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ON THE STABILITY AND GENERAL SOLUTION OF A

SUM FORM FUNCTIONAL EQUATION EMERGING

FROM INFORMATION THEORY

DHIRAJ KUMAR SINGH, SHVETA GROVER

Abstract. In this paper we intend to obtain the general solutions of
a sum form functional equation containing two unknown mappings fol-
lowed by discussing the criteria of stability for the same. Some of these
solutions are related to entropies of type (α, β) proposed by Behara and
Nath [3].

1. Introduction

For n = 1, 2, . . . : let

Γn =

{
(p1, . . . , pn); pi ≥ 0, i = 1, . . . , n;

n∑
i=1

pi = 1

}
denote the set of all n-component discrete probability distributions. Let R
denote the set of real numbers; I denote the closed unit interval [0, 1], i.e.
I = {x ∈ R : 0 ≤ x ≤ 1} = [0, 1].

In this paper, the research methodology includes not only adding new
dimensions to the field of research work but it also includes efforts to estab-
lish a connect between two existing dimensions that is Functional Equations
and Information Theory. Indeed one of the intriguing branches which are ex-
plored in the domain of functional equations with reference to information
theory is to discover and study those functional equations that are used to
characterize several entropies.

An entropy which is referred as uncertainty in information theory (Ash [2])
was introduced by Shannon [15]. For a probability distribution (p1, . . . , pn) ∈
Γn, the Shannon entropy is defined as:

Hn (p1, . . . , pn) = −
n∑
i=1

pilog2pi (1.1)
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where Hn : Γn → R, n = 1, 2, . . . and the convention 0 log2 0 := 0 is adopted.
Chaundy and McLeod [4] with reference to some statistical thermodynamical
problem came across the functional equation

n∑
i=1

m∑
j=1

f (piqj) =

n∑
i=1

f (pi) +

m∑
j=1

f(qj) (1.2)

where f is a real valued mapping with domain I; (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈
Γm. Moreover, they proved that if f : I → R is presumed to be a contin-
uous mapping satisfying the functional equation (1.2) and is valid for all
n, m = 1, 2, . . . , then f is of the form

f(x) = −cx log2 x (1.3)

where c is an arbitrary real constant. With the help of (1.3) it can be con-
cluded that the functional equation (1.2) plays a key role in characterizing
Shannon entropies given by (1.1). This paper [4] added a new aspect in
the field of functional equations unfolding from information theory known
as “Sum form functional equations emerging from information theory”.

Behara and Nath [3] generalized the notion of Shannon entropy given by
(1.1) by introducing the entropies of type (α, β). For a probability distribu-
tion (p1, . . . , pn) ∈ Γn, entropy of type (α, β) is defined as:

H(α,β)
n (p1, . . . , pn)=


(21−α − 21−β)−1

(
n∑
i=1

pαi −
n∑
i=1

pβi

)
if α 6=β

−2β−1
n∑
i=1

pβi log2 pi if α=β
(1.4)

where H
(α,β)
n is a real valued mapping with domain Γn, n = 1, 2, . . . ; α and

β are fixed positive real powers such that

0α := 0, 0β := 0, 1α := 1, 1β := 1 (1.5)

and 0β log2 0 := 0. This phenomenon of entropies of type (α, β) represented
by (1.4) initiated the study of the functional equation

n∑
i=1

m∑
j=1

f(piqj) =

n∑
i=1

pαi

m∑
j=1

f(qj) +

m∑
j=1

qβj

n∑
i=1

f(pi) (1.6)

where f : I → R; (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; α and β are fixed
positive real powers which satisfy the conventions stated in (1.5).

Behara and Nath [3] were first to discover the continuous solutions of the
functional equation (1.6) assuming that α > 0, β > 0 and for all n = m =
1, 2, . . .. The functional equation (1.6) was also studied by Kannappan [8],
[9] who obtained its integrable and measurable solutions by imposing some
assumptions on the mapping f : I → R.

Finally, without imposing any regularity condition on the real valued
mapping f : I → R, Losonczi and Maksa [11] found the general solutions
of (1.6) for fixed integers n ≥ 3, m ≥ 2 with α 6= 1, β 6= 1. The functional
equation (1.6) was readdressed by Kocsis and Maksa [10] who examined
the stability of the same. The problem of stability was raised for the first
time by S.M. Ulam [17]. For the problem of stability concerning functional
equations, we refer to the survey paper of Hyers and Rassias [7].
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The objective of this paper is to explore the general solutions of the
functional equation

n∑
i=1

m∑
j=1

f (piqj) =
n∑
i=1

pαi

m∑
j=1

h(qj) +
m∑
j=1

qβj

n∑
i=1

h (pi) (A)

where f and h are unknown real valued mappings each having the domain
I; (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 2 be fixed integers;
0 < α ∈ R, 0 < β ∈ R, such that α 6= 1, β 6= 1 with (1.5). Now we
mention the motivation behind studying (A). As far as we know, Nath and
Singh [14] were the first who came across the functional equation (A) while
addressing some other functional equation leaving it as an open problem.
Equation (A) is a Pexiderized form of (1.6) and it is useful in characterizing
entropies of type (α, β). It follows that functional equation (A) is emerging
from information theory, thus connecting two aforementioned branches. This
provides us the motivation to study functional equation (A). Furthermore,
we discuss the problem of stability of functional equation (A) for the fixed
integers n ≥ 3, m ≥ 3. The problem of stability of the functional equation
(A) in the sense of Hyers and Rassias [7] is given along the following lines:

Let n ≥ 3, m ≥ 3 be fixed integers and 0 ≤ ε ∈ R be fixed. Find all the
mappings f : I → R, h : I → R satisfying the functional inequality∣∣∣∣∣∣

n∑
i=1

m∑
j=1

f(piqj)−
n∑
i=1

pαi

m∑
j=1

h(qj)−
m∑
j=1

qβj

n∑
i=1

h(pi)

∣∣∣∣∣∣ ≤ ε (B)

for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm.
This paper is divided into five sections. In next section 2, we mention

some preliminary results which will be used in the subsequent sections. In
section 3, the general solutions of the functional equation (A) are obtained
for the fixed integers n ≥ 3, m ≥ 2. In section 4, the problem of stability of
the functional equation (A) is being examined for the fixed integers n ≥ 3,
m ≥ 3. In section 5, we discuss the significance of the functional equation
(A) from the perspective of the information theory.

