle of (M°)? C M°. Suppose {dz!,...,dx?" 1}

is a dual basis to {%, e M;%}, ie, dxi(%) = 0%. Then each w € r(T*M°%)H
H

= w;(z, y)dz’ where ;(z,y) = w(dz') and w; = w; — Nl w;.

locally written as w
Thus we can write

Syt = dy' + N;(x, y)da? . (2.6)

Consider a w 1-form, then
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w = Wi (w,y)drt + w;(z,y)6y". (2.7)
Then w (XV) =0, w"(XH) = 0 where w = w + w"". The Finsler tensor field

of type < Z Z ) has the following local form on M?°

5 ) o )
ai A, 1 s
52 Az ®...Qdx ®8yj1®...®6yjq®5y ®...00y
(2.8)

i J
T =15 f i o (@9 57 ®-®

(9.

Definition 2.1. A Finsler connection is called a linear connection V. = FI" with the
horizontal (vertical) linear space (T(y M) (z,y) € M (T4, \M°)V,(z,y) €
M?P) of the distribution N parallel to V [12].

A linear connection V on M is a Finsler connection if and only if
(VxY™)Y =0, (VxY")7 =0,

VxY = (VxYH)H 1 (VxyV)V (2.9)
for all X,Y € T(myy)MO.
Vxw= (vaH)H + (vaV)V7

* 0
for all w € T(I,y)M .

Remark. Let V on MY is a Finsler connection. We have directly following state-
ments.

Y € (TuyyM®)Y = VX € T(, yM% VXY € (T(y M°)Y,
Y € (T4yMO = VX € T(, ) M%; VxY € (T(y,) M°)". (2.10)

Definition 2.2. There is an associated pair of operators called h- and v- covariant
derivation in the of Finsler tensor fields algebra for a Finsler connection V on MP.
For every X € T(, , M,

VRY = VxnY,VEf = X" (f),VY € T, MO,V € S(M?). (2.11)
Ifw e T&yy)Mo, we define
(VEw)(Y) = X" (w(Y)) — w(VEY),VY € T, , M°. (2.12)
Then, it is called the operator of h-covariant derivation.
Similarly,
VXY =V Y, VX f=XY(f),VY € Ty, MO,V € S(MP) (2.13)

for each vector field X € T(x,y)MO.
If w e T(*m)y)M0 we define

(V¥w)(¥) = XY (w(Y)) — w(VEY), VY € T,y MO, (2.14)

We extend the action of V¥ to any Finsler tensor field in a equivalent way, as
for VL. Then, on M we obtain an operator on the algebra of Finsler tensor fields;
it is noted by V¥ and called the operator of v- covariant derivation [2].
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Definition 2.3. Consider w € T(*x_y)

nection on M and T is the torsion of V. Then, its exterior differential dw is also
described as

MO q differential g-form, V is a linear con-

q+1
dw(Xy, .. Xgp) = > (D) (Vx,w)(Xy, .. Xi, . Xgp1)

=l (2.15)
= Y ()T w(T(X, X)X e Xy ooy Xy Xg 1)

1<i<j<q+1
where VX; € T(, , M° [16].

Proposition 2.4. If V is a Finsler connection and w € T, MY is a I-form on

(w,y)
MP, then its exterior differential is written by

dw(XH Y7y = (VEw)(YH) — (VHw) (X)) + w(T(XH, 7)) (2.16)

dw(XV, YY) = (Viw)(YV) = (Vyw)(XY) + w(T(X",Y")) (2.17)
where VX, Y € T(, ,)M°.

The Curvature of a Finsler Connection V is referred with the following equations,
R(X,Y)Z =VxVyZ—-VyVxZ—-Vixy)Z=R"X,Y)Z" + RV(X,Y)Z"
(2.18)
where VXY, Z € T(I’y)MO [2]

Theorem 2.5. The curvature of a Finsler connection V on T(xvy)MO is totally
given with the following Finsler tensor fields equations ,

RXV,YV)ZV =VxVyZ¥Y —VyVxZY —Vixv yv 2"
RXH yMzH =vEVIZH —VIVEZT — Y xu yu Z7. (2.19)