2. Some Preliminary Results

In this section, we state some known definitions and results.
A mapping a : I → R is said to be additive on I or on the unit triangle

∆ = {(x, y) : 0 ≤ x ≤ 1, 0 ≤ y ≤ 1, 0 ≤ x+ y ≤ 1}

if it satisfies the equation a(x + y) = a(x) + a(y) for all (x, y) ∈ ∆. A
mapping A : R → R is said to be additive on R if it satisfies the equation
A(x + y) = A(x) + A(y) for all x ∈ R, y ∈ R. It is known [5] that if a
mapping a : I → R is additive on I, then it has a unique additive extension
A : R → R in the sense that A is additive on R and A(x) = a(x) for all
x ∈ I.

A mapping ` : I → R is said to be logarithmic on I if `(0) = 0 and
`(xy) = `(x) + `(y) for all x ∈ ]0, 1], y ∈ ]0, 1].
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Result 2.1 ([12]). Let n ≥ 3 be a fixed integer and ψ : I → R be a real valued

mapping on I satisfying the equation
n∑
i=1

ψ(pi) = c for all (p1, . . . , pn) ∈ Γn;

c a given real constant. Then there exists an additive mapping a1 : R → R
such that ψ(p) = a1(p)− 1

na1(1) + c
n for all p ∈ I.

Result 2.2 ([11]). Suppose that the mapping f : I → R satisfies the func-
tional equation (1.6) where α 6= 1, β 6= 1, 0α = 0β = 0 and n ≥ 3, m ≥ 2
are fixed integers. Then

f(p) = C(pα − pβ) + a(p) if α 6= β, p ∈ I (2.1)

and

f(p) = pα`(p) + a(p) if α = β, p ∈ I; (2.2)

where a : R → R is an additive mapping with a(1) = 0 and C ∈ R is a
constant, ` : I → R is a logarithmic mapping. Conversely, the mappings
(2.1), (2.2) satisfy (1.6).

Result 2.3 ([11]). Let m ≥ 2 be a fixed integer and H : I → R be a real
valued mapping on I which satisfies the functional equation

m∑
j=1

{
H
(
pqj
)
− pβH(qj)− qβjH(p)

}
= 0 (C)

for all p ∈ I, (q1, . . . , qm) ∈ Γm; β 6= 1 being a fixed positive real power
satisfying the conventions (1.5). If H(0) = H(1) = 0, then H(p) = pβ`(p)
for all p ∈ I; ` : I → R is a logarithmic mapping.

Result 2.4 ([13]). Let n ≥ 3 be a fixed integer; 0 ≤ ε ∈ R be fixed and
φ : I → R be a real valued mapping on I satisfying the functional inequal-

ity

∣∣∣∣ n∑
i=1

φ(pi)

∣∣∣∣ ≤ ε for all (p1, . . . , pn) ∈ Γn. Then there exists an additive

mapping a2 : R → R and a bounded mapping b : R → R with b(0) = 0,
|b(p)| ≤ 18ε such that φ(p)− φ(0) = a2(p) + b(p) for all p ∈ I.

Result 2.5 ([18]). If a real additive mapping f is bounded on an interval
[a, b], then it is linear, i.e. there exists a constant c′ such that f(p) = c′p for
all p ∈ R.

Result 2.6 ([16]). Let 0 ≤ ε′ ∈ R be fixed and H : I → R be a real valued
mapping on I which satisfies the functional inequality

|H(pq)− pβH(q)− qβH(p)| ≤ ε′ (D)

for all p ∈ I, q ∈ I; β 6= 1 being a fixed positive real power satisfying
the conventions (1.5). Then any solution of (D) is of the form H(p) =
pβ`(p)+b(p) for all p ∈ I; ` : I → R is a logarithmic mapping and b : R→ R
is a bounded mapping with |b̄(p)| ≤ 4eε′ where e is the natural base of the
logarithmic mapping.
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3. The General Solution Of The Functional Equation (A)

The main result of this section is the following:

Theorem 3.1. Let n ≥ 3, m ≥ 2 be fixed integers; α and β be fixed positive
real powers different from 1 satisfying the conventions (1.5) and let f : I →
R, h : I → R.
(I) If α = β, then the pair (f, h) satisfies (A) if and only if there exist a
logarithmic mapping ` : I → R, the additive mappings a1, a2 : R → R with
(n−m)a2(1) = 0 and c ∈ R such that

(i) f(p) = pβ`(p) + a1(p) + 2cpβ − 1

nm
a1(1),

(ii) h(p) = pβ`(p) + a2(p) + cpβ − 1

n
a2(1).

 (α1)

(II) If α 6= β, then the pair (f, h) satisfies (A) if and only if there exist the
additive mappings a3, a4 : R → R with (n − m)a4(1) = 0 and c ∈ R such
that

(i) f(p) = c(pα − pβ) + a3(p)−
1

nm
a3(1),

(ii) h(p) = c(pα − pβ)+ a4(p)−
1

n
a4(1).

 (α2)

Proof. Let us put q1 = 1, q2 = · · · = qm = 0 in (A). We obtain
n∑
i=1

{f(pi)− [h(1) + (m− 1)h(0)]pαi − h(pi)} = n(1−m)f(0).

By Result 2.1, there exists an additive mapping a : R→ R such that

f(p)= h(p)+[h(1)+ (m−1)h(0)]pα+a(p)− 1

n
a(1)+(1−m)f(0) (3.1)

for all p ∈ I. The substitution p = 0 in (3.1) and the use of the fact that
a(0) = 0 gives

a(1) = n(h(0)−mf(0)). (3.2)

From (3.1) and (3.2), after performing necessary calculation work, we obtain

f(p) = h(p) + [h(1) + (m− 1)h(0)]pα + a(p) + f(0)− h(0). (3.3)

From (A), (3.3) and (3.2), we get

n∑
i=1

m∑
j=1

h(piqj)−
n∑
i=1

pαi

 m∑
j=1

h(qj)− [h(1) + (m− 1)h(0)]

m∑
j=1

qαj


−

m∑
j=1

qβj

n∑
i=1

h(pi) + n(1−m)h(0) = 0 (3.4)

for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 2 being fixed
integers. Now letting p1 = 1, p2 = · · · = pn = 0 in (3.4), we obtain equation

[h(1) + (m− 1)h(0)]
m∑
j=1

qαj − [h(1) + (n− 1)h(0)]
m∑
j=1

qβj

+ (n−m)h(0) = 0. (3.5)
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Equation (3.5), indicates that the proof depends on the parameters α and
β. So we divide our discussion into two cases.

Case 1: α = β

In this case equation (3.5) reduces to (n − m)h(0)

[
1−

m∑
j=1

qβj

]
= 0. This

implies either (n−m)h(0) = 0 or 1−
m∑
j=1

qβj vanishes identically on Γm. Sup-

pose 1−
m∑
j=1

qβj = 0 for all (q1, . . . , qm) ∈ Γm. In particular for a probability

distribution
(
1
2 ,

1
2 , 0, . . . , 0

)
∈ Γm, we have

(
1
2

)β
= 1

2 which holds only when
β = 1. Since β is assumed to be a fixed positive real power with β 6= 1, we
arrive at a contradiction and hence obtain (n−m)h(0) = 0.
Now considering α = β, equation (3.4) reduces to

n∑
i=1

{ m∑
j=1

h(piqj)− pβi

 m∑
j=1

h(qj)− [h(1) + (m− 1)h(0)]

m∑
j=1

qβj


−

m∑
j=1

qβj h(pi)

}
= n(m− 1)h(0)

for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 2 being fixed
integers. By Result 2.1, there exists a mapping Ā : R×Γm → R, additive in
the first variable such that

m∑
j=1

h (pqj)− pβ
 m∑
j=1

h(qj)− [h(1)+ (m− 1)h(0)]

m∑
j=1

qβj

−h(p)

m∑
j=1

qβj

= A(p; q1, . . . , qm)− 1

n
A(1; q1, . . . , qm) + (m− 1)h(0) (3.6)

for all p ∈ I and (q1, . . . , qm) ∈ Γm. The substitution p = 0 in (3.6) gives

A(1; q1, . . . , qm) = −nh(0)

[
1−

m∑
j=1

qβj

]
. Consequently, (3.6) becomes

m∑
j=1

h (pqj)− pβ
 m∑
j=1

h(qj)− [h(1) + (m− 1)h(0)]

m∑
j=1

qβj


− (h(p)− h(0))

m∑
j=1

qβj −mh(0) = A(p; q1, . . . , qm). (3.7)

Let x ∈ I and (r1, . . . , rm) ∈ Γm. Now replacing p by xrt, t = 1, . . . ,m
consecutively in (3.7); summing up the outcoming m equations so obtained

m∑
t=1

m∑
j=1

h(xrtqj)− xβ
m∑
t=1

rβt

 m∑
j=1

h(qj)− [h(1) + (m− 1)h(0)]

m∑
j=1

qβj


−

m∑
t=1

h(xrt)

m∑
j=1

qβj +mh(0)

m∑
j=1

qβj −m
2h(0) = A(x; q1, . . . , qm) (3.8)
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for all x ∈ I, (q1, . . . , qm) ∈ Γm and (r1, . . . , rm) ∈ Γm. Now put p = x and
q1 = r1, . . . , qm = rm in (3.7). We obtain

m∑
t=1

h (xrt) = xβ

[
m∑
t=1

h(rt)− [h(1) + (m− 1)h(0)]

m∑
t=1

rβt

]

+ (h(x)− h(0))
m∑
t=1

rβt +mh(0) +A(x; r1, . . . , rm) (3.9)

for all x ∈ I and (r1, . . . , rm) ∈ Γm. From equations (3.8) and (3.9), we get

m∑
t=1

m∑
j=1

h(xrtqj)− xβ
 m∑
t=1

rβt

m∑
j=1

h(qj) +
m∑
j=1

qβj

m∑
t=1

h(rt)


+
(

2xβ[h(1) + (m− 1)h(0)]− h(x) + h(0)
) m∑
t=1

rβt

m∑
j=1

qβj −m
2h(0)

= A(x; q1, . . . , qm) +A(x; r1, . . . , rm)
m∑
j=1

qβj

for all x ∈ I, (q1, . . . , qm) ∈ Γm and (r1, . . . , rm) ∈ Γm. Apparently, the left
hand side of the above equation is symmetric in rt and qj , t = 1, . . . ,m;
j = 1, . . . ,m (Acźel [1]), so should be its right hand side. Hence we get

A (x; q1, . . . , qm)

[
1−

m∑
t=1

rβt

]
= A (x; r1, . . . , rm)

1−
m∑
j=1

qβj

 . (3.10)

As explained earlier that for fixed positive real power β 6= 1, 1−
m∑
j=1

qβj does

not vanish identically on Γm. Thus, there exists a probability distribution

(q∗1, . . . , q
∗
m) ∈ Γm such that 1−

m∑
j=1

q∗
β

j 6= 0. Making use of this in (3.10), we

get

A (x; r1, . . . , rm) = a2(x)

[
1−

m∑
t=1

rβt

]
(3.11)

where a2 : R → R defined as a2(x) =

[
1−

m∑
j=1

q∗
β

j

]−1
A(x; q∗1, . . . , q

∗
m) is an

additive mapping with

a2(1) = −nh(0). (3.12)

Equations (3.7), (3.11), (3.12) with (n −m)h(0) = 0 yields the functional
equation (C) where H : I → R is defined as

H(x) = h(x)− a2(x)− h(0)− [h(1) + (m− 1)h(0)]xβ (3.13)

for all x ∈ I. Clearly H(0) = 0 and H(1) = 0. Thus by Result 2.3, there
exists a logarithmic mapping ` : I → R such that H(p) = pβ`(p) for all
p ∈ I. Hence by taking c := h(1) + (m− 1)h(0), the solution (α1) of (A) is
attained with (n −m)a2(1) = 0 from (3.13), (3.1) (with α = β) and (3.2),
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where the additive mapping a1 : R → R is defined as a1(x) = a2(x) + a(x)
with a1(1) = −nmf(0).