Let (R, Fy) and (N?", F) be indefinite Finsler manifolds with their Cartan con-
nections V! and V2 and let f : R — R* be a smooth function. Let p; : RxN?" — R
and pp : R x N2* — N2". We consider the product manifold R x N2" = p2n+1
endowed with the pseudo-Riemannian metric F* : R? x (N9)?" — R, F*(vy,vq) =
F2(v1) + f2(m1(v1))Fg(vs), where RV = TR\ 6, (N°)2" = TN?"\ 6, we denote
this warped product by R x y N?", we show that (R x; N?" F*) is an indefinite
Finsler manifold. The canonical projection m; gives rise to the vertical bundle
(Vi,dm1, TR), where Vi = ker(dm;) and dmy : TTR — TR. The canonical projec-
tion o gives rise to the vertical bundle (Va, dma, TN?"), where Vo = ker(dmy) and
dmy : TTN?" — TN?",

Now we have that

dmy X dmy = d(m x m) : TTR x TTN** = TTR x TN*"
and
Kerd(m x my) = kerdm, ® kerdns.

It follows that the vertical space of the manifold R x N2" = M?"t1 V =V, & Vs,
so the pseudo-Riemannian metrics g; and go, defined on V7 and V5, that is,

GV =g + A (m(v))g5?
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G(XV7 YV)(v,w) = f2(’/T1('U))g2(XV YV)

w w

where v € TR, w € TN?" and 71 (v) € R. This term is constant on leaves. Thus,

ZG(XY, Y ) ) = 2f Z(f(m1(v)g2(X0, Y) = 2f Zf (m1(v))

w w

14 |4
TEE ) MR

From these relations, we have that

zZVaxV,yV) = 2(Z;f)G(XV,YV).

Now, let H; and Hs be the horizontal space with respect to the Cartan connec-
tions V! and V? on the Finsler manifolds (R, F) and (N?", F3), resp. We get the
direct-sum decomposition

TT(R x N**) = TTM***' = TTR® TTN*" =V, ® H; ® Vo & H,.

The Finsler metrics, F;, F» on the manifolds R and N?", resp., generate the
Riemannian metrics g7 and g, on the horizontal spaces H; and Hs, resp. Finally,
these Riemannian metrics generates a pseudo-Riemannian metric on T(TRx T N?™).
It follows that we work mostly on the direct sum Hy & Hs. The direct sum of the
liftings of H! and H? to the TTR x TTN that is,

G(XH7 YH)(U,'w) = f2(7'r1 (v))g2(XHa YH)
This term is constant on leaves. Thus,
ZH
ZHG(XT Y ) () = 20 21 (f(m1(0)))92( X3, V,)T) = 2(Tf)G(XH, Y.

w T w

Proposition 2.6. Consider F?"*1 = (M, M°, F*) an indefinite Finsler manifold
with the warped product space M?*" T = R x; N?". We assume that (N°)*" =
TN?"\ 0 is a Kahlerian pseudo-metric manifold and f(t) = cez. For the almost
Kenmotsu pseudo-metric Finsler structures (¢, €8 nH GH) and (¢V, €V, 7V, GY)
on (M°)" and (M°)?, resp., the 1-forms nf, nV and the second fundamental forms
Q. QY hold the following conditions:

dn! =dn” =0,dQ" =7 AQH dQYV =V AQV,dQ=nAQ,dyp=0.

Proof. Let G = G + GV : TTM x TTM — S(TM) and Gy : TTN x TTN —
S(T'N) are Sasaki metrics.

G(X,0Y) = G(XT + XV, oY " 4+ ¢YV) = f2(m1(v))G2(X, ¢Y)
= fA(m(v)Ga(XT + XV oY + YY),

G oY) + G(XY,¢YY) = f2(m(0))[Ga (X, 0Y V) + Go(XV, oY )],
QXY + XY, YY) = P (m () (X YY) + (XY, Y )

where 2% is the second fundamental form with respect to Kahlerian metric G, on
Kahler vector bundle TN. That is dQ2* = 0. Thus we have
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dQXH YY) 4 au XV, YY) = 2f(t) f/(t)dt A [Q(XH, YY) + (XY, YH)]

2 /
dQH 4+ dQY = (Tf)dt/\[QHJrQV]
o 2f(1)
f(t)y=e2 — =1
2 1)
and
dt =n,dn =dn¥V =0,dQ" =7 AQT dQY =3V AQY,dQ=nAQ,dnp=0

O

3. KENMOTSU PSEUDO-METRIC FINSLER STRUCTURES

In our main results, we present almost Kenmotsu and Kenmotsu structures on
indefinite Finsler manifolds. Then, we acquire some integrability or normality con-
ditions for these structures.