Case 2: α 6= β
In this case, let us put q1 = q, q2 = 1 − q, q3 = · · · = qm = 0 in (3.5). We
obtain

[h(1)+(m−1)h(0)][qα+(1− q)α]− [h(1)+(n− 1)h(0)][qβ + (1− q)β]

+ (n−m)h(0) = 0. (3.14)

Now, let us put q =
1

2
and q =

1

4
respectively in (3.14). We obtain[

1

2α−1
− 1

2β−1

]
h(1)+

[
(m− 1)

2α−1
− (n− 1)

2β−1
+(n−m)

]
h(0)=0, (3.15)

[
1

4α
+

3α

4α
− 1

4β
− 3β

4β

]
h(1)+

[
(m− 1)

4α
+

(m− 1)3α

4α
− (n− 1)

4β

− (n− 1)3β

4β
+(n−m)

]
h(0) = 0. (3.16)

Since α 6= β, so the coefficients of h(1) and h(0) in equations (3.15) and
(3.16) are nonzero real numbers. Therefore from (3.15) and (3.16), we have

(n−m)h(0)

[
1

4α2β−1
+

3α

4α2β−1
− 1

4β2α−1
− 3β

4β2α−1
+

1

2α−1
− 1

2β−1

− 1

4α
− 3α

4α
+

1

4β
+

3β

4β

]
= 0.

From the above equation, it can be easily observed that either (n−m)h(0) =

0 or
[

1
4α2β−1 + 3α

4α2β−1 − 1
4β2α−1 − 3β

4β2α−1 + 1
2α−1 − 1

2β−1 − 1
4α −

3α

4α + 1
4β

+ 3β

4β

]
= 0.

Suppose
[

1
4α2β−1 + 3α

4α2β−1− 1
4β2α−1− 3β

4β2α−1 + 1
2α−1− 1

2β−1− 1
4α−

3α

4α + 1
4β

+ 3β

4β

]
=

0 for every pair of fixed positive real powers α 6= β. In particular, if we take
α = 2 and β = 4, then we arrive at a contradiction. So

(n−m)h(0) = 0. (3.17)

Consequently from (3.14), we obtain the equation

[h(1) + (m− 1)h(0)][qα + (1− q)α − qβ − (1− q)β] = 0. (3.18)

This implies either h(1)+(m−1)h(0) = 0 or [qα+(1−q)α−qβ−(1−q)β] = 0.
Suppose [qα + (1 − q)α − qβ − (1 − q)β] = 0 for all q ∈ I and every pair of
fixed positive real powers α 6= β. In particular, for q = 1

2 , it follows that(
1
2

)α
=
(
1
2

)β
which is true only if α = β. As a result we get a contradiction,

so h(1) + (m− 1)h(0) = 0 follows. Then (3.4) reduces to

n∑
i=1

m∑
j=1

h(piqj)−
n∑
i=1

pαi

m∑
j=1

h(qj)−
m∑
j=1

qβj

n∑
i=1

h(pi)+n(1−m)h(0)=0
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for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 2 being fixed
integers. Making use of (3.17), the above equation can be written as

n∑
i=1

m∑
j=1

h(piqj)+nh(0)
n∑
i=1

pi

m∑
j=1

qj −nmh(0)−
n∑
i=1

pαi

[ m∑
j=1

h (qj)+nh(0)

×
m∑
j=1

qj −mh(0)

]
−

m∑
j=1

qβj

[
n∑
i=1

h (pi) + nh(0)
n∑
i=1

pi − nh(0)

]
= 0. (3.19)

Now define a mapping g : I → R as

g (x) = h (x) + nh(0)x− h(0) (3.20)

for all x ∈ I. Clearly g(0) = 0 and g(1) = 0. Also from (3.19) and (3.20),
we obtain functional equation (1.6) (with g in place of f). Hence by Result
2.2, there exists an additive mapping a : R→ R and c ∈ R such that for all
p ∈ I, g(p) = a(p)+c(pα−pβ) with a(1) = 0. Consequently, the solution (α2)
of functional equation (A) is attained with (n −m)a4(1) = 0 from (3.20),
(3.1)(with h(1) + (m− 1)h(0) = 0) and (3.2), where the additive mappings
a4 : R → R is defined as a4(x) = a(x) − nh(0)x with a4(1) = −nh(0) and
a3 : R→ R is defined as a3(x) = a4(x) + a(x) with a3(1) = −nmf(0). This
completes the proof. �

Note. We observe that from (3.17) two cases arise, which are m 6= n and
m = n. Consider the first case m 6= n. In this case, from (3.17), we get
h(0) = 0. Consequently (3.18) gives h(1)[qα + (1− q)α − qβ − (1− q)β] = 0
for all q ∈ I. Proceeding as above, we can obtain h(1) = 0. Using the fact
that h(1) = 0, h(0) = 0, equation (3.4) reduces to

n∑
i=1

m∑
j=1

h(piqj)−
n∑
i=1

pαi

m∑
j=1

h(qj)−
m∑
j=1

qβj

n∑
i=1

h(pi) = 0

for all (p1, . . . , pn) ∈ Γn, (q1, . . . , qm) ∈ Γm; n ≥ 3, m ≥ 2 being fixed
integers. By Result 2.2, it follows that h : I → R is of the form h(p) =
c(pα − pβ) + a4(p), a4(1) = 0, where a4 : R→ R is an additive mapping and
c is an arbitrary real constant. Further, using this in (3.1) and (3.2)(with
h(1) = 0 and h(0) = 0), it follows that f : I → R is of the form f(p) =
c(pα − pβ) + a3(p), a3(1) = −nmf(0), where a3 : R → R is an additive
mapping defined as a3(x) = a4(x) +a(x) and c is an arbitrary real constant.
This solution is included in (α2) of (A).