3.1. Almost Contact Finsler Structures. Consider tensor field ¢, 1-form n and
vector field ¢ on M9, as follows:

» 5 o 0 .

0 =0" + 6" = ¢j(w,y) 5~ @dr’ +6j(w,y) 5y O (3.1)
n=n"+n" =ni(z,y)dz’ + 7 (z, )5y’
, P o

E="+¢V =E(2,y)— +E(z,y) (3.2)

ourt ay'

Definition 3.1. Assume that ¢, and & are given by (3.1) and (3.2]) on M such
that

(") =T+ @ (V) = -1V +9" & ¢, (3.3)

n(Em) =n¥(¢") = 1. (3.4)
Then, (¢, " 5 and (¢V,nY,€V) are called the almost contact Finsler structures
on (M and (M°)?, respectively, where M° = (M°)" @ (M°)? is a Finsler vector
bundle.

Theorem 3.2. Suppose that horizontal and vertical Finsler vector bundles (M°)"
and (M°)? have the almost contact Finsler structures, then

o () =V (V) =0,n" 0 =1V 09V = 0. (3.5)
Proof. By we get (¢f)2(¢H) = —¢H 4 pH(¢H)¢H. Then ¢ (¢H) = 0 or

¢ (€7 is a nontrivial eigenvector of ¢ corresponding to eigenvalue 0. Using

, we obtain
0= ()% (o™ (")) = —¢" (") + n™ (o (¢™))¢"

¢ (€M) =" (o(e™))EM.
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Now, if T (¢H) is a nontrivial eigenvector of the eigenvalue 0, then n (¢ (¢H)) #
0. Thus, we have

0= (o)) =n" (™ (7)™ (€7) = n" (¢ (€7))*¢™ # 0
which is a contradiction. Therefore ¢ (¢#) = 0. Similarly by we get
#V(€Y) = 0. On the other hand, since ¢ (¢¥) = 0, then we get for all X# €
(TMO)
! (p(XT)ET = (") (X) + " (XT) =0
and for all XV € (TM%)V
" (Y (XV)EY) =o.
Hence nf o ¢ = 0 and n¥ 0 ¢¥ = 0. (]

Remark. We deduce that (¢, 5 0™ and (¢V,€Y',n") are almost contact struc-
tures on subbundles (M°)" and (M°)", where (M°)* and (M°)" have (2n + 1)—
dimensional. We call that ((M°)", o™ 7 ) and (M°)?, ¢V, ,nY) are almost
contact Finsler manifolds.

3.2. Almost Kenmotsu Pseudo-Metric Structures on Indefinite Finsler
Manifolds. Let F?"*! = (M, M, F*) be an indefinite Finsler manifold. We define

g7 (MY x T(TM°)Y — S(MO),

.90
"

@a@)($7y)' (3.6)

9in@y) =g

Obviously, ¢*" is a symmetric Finsler tensor field. g% is called the pseudo-
Finsler metric of F2"+1, Thus, ¢¥" is thought of as a pseudo-Riemannian metric
on the Finsler vector bundle (TM°)V. Similarly, we define

g7 (@MY x D(TMOT — S(MO),

- «, 0 0
gf;j)(x,y) =g" (@7 @)(lﬂ Y) (3.7)
where gf; are functions given by (2.2). On the Finsler vector bundle (T M%)

g™ is thought of as a pseudo-Riemannian metric. A Finsler vector has a casual

character described with following statements:
X e (T(Ly)MO)V (X S (T(z’y)MO)H) is called

gg;y)(X,X) > 0orX = 0 = Space — like,
9l (X, X) < 0 = time — like, (3.8)

gy (X, X) = 0,X # 0= light — like(null)

where (z,y) € M°. The Finsler norm (length) of X is a non-negative number
[IX|| described by

* 1
X1 = 190z (X, X)I=. (3.9)
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Ifgf‘:y)(X, X) =1, X is called a unit spacelike or g{:_y)(X, X) = —1, then it is called
a unit timelike Finsler vector. If X is a unit Finsler vector then ¢ = g(F$ *y) (X, X) is
demonstrated the signature of X. We describe,

G :T(TM°) x T(TM°) — (MY,

G(X,Y)=GH(X,Y)+GY(X,Y),VX,Y € T(TM"). (3.10)
Evidently, on MY, G is a symmetric tensor field of type (0,2). Furthermore, it is
non-degenerate with a constant index. G is a pseudo-Riemannian metric on M of
index 2¢(q is the index of the pseudo-Finsler metric g* ). G is called the Sasaki
Finsler metric on M°. Then, we remark ,

G =gl da' ®da’ + g oy’ @ 6y’ = GH + GV (3.11)
[9].

Definition 3.3. Suppose that (¢™, &7 nf) and (¢V,€V,nY) are almost contact
structures on horizontal and vertical Finsler vector bundles (M°)" and (M°)V. If
the metric structures GH and GV satisfy the following equations;

GH (XM gy H) = GH(XH Y H) — en (X" (vH)
GV (¢X"V,0Y") =GV (XY, YY) —enV (XV)n" (YY) (3.12)

" (xT) =G (X", M),V (XY) =GV (XY, €Y) (3.13)
where ¢ = £1, then (¢, 8 nH GH) and (¢,¢V,nV,GV) are called almost con-
tact pseudo-metric Finsler structures, respectively, on (M°)" and (M?°)®.

Result 3.4. Let (¢, ¢ 0" GH) and (¢V,€V, 0V, GY) are the almost contact
pseudo-metric Finsler structures on (M°)" and (M°)?, respectively. Then from

and (3.13), we get [17],
GH(oXH YH) = —GH(xH gvH),
GV (pXV, YY) = -GV (XY, ¢Y") (3.14)
and
GH(oxX M, oY) = =" (* X, Y1),
GV (XY, YY) = -GV (¢*°XV,YY). (3.15)
Now, we define fundamental 2-form.
QX YTy = GH(XT gy ™),
QXY YY) =aY(XV,oY"). (3.16)

Proposition 3.5. The fundamental 2-form, given above, hold [17]
QX 0Y ") = QX YH), Q(ex", 0Y") = X", YY), (3.17)

Qx yHy = o xH),oxV, YY) =-yV, Xx"). (3.18)
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Definition 3.6. V be a Finsler connection on M° and n be the fundamental 1-
form which satisfies dn(X,Y) = 0,then there exists a function f on M° such that

n =df,[17]
(VI — (V™)X + ™ (T(X T, YT)) =0,

(Vi )YY) = (Vi )(xX") + 0" (T(XV, YY) = 0. (3.19)
Then, the almost contact pseudo-metric Finsler structure is called an almost Ken-
motsu pseudo-metric Finsler structure and the Finsler connection V satisfying
is called an almost Kenmotsu Finsler connection on M°. Thus (M°)", ¢H  ¢H nH GH)
and (M°)?, ¢V, &V, nV,GV) are called the almost Kenmotsu pseudo-metric Finsler
manifolds or almost e-Kenmotsu Finsler manifolds.

Theorem 3.7. If the almost Kenmotsu Finsler connection V is torsion free, then
we have the following equations for X YH ¢ (TM®)H and XV, YV € (TM°)V

(VET) = (V™) (XT) =0, (Vin) (YY) = (Vyn")(XY) =0 (3.20)
7.

3.3. Integrability Tensor Field of the Almost Kenmotsu Pseudo-Metric
Finsler Manifolds. Let F?"*1 = (M, M F*) be an indefinite Finsler manifold.
The integrability tensor field of the almost Kenmotsu pseudo-metric Finsler struc-
tures (¢, ¢ nH) and (¢V,¢V,17") on (M°)" and (M°)? are given by:

NP Y ) = [oX T oY ] — g[pX T, Y] — o[ X, oY H] + [ X1, Y],
NS (XY, YY) = [oXV, 0YV] = gloX Y, Y] - g[XV, oY V] + ¢’ (XY, VY],

VXH YH ¢ (TMO)H and ¥XV,YV € (TMO)V .
We determine four tensors N N NG and N*) | respectively by

NO(XH yHy = NI(XH yH), (3.21)
NOXT YTy = (L™ (Y ™) = (L n™ ) (X (3.22)
NOXH) = (L o)(X™), ND(XHT) = (Lenn™)(X™) (3.23)

and
NV YY) =N (XY, YY),

NOXY, YY) = (Lygxn") (YY) = (Lgyn* ) (XY),

NOXY) = (L $)(XY), NO(XY) = (Levn” ) (XY).
Proposition 3.8. The almost Kenmotsu pseudo-metric Finsler structures (¢, 8 nH GH)
and (¢V, €V, 0V, GV) on (M°)" and (M°)" are normal if and only if Nf =0 and
NY =0.
@

Lemma 3.9. The almost Kenmotsu pseudo-metric Finsler structures (¢™, 8, nH GH)
and (¢V, €V, 0V, GV are normal if and only if NV = N@ = NG = N®) =0,
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Lemma 3.10. For the almost Kenmotsu pseudo-metric Finsler structures (¢, ¢ nf GH)
and (¢V, &V, nV,GV) on (M°)" and (M°)?, we get following equations.