On the otherhand, if we consider the case m = n, then proceeding as in
Case 2, the solution (α2) of (A) follows.

4. The Stability Of The Functional Equation (A)

In this section we discuss the stability of functional equation (A). For
this we consider a perturbation of (A) given by functional inequality (B)
and our aim is to find that How do the solutions of inequality (B) differ
from the solutions of equation (A)?

Indeed in the sense of Hyers and Rassias [7], if the difference between their
solutions is only a bounded mapping, we would say functional equation (A)
is stable. Following this we establish the stability of (A) and thus prove:
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Theorem 4.1. Let n ≥ 3, m ≥ 3 be fixed integers; α and β be fixed positive
real powers different from 1 satisfying the conventions (1.5); ε be a nonneg-
ative real constant and let f : I → R, h : I → R be real valued mappings.
(I) Suppose α = β and the pair (f,h) satisfies (B). Then there exist a log-
arithmic mapping ` : I → R, the additive mappings a1, a2 : R → R, the
bounded mappings b1, b2 : R→ R and c̄ ∈ R such that

(i) f(p)− f(0) = pβ`(p) + a1(p) + 2c̄pβ + b1(p)
with
|b1(p)| ≤ 4e

{
m|h(0)|+36

[
36ε(m+1) +m(m+2)|h(0)|

]}
+18ε,

(ii) h(p)− h(0) = pβ`(p) + a2(p) + c̄pβ + b2(p)
with
|b2(p)| ≤ 4e

{
m|h(0)|+ 36

[
36ε(m+ 1) +m(m+ 2)|h(0)|

]}
.


(β1)

(II) Suppose α 6= β and the pair (f,h) satisfies (B). Then there exist the
additive mappings a3, a4 : R→ R, the bounded mappings b3, b4 : R→ R and
c, c̄ ∈ R such that

(i) f(p)− f(0) = c(pα − pβ) + a3(p) + b3(p)
with

|b3(p)| ≤
18ε[2+21−α−21−β]+|m−n||h(0)|

21−α−21−β + c̄, b3(0) = 0,

(ii) h(p)− h(0) = c(pα − pβ) + a4(p) + b4(p)
with

|b4(p)| ≤ 36ε+|m−n||h(0)|
21−α−21−β , b4(0) = 0.


(β2)

Proof. Let us put q1 = 1, q2 = . . . = qm = 0 in (B). We obtain∣∣∣ n∑
i=1

[
f(pi) + (m− 1)f(0)− [h(1) + (m− 1)h(0)]pαi − h(pi)

]∣∣∣ ≤ ε
for all (p1, . . . , pn) ∈ Γn. By Result 2.4, there exists an additive mapping
A1 : R → R and a bounded mapping B∗1 : R → R with |B∗1(p)| ≤ 18ε and
B∗1(0) = 0, such that for all p ∈ I

f(p)− [h(1) + (m− 1)h(0)]pα − h(p)− f(0) + h(0) = A1(p) +B∗1(p).

From this, one can easily obtain the expression

f(p) = h(p) +A1(p) +B1(p) + [h(1) + (m− 1)h(0)]pα (4.1)

where B1 : R → R is a bounded mapping defined as B1(x) = f(0)−h(0)+
B∗1(x). Using (4.1), inequality (B) can be written to the form∣∣∣∣∣∣

n∑
i=1

[ m∑
j=1

h(piqj) +A1(1)pi +
m∑
j=1

B1(piqj) +[h(1) + (m− 1)h(0)]

×pαi
m∑
j=1

qαj − pαi
m∑
j=1

h(qj)− h(pi)
m∑
j=1

qβj

]∣∣∣∣∣∣ ≤ ε.
By Result 2.4, there exists a mapping A2 : R×Γm → R, additive in the first
variable and a mapping B2 : R× Γm → R, bounded in the first variable by
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18ε with B2(0; q1, . . . , qm) = 0, such that
m∑
j=1

h(pqj) +A1(1)p+
m∑
j=1

B1(pqj) + [h(1) + (m− 1)h(0)]pα
m∑
j=1

qαj

− pα
m∑
j=1

h(qj)− (h(p)− h(0))
m∑
j=1

qβj −mh(0)−mB1(0)

= A2(p; q1, . . . , qm) +B2(p; q1, . . . , qm) (4.2)

for all p ∈ I, (q1, . . . , qm) ∈ Γm. Let x ∈ I and (r1, . . . , rm) ∈ Γm. Replacing
p by xrt, t = 1, . . . ,m consecutively in (4.2) and summing the resulting m
equations so obtained, we have
m∑
t=1

m∑
j=1

h(xrtqj)+A1(1)x+

m∑
t=1

m∑
j=1

B1(xrtqj)+xα[h(1)+(m− 1)h(0)]

×
m∑
t=1

rαt

m∑
j=1

qαj −xα
m∑
t=1

rαt

m∑
j=1

h(qj)−
m∑
t=1

h(xrt)
m∑
j=1

qβj +mh(0)
m∑
j=1

qβj

−m2h(0)−m2B1(0)=A2(x; q1, . . . , qm) +
m∑
t=1

B2(xrt; q1, . . . , qm). (4.3)

Now for p = x and qj = rt, j = 1, . . . ,m; t = 1, . . . ,m; the functional
equation (4.2) gives
m∑
t=1

h(xrt)=A2(x; r1, . . . , rm)+B2(x; r1, . . . , rm)−A1(1)x−
m∑
t=1

B1(xrt)

−xα[h(1) + (m− 1)h(0)]
m∑
t=1

rαt +xα
m∑
t=1

h(rt) + (h(x)− h(0))
m∑
t=1

rβt

+mh(0) +mB1(0).