2GH((VE)YH, ZH) = du(XH ¢y " ¢2H) + eND(VH 2H)pH (X H)  (3.24)
—dxH vz L GIND(YE, ZH) g X)),

2GV((Vip)YV,ZV) =du X"V, ¢Y",62ZV) +eNO YV, Z2V )V (XV)  (3.25)
—dUXV, YV, ZV) + GIND (VY ZV), X V).
Proof. The Finsler connection V with G is presented with following equations,
2GH(VEYH 77y = XHGH (yH | zH)
+YHGH(XH 78y - ZzHGH(XH yH) y gH([xH YyH] zH)
+GH([Zz7, X", v — gH(vH, ZzH), XH), (3.26)

26V (VXYY,ZV)=XVGV(YY,Z")
—|—YVGV(XV,ZV) _ ZVGV(XV,YV) + GV([XV,YV],ZV)
+GY(Z2V,xV], YY) =GV (Y'Y, zV], xV). (3.27)
Also, we get
dQxH yH ZH)y = XHQvH, z®) + yHozH  xH)
+Z7o(x " yHy —o(xH, vy, z1)
—Q([z%, x"),YH) -y, zH), X ). (3.28)
By using (3.16)), from(3.26), we obtain
2G((VEp) Y 20y = gy HGH (X 7H) — zHO(XH vH)
+GH (X oY H), zH) 1+ Q(Zz%, x ), YH) - GH ([pvH, 2], X H)
+YHQ(xH 7y — pzHGH(XH Y)Y + QX Y], ZH)
+ GH([pz", X", YH) - GH([YH , p2H], X 1), (3.29)
Also from by using , we get

GHT(NWY T zM)ex™) = —Q(Iy", 2™, x™) + Q(l¢v ", 2™, X )
— G(leY™, 2™, X)) + 0T [oy ™, ZH]n" (XT)
= GH(Y ", 02", XT) + " [Y ", 2" n™ (XT). (3.30)
From , we have
NOYH " (XH) = gy H (" (v )" (XH)
—oZM (" (YT )™ (X =T [oY ™, 2™ (X )
— " [Y?, oz (X ™). (3.31)
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Then, from (3.28)), we have
dUXH oY H ¢z = XxHQYH ZH) + oY G (27, XH)
—epY " (" (2" )" (X)) —pzH G(x M, Y )
+epZ (™ (X (Y ) + G(XH, oY), 2)
— e [XH, oYy (Z7) + G (92", X1, Y1)

—enf [z, XHInH (V) — Q([¢YH, 9 Z27], X ). (3.32)
By using ([3.30)), (3.31) and (3.32]), we have the equation (3.24]). Similarly by using
(3.16), (3.27) and (3.30) we get equation (3.25)). O

Lemma 3.11. For the almost Kenmotsu pseudo-metric Finsler structures (¢, ¢ nff GH)
and (@Y, €V, 0V, GV with dQ =nAQ and NV = N®) =0, we get
1
(Vio)YV = §{€GV(¢XV, YV)ey —nV(vV)exV}y (3.33)

and
(VY'Y = G (oX T ¥ e - (Yex ") (334)

Proof. From , we can write
2GV (VY)Y Z2V) = =V (YV)GV (XY, 2Y) — GV (¥, ZV)GV (XY, ¢Y")
=GV (—eG(XY, oY)V =9V (YV)eX", ZY),
(VoYY = LGV (6XV, Y V)e” ¥ (YV)ox V).