From the above equation, the functional equation (4.3) can be written as
m∑
t=1

m∑
j=1

h(xrtqj)+A1(1)x+
m∑
t=1

m∑
j=1

B1(xrtqj) + xα[h(1)+(m− 1)h(0)]

×
m∑
t=1

rαt

m∑
j=1

qαj − (h(x)− h(0))
m∑
t=1

rβt

m∑
j=1

qβj −m
2h(0)−m2B1(0)

= xα

 m∑
t=1

rαt

m∑
j=1

h(qj) +
m∑
j=1

qβj

m∑
t=1

h(rt)

+

[
A2(x; r1, . . . , rm)

+B2(x; r1, . . . , rm)−A1(1)x−
m∑
t=1

B1(xrt) +mB1(0)

] m∑
j=1

qβj

− xα[h(1) + (m− 1)h(0)]

m∑
t=1

rαt

m∑
j=1

qβj +A2(x; q1, . . . , qm)

+
m∑
t=1

B2(xrt; q1, . . . , qm)
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for all x ∈ I, (q1, . . . , qm) ∈ Γm and (r1, . . . , rm) ∈ Γm. The symmetry of the
terms in rt and qj , t = 1, . . . ,m; j = 1, . . . ,m on the left hand side implies
the symmetry on the right hand side. As a consequence we get

A2(x; q1, . . . , qm)

[
1−

m∑
t=1

rβt

]
−A2(x; r1, . . . , rm)

1−
m∑
j=1

qβj


=

m∑
j=1

B2(xqj ; r1, . . . , rm)−
m∑
t=1

B2(xrt; q1, . . . , qm)

+

B2(x; q1, . . . , qm)−
m∑
j=1

B1(xqj) +mB1(0)−A1(1)x

 m∑
t=1

rβt

−

[
B2(x; r1, . . . , rm)−

m∑
t=1

B1(xrt) +mB1(0)−A1(1)x

]
m∑
j=1

qβj

− xα[h(1) + (m− 1)h(0)]

 m∑
j=1

qαj

m∑
t=1

rβt −
m∑
t=1

rαt

m∑
j=1

qβj


+ xα

m∑
t=1

h(rt)

 m∑
j=1

qαj −
m∑
j=1

qβj

− xα m∑
j=1

h(qj)

(
m∑
t=1

rαt −
m∑
t=1

rβt

)
. (4.4)

Here, we notice that the equation (4.4), strongly depends on the parameters
α and β. Therefore, we divide our discussion into two cases.

Case 1: α = β
In this case, equation (4.4) results in the following equation

A2(x; q1, . . . , qm)

[
1−

m∑
t=1

rβt

]
−A2(x; r1, . . . , rm)

1−
m∑
j=1

qβj


=

m∑
j=1

B2(xqj ; r1, . . . , rm)−
m∑
t=1

B2(xrt; q1, . . . , qm)

+

B2(x; q1, . . . , qm)−
m∑
j=1

B1(xqj) +mB1(0)−A1(1)x

 m∑
t=1

rβt

−

[
B2(x; r1, . . . , rm)−

m∑
t=1

B1(xrt) +mB1(0)−A1(1)x

]
m∑
j=1

qβj . (4.5)

For fixed (q1, . . . , qm) ∈ Γm and (r1, . . . , rm) ∈ Γm, the right hand side
of (4.5) is bounded on I while the left hand side is additive in x ∈ I,
consequently by applying Result 2.5, it follows that

[A2(x; q1, . . . , qm)− xA2(1; q1, . . . , qm)]

[
1−

m∑
t=1

rβt

]
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= [A2(x; r1, . . . , rm)− xA2(1; r1, . . . , rm)]

1−
m∑
j=1

qβj

 . (4.6)

As explained in the previous section 3 that for fixed positive real power

β 6= 1, 1 −
m∑
t=1

rβt does not vanish identically on Γm. Hence, there exists a

probability distribution (r∗1, . . . , r
∗
m) ∈ Γm such that 1−

m∑
t=1

r∗
β

t 6= 0. Equa-

tion (4.6) along with this fact results in

A2(x; q1, . . . , qm) = a2(x)

1−
m∑
j=1

qβj

+ x A2(1; q1, . . . , qm) (4.7)

where a2 : R→ R is a mapping defined as

a2(x) =

[
1−

m∑
t=1

r∗
β

t

]−1
[A2(x; r∗1, . . . , r

∗
m)− x A2(1; r∗1, . . . , r

∗
m)].

Clearly the mapping a2 : R → R is an additive mapping with a2(1) = 0.
Using α = β and 1β := 1 in (4.2), we have

A2 (1; q1, . . . , qm) = A1(1) +

m∑
j=1

B1(qj) +mh(0)

m∑
j=1

qβj

−mh(0)−mB1(0)−B2 (1; q1, . . . , qm) . (4.8)

With the help of (4.2), (4.7), (4.8), a2(1) = 0 and α = β, we gather that

m∑
j=1

H(pqj)− pβ
m∑
j=1

H(qj)−
m∑
j=1

qβjH(p) = pβmh(0)

+ p

[ m∑
j=1

B1(qj) +mh(0)

m∑
j=1

qβj −mh(0)−mB1(0)−B2(1; q1, . . . , qm)

]

+B2 (p; q1, . . . , qm)−
m∑
j=1

B1(pqj) +mB1(0) (4.9)

where H : I → R is a mapping defined as

H(x) = h(x)− a2(x)− [h(1) + (m− 1)h(0)]xβ − h(0) (4.10)

for all x ∈ I. It follows from the definition of H given by (4.10) that H(0) =
0. Apparently, the right hand side of (4.9) is bounded by 36ε(m + 1) +
m(m + 2)|h(0)|, consequently by applying Result 2.4, and using H(0) = 0,
there exists a mapping A3 : I ×R→ R, additive in the second variable and
a mapping B3 : I × R→ R, bounded in the second variable by 18