Similarly, from (3.24)) we obtain (3.34)). O

Theorem 3.12. The almost Kenmotsu pseudo-metric Finsler structures (¢, &7 nfl GH)
and (¢, €V, 0V, GV) on (M®)" and (M°)" are the Kenmotsu pseudo-metric Finsler
structures if and only if

(VHOY" = (G (6X ™y M)e (v )ox "),

1
(VXYY = 5{eG  (6X ", YV)e" =" (¥V)ex "}
Conwersely, we suppose that the structures satisfy (3.33) and (3.34)). Putting YV =
¢V in (3.33), we have
1
(VXo)e" = S{eG(oX",€")e" =¥ (€)oX "},

—o(VHe") = —0x",

1 1
Ve = 2o XY = (XY -V (X)), (335)
Similarly we obtain from (3.34)
1 1
VHeH = f§¢2XH = 5(XH —pf(XH)eH), (3.36)
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Moreover from (3.35) and (3.36]) we get,

(VEY T+ (V™)X = QX" YT) = G(oxX ", ¥™), (3.37)
(Vin )YV + (V)XY = QeX", YY) = G(oX", YY), (3.38)
2(VERNMY T = Qo X YH) = G(o X", oY H), (3.39)
20V )YV = Q(oXV, YY) = GoX Y, 0YV"). (3.40)

Thus, these structures are the Kenmotsu pseudo-metric Finsler structures.

4. THE CURVATURES OF INDEFINITE KENMOTSU FINSLER MANIFOLDS

In this section, we calculate curvatures of indefinite Kenmotsu Finsler manifolds.
Firstly, we give the following theorem.

Theorem 4.1. If (¢", 8 nH GH) and (¢V, €V, 0V, GY) are the Kenmotsu pseudo-
metric Finsler structures on the Finsler vector bundles (M®)" and (M°)?, then from

ROXH Y = L (XY H -t () x ) (41)
and
RV YVIEY = L (XYY — " (r7)X V), (42)

That is, we have

R(X, V)¢ = R(XH yH)el 1 R(XV,vV)eV (4.3)
= %{(nH(XH)YH +V (XV)YY) = (T (YT X 0V (YY) X))

Theorem 4.2. Let (¢, ¢H 0" GH) and (¢V,£V,nV,GV) be the Kenmotsu pseudo-
metric Finsler structures on (M°)" and (M°)?. From (3.33), (3.34), (3.37), (3.38),

(3.39) and (3.40), we find that,

R(XT yMpz" = pR(XH, Y ZH — Z{G(¢XH7 zhyH
— G(oY ", ZE) X" 1 (X" 2By — G(YH, ZH)p X} (4.4)

R(XYYV)92" = oR(XY,YV)2Y = {G(X", 2¥)7"
—G(YY,ZNXY + G(XV,ZV)YY —G(YYV,ZV)pXV} (4.5)
Result 4.3. From (4.4), (4.5)), we obtain the equations below.

R(XHT yHyzH = —%{G(YH, ZIXH — (X", zM)YH — Gey T, Z2H)px T
+G X", ZM)ey Y — o R(XT, Y )92 (4.6)
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RXV,YV)ZV = —Z{G(YV, ZNXY —G(xXY,ZV)YY -~ G(oYY, ZV)p XV

+G(pXY,ZV)pYV} — ¢R(XV, YV )92V (4.7)
Definition 4.4. A plane section is called a horizontal (vertical) ¢— section if there
exists a unit vector X" (XV )in (TM®)H (TM®)V ) orthogonal to £ (£€V') such

that {XH ¢XH} ({XV,¢XV}). Thus, horizontal and vertical flag curvature can
be given with following equations.

GT(RXT, pXxT)p X, X 1)
GXH XM)G(pXH X H)
is named a horizontal ¢— sectional curvature, denoted by K (X™). Vertical flag

curvature

K(X" pxH) =

(4.8)

14 XV XV XV XV
G(XV, XV)G(oXV, 0XV)
is named a vertical p— sectional curvature,denoted by KV (XV). The ¢— sectional
curvature on a Kenmotsu pseudo-metric Finsler manifold is

K(X)=KI(Xx") + KV(xV).
Proposition 4.5. Let (¢, 65 nf GH) and (¢V,€V,nV,GY) be the Kenmotsu
pseudo metric Finsler structures on (M°)" and (M°)?. If (M®)" and (M°)" are

locally symmetric, then (M°)" and (M°)" are indefinite Kenmotsu Finsler mani-
folds with constant curvature —7.