[
36ε(m+

1) +m(m+ 2)|h(0)|
]

with B3(p, 0) = 0, such that

H(pq)− pβH(q)− qβH(p) = A3(p, q) +B3(p, q) . (4.11)

Define a mapping G : I × I → R as

G(p, q) = H(pq)− pβH(q)− qβH(p) (4.12)
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for all p ∈ I, q ∈ I. With the help of (4.12), it can easily be verified that

H(pqr)− pβqβH(r)− qβrβH(p)− rβpβH(q) = G (pq, r) + rβG (p, q)

= G (p, qr) + pβG(q, r)
(4.13)

for all p ∈ I, q ∈ I and r ∈ I. From (4.11), (4.12) and (4.13), it follows that

A3 (p, qr) + pβA3 (q, r)−A3 (pq, r)

= B3 (pq, r) + rβA3 (p, q) + rβB3 (p, q)−B3 (p, qr)− pβB3 (q, r) . (4.14)

The left hand side of (4.14) is additive in r ∈ I, while its right hand side
is bounded on I. Consequently by applying Result 2.5, it follows that left
hand side is linear, i.e.

A3 (p, qr)+pβA3 (q, r)−A3 (pq, r)=r
[
A3 (p, q) + pβA3 (q, 1)−A3 (pq, 1)

]
.

(4.15)

Now, substituting r = 1 in (4.14), we get

pβA3 (q, 1)−A3 (pq, 1) = B3 (pq, 1)− pβB3(q, 1) . (4.16)

From (4.14), (4.15) and (4.16), we obtain(
r − rβ

)
A3 (p, q) = B3 (pq, r) + rβB3 (p, q)−B3 (p, qr)

− pβB3 (q, r)− rB3 (pq, 1) + rpβB3(q, 1) (4.17)

for all p ∈ I, q ∈ I and r ∈ I. Since β is presumed to be a fixed positive
real power with β 6= 1, equation (4.17) yield that the mapping A3(p, q) is
bounded in q on I. Hence by Result 2.5, A3(p, q) must be linear. Therefore

A3 (p, q) = qA3(p, 1) (4.18)

for all p ∈ I, q ∈ I. Also equation (4.16) with the substitution q = 1 results
in the following

A3 (p, 1) = pβA3 (1, 1)−B3 (p, 1) + pβB3(1, 1) (4.19)

for all p ∈ I. Consequently from (4.18) and (4.19), we conclude that the
mapping A3(p, q) is bounded. Moreover we obtain its bound ‘m|h(0)| +
18
[
36ε(m + 1) + m(m + 2)|h(0)|

]
’ as A3(p, 1) = −pβH(1) − B3(p, 1) (from

(4.11) and (4.19)) and |H(1)| ≤ m|h(0)| (from (4.10)). Hence, the mappingG
is also bounded and therefore by Result 2.6, on (4.11) we getH(p) = pβ`(p)+
b2(p), where ` : I → R is a logarithmic mapping and b2 : R→ R is a bounded
mapping with |b2(p)| ≤ 4e

{
m|h(0)|+ 36

[
36ε(m+ 1) +m(m+ 2)|h(0)|

]}
. On

taking c̄ := h(1) + (m − 1)h(0), the solution (β1) of inequality (B) follows
from (4.10) and (4.1) (with α = β) by defining additive mapping a1 : R→ R
as a1(x) = a2(x)+A1(x); a bounded mapping b1 : R→ R as b1(x) = b2(x)+
B∗1(x) with |b1(x)| ≤ 4e

{
m|h(0)|+ 36

[
36ε(m+ 1) +m(m+ 2)|h(0)|

]}
+ 18ε.

Case 2: α 6= β
In this case without any loss of generality, we may assume that n ≥ m. So,
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letting pm+1 = · · · = pn = 0 in (B) and using (4.1). We get∣∣∣∣∣∣
m∑
i=1

m∑
j=1

h (piqj)−
m∑
i=1

pαi

m∑
j=1

h (qj)−
m∑
j=1

qβj

m∑
i=1

h (pi)

+ [h(1) + (m− 1)h(0)]
m∑
i=1

pαi

m∑
j=1

qαj +A1(1) +
m∑
i=1

m∑
j=1

B1 (piqj)

+m (n−m)h(0)− (n−m)h(0)

m∑
j=1

qβj +m (n−m)B1(0)

∣∣∣∣∣∣ ≤ ε (4.20)

for all (p1, . . . , pm) ∈ Γm, (q1, . . . , qm) ∈ Γm. Now on interchanging the
places of pi and qj , i = 1, . . . ,m; j = 1, . . . ,m in the functional inequality
(4.20), we have∣∣∣∣∣∣

m∑
i=1

m∑
j=1

h (piqj)−
m∑
j=1

qαj

m∑
i=1

h (pi)−
m∑
i=1

pβi

m∑
j=1

h(qj)

+ [h(1) + (m− 1)h(0)]

m∑
i=1

pαi

m∑
j=1

qαj +A1(1) +

m∑
i=1

m∑
j=1

B1 (piqj)

+m (n−m)h(0)− (n−m)h(0)

m∑
i=1

pβi +m(n−m)B1(0)

∣∣∣∣∣ ≤ ε. (4.21)

Applying triangle inequality to functional inequalities (4.20) and (4.21), we
obtain∣∣∣∣∣∣
 m∑
j=1

qαj −
m∑
j=1

qβj

 m∑
i=1

h (pi)−

[
m∑
i=1

pαi −
m∑
i=1

pβi

]
m∑
j=1

h(qj)

+ (n−m)h(0)

 m∑
i=1

pβi −
m∑
j=1

qβj

∣∣∣∣∣∣ ≤ 2ε . (4.22)

Before proceeding further we assert that
m∑
j=1

qαj −
m∑
j=1

qβj 6≡ 0 on Γm. To the

contrary suppose,
m∑
j=1

qαj −
m∑
j=1

qβj = 0 for all (q1, . . . , qm) ∈ Γm. In particular

for a probability distribution
(
1
m ,

1
m , . . . ,

1
m

)
∈ Γm, we obtain

(
1
m

)α
=
(
1
m

)β
which is true only if α = β. However, as per our assumption α 6= β,
we arrive at a contradiction and so our assertion follows. Consequently,
there always exists a probability distribution (q∗1, . . . , q

∗
m) ∈ Γm for which

0 6=
m∑
j=1

q∗
α

j −
m∑
j=1

q∗
β

j on Γm. Further, in order to obtain a particular bound

for the bounded mapping in the subsequent part of the proof we make use of
this assertion by choosing (q1, . . . , qm) =

(
1
2 ,

1
2 , 0, . . . , 0

)
∈ Γm in functional

inequality (4.22) and obtain
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∣∣∣∣∣[21−α − 21−β
] m∑
i=1

h (pi)−
[
2h

(
1

2

)
+ (m− 2)h(0)

] m∑
i=1

pαi

+

[
2h

(
1

2

)
+ (n− 2)h(0)

] m∑
i=1

pβi − (n−m)h(0)21−β

∣∣∣∣∣ ≤ 2ε (4.23)

for all (p1, . . . , pm) ∈ Γm. Since for α 6= β, 21−α − 21−β 6= 0, the above
inequality can written as∣∣∣∣∣

m∑
i=1

[
h (pi)− c1pαi + c2p

β
i − c3pi

]∣∣∣∣∣ ≤ 2ε

21−α − 21−β
(4.24)

where c1 :=
2h( 1

2)+(m−2)h(0)
21−α−21−β ∈ R; c2 :=

2h( 1
2)+(n−2)h(0)
21−α−21−β ∈ R; c3 := (n−m)h(0)21−β

21−α−21−β ∈
R and (p1, . . . , pm) ∈ Γm. By Result 2.4, there exists an additive mapping
A4 : R→ R and a bounded mapping B4 : R→ R where |B4(p)| ≤ 36ε

21−α−21−β

with B4(0) = 0, such that

h(p)− c1pα + c2p
β − c3p− h(0) = A4(p) +B4(p)

for all p ∈ I. Thus, on taking c := c1 we obtain (β2)(ii) by defining additive
mapping a4 : R → R as a4(x) = A4(x) + c3x and bounded mapping b4 :

R → R as b4(x) = B4(x) + (m−n)h(0)
21−α−21−β x

β where b4(0) = 0 and |b4(x)| ≤
36ε+|m−n||h(0)|

21−α−21−β . Further for c̄ := h(1) + (m− 1)h(0), we obtain (β2)(i) from

(4.1) by defining additive mapping a3 : R → R as a3(x) = a4(x) + A1(x)
and bounded mapping b3 : R → R as b3(x) = b4(x) + B∗1(x) + c̄xα where

b3(0) = 0 and |b3(x)| ≤ 18ε[2+21−α−21−β]+|m−n||h(0)|
21−α−21−β + c̄. �

5. Comments

The objective of this section is to discuss the significance of solutions (α1)
and (α2) of (A) from the perspective of information theory.

The entropies Hβ
n : Γn → R, n = 1, 2, . . . of degree β (0 < β ∈ R, β 6= 1)

are defined as:

Hβ
n (p1, . . . , pn) = (1− 21−β)−1

[
1−

n∑
i=1

pβi

]
(5.1)

for all (p1, . . . , pn) ∈ Γn. The nonadditive entropies of degree β given by
(5.1) were introduced by Havrda and Charvát [6].

Keeping in mind the form of entropies of type (α, β) for α = β given by
(1.4), it is desirable to consider the logarithmic mapping ` : I → R as

`(p) =

{
λ log2 p if p ∈ ]0, 1]

0 if p = 0
(5.2)

where λ is an arbitrary real constant. With the help of (1.4) and (5.2), the
solution (α1) gives
n∑
i=1

f(pi) = 2c̄[1 + (21−β − 1)Hβ
n (p1, . . . , pn)]
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− λ21−βH(β,β)
n (p1, . . . , pn) + n(1−m)f(0)

and
n∑
i=1

h(pi) = c̄[1 + (21−β − 1)Hβ
n (p1, . . . , pn)]− λ21−βH(β,β)

n (p1, . . . , pn).

Thus it can be concluded that both the mappings f and h of the solution
(α1) are connected to entropies of type (α, β) )(for α = β) and entropies of
degree β if λ 6= 0 and c̄ 6= 0. Also if λ = 0, c̄ 6= 0, then both the mappings
f and h are connected to the entropies of degree β only. Moreover if λ 6= 0,
c̄ = 0, then both the mappings f and h are connected to the entropies of
type (α, β) (for α = β) only. However if λ = 0, c̄ = 0, then the summands
n∑
i=1

f(pi) and
n∑
i=1

h(pi) do not represent any form of entropies, so this case is

not of much importance.
Now, we compute the summands related to the solution (α2) of (A) and

using (1.4), we obtain
n∑
i=1

f(pi) = c(21−α − 21−β)H(α,β)
n (p1, . . . , pn) + n(1−m)f(0)

and
n∑
i=1

h(pi) = c(21−α − 21−β)H(α,β)
n (p1, . . . , pn) .

Thus it can be seen that if c 6= 0, then both the mappings f and h of the
solution (α2) are connected to entropies of type (α, β)(for α 6= β) and if

c = 0, then the summands
n∑
i=1

f(pi) and
n∑
i=1

h(pi) do not represent any form

of entropies. Consequently the case c = 0 is not of much importance.
Summarizing this section we conclude that the functional equation (A) is

emerging from information theory as it is related to entropies of type (α, β)
and entropies of degree β.

Acknowledgments. The authors are grateful to the referee(s) for his/her
valuable suggestions.
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