Proof. For XH YH zH ¢H ¢ (TMOYH from (3.33), (3.34), (4.1) and (4.2)), we get

(VER)(XT, YT €M) = —{G(Y ", 2M)x" — G(x™, 2"y "}y - R(x ",y 1) 2"
(4.10)

Since (M?)" locally symmetric, that is, VZ R = 0, from ([4.10) we get
R(XH yHyzH = E{GH(YH,ZH)XH —GH(XxH, ZzTyHy (4.11)

YH must be space-like vector when X is a time-like vector for any orthonormal
pair { X YH}. Two vectors both time-like(or space-like) can not be perpendicular
to each other. Thus, we get

G(R(XH’YH)YH,XH) — —%{G(YH,YH)G(XH,XH)} _ Z?

GR(XH yHyYyH xH
K(XH,YH): ( ( ) ) ) ):_E
GIYH,YH)G(XH, xH) ~ 1
where if ¢ is a time-like vector, then we have K (X YH) =
vector, then we obtain K (X YH#)= -1,

1
In a similiar way, we get

RXV,YV)zV = —Z{GV(YV,ZV)XV —GV(XY, ZV)YV ).

i, if €M is a space-like

for XV, YV, 2V, ¢V e (TM®)V.
We have for any orthonormal pair {XV, YV}

GRXV, Y)YV, XV) = *E{G(YV,YV)G(XV,XV)} = Z,
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GR(XV, Y)YV, XV) £
\%4 Vy ’ ? - _
KX"Y") = GYV,YV)G(XV,XV) 4

For any orthonormal pair {X,Y} on TM?, we obtain

GTRXTYI Y X)) + GV(RXV, Y)YV, XY) e (4.12)
GH(XH XMGH(YH YH)+ GXV,XV)GYV,YV) 4 7

K(X,Y) =
O

The horizontal Ricci tensor SH of an indefinite Kenmotsu Finsler manifold
(M is given with {Ef ..., EH ¢H} is a local orthonormal frame of (TM%)H
as follows.

2n

SH(XH Yy ) = ZG (X" EMEN Y™ + G(R(XM, ¢M)e" v

2n
=Y G@R(E XY™ B + GRE, XY ). (4.13)
i=1
The vertical Ricci tensor SV of an indefinite Kenmotsu Finsler manifold (M°)v
given with {EY, ..., BY ¢V} is a local orthonormal frame of (T M%)V as follows.

SV(XV, YY) = ZG R(XV.E/E YY)+ GR(XY V)V, YY)

2n
=Y GR(E, xV)YY,E)+ GRE", XV)YV "), (4.14)
=1

Proposition 4.6. A contact pseudo-metric structure (¢™, &7 nH G on an in-
definite Finsler vector bundle (M°)" with index q is the Kenmotsu pseudo-metric
structure if and only if

H 1
S(eH ¢Hy = 1 &' 1s a space-like vector

& is a time-like vector (4.15)

Proof. From and -, we have
S, e = ZG Ef ¢Me! BH)
- iZGmH(Ef )€ — (™) B, BIY)

= 42 G(EF EM)

751 + ...+ Eopn
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Since F?"*! = (M, M° F*) is an indefinite Finsler manifold with index q, if
G(¢H , ¢H) = e =1, then &7 is a space-like vector and we obtain

1< —2n
SE".e"M) = -3 aBl Bl - Z G(EH EF) = ‘JT

i=1 z q+1
If G(EH ¢) = ¢ = —1, then ¢F is a time-like vector and we obtain
S(ef ey = flfG(EH Ef) - fZG (g pry =121
’ 4 4

i=1

(]

Proposition 4.7. A contact pseudo-metric structure (¢V, &V, nV,GY) on an in-
definite Finsler vector bundle (M°)" of index q is the Kenmotsu pseudo-metric
structure if and only if

q—2n

—, V' is a space-like vector
S(é—V’gV) = q72%7,71 g P (416)
4

€V is a time-like vector

)

Proof. From (4.2) and (4.14), we have

§V EV ZG §V §V EV ZG EV EV

Since F?"*+1 = (M, M°, F*) is an indefinite Finsler manifold of index ¢, if G(¢V,¢V) =
e =1, that is £ is a space-like vector, we obtain

-2
S,V = 1=

4
If G(EY,€V) = = —1, that is £ is a time-like vector we obtain

s(eV, ) = L2

O
Lemma 4.8. The horizontal Ricci tensor S™ of an indefinite Kenmotsu Finsler

vector bundle (M®)" and the vertical Ricci tensor SV of an indefinite Kenmotsu
Finsler vector bundle (M°) satisfy the following equations:

—2ntq\ H(xH " s a space-like vector
ST { (%) nH(XH), ¢ is a time-like vector (4.17)
=2nta) pV(xV ¢V is a space-like vector
XV \% — 4 ) n ’ P 4.1
ST, €0 { (222l (XY, €Y s a time-like vector (4.18)
—2nta) (X)), € is a space-like vector
S(X.¢€) { (%) n(X), ¢& is a time-like vector (4.19)

Proof. Let € is a space like vector. By using and ( - we obtain
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S(XH, M) ZG R(E, X™)e", BIY) + G(R(¢M, X )¢ €M)
{ZG(nH(XHw{I —n(ENHXT, Bl - iG(nH(XHkH —nf(M)xM,¢M)

- —f{z GBS, B — 10" (X)G(EM,€1) — en (X))

- an<XH> 420y ()
If €7 is a time-like vector, we obtain
q—2n—1

4
Similarly, we obtain, if ¢V is a space-like vector,
2n

.
S(xV,e") = (2

S(xH,eM) = ( )™ (X

" (XV).
If €V is a time-like vector.

q—2n—1
(7

S(XV7€V): 4

" (xY).

5. CONCLUSION

Let (M, $,£,7,g) be an (2n+1)- dimensional Kenmotsu pseudo-metric manifold,
where ¢ is a (1,1) tensor field, 77 is a 1-form, g is the pseudo-Riemannian metric
on M and F?"*t! = (M, M", F*) is an indefinite Finsler manifold. It is well known
that (¢, &, 7, g) satisfy

nEg) =1

¢°X = —X +7(X)¢

¢E =0

(¢X)=0

rank¢ = 2n

§(0X,9Y) = g(X,Y) —en(X)7(Y)
(X) =¢eg(X,8),9(6,&) =¢
Vgé=—-¢"X

(Vx@)Y =eg(oX,Y)E —n(Y)pX
(V)Y =g(X,Y) —en(X)p(Y)
R(X,Y)E=qn(X)Y —q(Y)X
R(X,Y)Z = —e{g(Y,2)X - g(X,Z)Y}
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S(X.8) = (q—2n)n(X), s a space-like vector
’ - (g—2n—1)n(X), ¢£is a time-like vector ~’
SE& = (¢—2n),  &is a space-like vector
’ N (g—2n—1), ¢ is a time-like vector

for any vector fields X,Y,Z € T,M, where V is the Levi-Civita connection of
pseudo-Riemannian metric g, R is the Riemannian curvature tensor, .S is the Ricci
tensor.

For the Kenmotsu pseudo-metric Finsler structures (¢, ¢ nff . GH) and (¢V, ¢V, 7V, GV)
on subbundles (M°)" and (M?)?, the following relations hold;

")y =1,9V(") =1

1 (eM) = 0,6 (€V) =0

(" X7y =0,V (6VXV) =0

(H2(XH) = —XH 4 (XT)EH (pV)2(XY) = =XV 4V (XV)e¥
T (XH) = eGH(XH ) nV (XV) =GV (XY, ¢Y)
GH(pxXH, oY) = GH(XH Y H) — en (X )" (Y H)
GV (XY, YY) = GV (X, YY) —en¥ (XV )V (YY)
(V)Y = S{GM (X YT — (v )X )
(Vav s )WY = LGV (6XY, YV)E" ¥ (Y )ox V)
(V™ V! = SGoX", ¥

(Varn* VY = 266XV, 07"

Vyné = f%qSQXH

VXVSV —_ *%QSQXV

L Y () X

RXVYVIEY = Lo (XYY~ (r)x V)

=2ndq) pH(xH & is a space-like vector
xH ¢H ( 1 ) n ( ) i
S(XT,E7) { (*2”1“1) nf(XH),  €¢H is a time-like vector ’
—2nta) V(XY ¢V is a space-like vector
xV V) — ( 1 ) n ( ) P
S(XV,¢Y) { (Z22r=) pV(XY), €Y is a time-like vector

¢H is a space-like vector
¢H is a time-like vector

—2n+q
St ey = {((zniﬂ)’7

¢V is a space-like vector
¢V is a time-like vector

—2n+q
S(V.¢Y) = {((zniﬂ)”
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R(XH yH)yzH = —Z{G(YH, ZHYXH _ (X", zH)yH)

RXV,YV)zV = —Z{G(YV7ZV)XV —G(xY,z2V)YVy

where X7 YH 7H ¢ (TM®)H and XV, YV, ZV € (TM°)V.
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