
Bulletin of Mathematical Analysis and Applications

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 15 Issue 3(2023), Pages 41-55

https://doi.org/10.54671/BMAA-2023-3-3

SOLUTION OF SYSTEM OF URYSOHN INTEGRAL EQUATIONS

IN α - COMPLETE EXTENDED BRANCIARI b -DISTANCE

SPACES

USHA BAG, REENA JAIN

Abstract. In this paper, an α-complete extended Branciari b-distance space

and rational α − λ − JS contractive conditions in the underlying spaces are

introduced. Further, we establish the coincidence point, common fixed points,
and uniqueness of fixed points for two pairs of mappings in new spaces under

the aforementioned contractive conditions. We illustrate the work with an

example and apply the results to determine the existence of solutions for a
system of Urysohn integral equations.

1. Introduction and preliminaries

Denote R := the set of real numbers, R+ := [0,+∞), N := the set of natural
numbers, and N∗ := N ∪ {0}.

Numerous authors [14, 15, 16, 17, 11, 3, 19, 20, 22] introduce and generalize
the concept of distance within the metric fixed point theory in a variety of ways.
Bakhtin [4] defines the concept of b-metric space, which Czerwik employs in [7, 8].
Kamran et al.[19] introduces the concept of extended b-metric space, whereas Bran-
ciari [5] extends the metric space and introduce the concept of Branciari distance
by replacing the triangle inequality property with a quadrilateral inequality.

Definition 1.1. [19] Let Ξ 6= ∅ be a set and w : Ξ2 → R+\(0, 1). A function
σe : Ξ2 → R+ is said to be an extended b-metric (σe-metric, for short) if the
following conditions are met:

(eb1) σe(κ, $) = 0 ⇐⇒ κ = $;
(eb2) σe(κ, $) = σe($,κ);
(eb3) σe(κ, $) ≤ w(κ, $)[σe(κ, υ) + σe(υ,$)],

for all κ, $, υ ∈ Ξ. The symbol (Ξ, σe) denotes a σe-metric space.

Definition 1.2. [5] Let Ξ 6= ∅ be a set and let σb : Ξ2 → R+ such that, for all
κ, $ ∈ Ξ and all distinct u, v ∈ Ξ\{κ, $},

(bd1) σb(κ, $) = 0 if and only if κ = $;
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(bd2) σb(κ, $) = σb($,κ);
(bd3) σb(κ, $) ≤ σb(κ, u) + σb(u, v) + σb(v,$).

The symbol (Ξ, σb) denotes Branciari distance space and abbreviated as “BDS.
Abdeljawad et al. [1] define an extended Branciari b-distance space by combining

the extended b-metric and the Branciari distance.

Definition 1.3. [1] Let Ξ 6= ∅ be a set and w : Ξ2 → R+\(0, 1). We say that a
function be : Ξ2 → R+ is an extended Branciari b-metric (be-metric, in short) if it
satisfies:

(B1) be(κ, $) = 0 if and only if κ = $,
(B2) be(κ, $) = be($,κ),
(B3) be(κ, $) ≤ w(κ, $)[be(κ, ν) + be(ν, %) + be(%,$)]

for all κ, $ ∈ Ξ all distinct ν, % ∈ Ξ\{κ, $}. The symbol (Ξ, be) denotes an ex-
tended Branciari b-distance space (EBbDS, in short). For w(κ, $) = 1, (Ξ, be) will
be called a Branciari b-distance space (BbDS, in short).

Example 1.4. [1]

Let Ξ = C([0, 1], R) and define be : Ξ2 → R+ by be(A, B) =
∫ 1

0
(A(t)−B(t))2dt

with w(A,B) = |A(t)|+ |B(t)|+ 2. Note that be(A, B) ≥ 0 for all A, B ∈ Ξ, and
be(A, B) = 0 if and only if A = B. Also be(A, B) = be(B, A). Hence it is clear
that (Ξ, be) is an EBbDS, but it is neither a BDS nor a metric space.

Definition 1.5. [1] Let Ξ 6= ∅ be a set endowed with an extended Branciari b-
distance be and and α : Ξ× Ξ→ R+.

(a) A sequence {κn} in Ξ converges to κ if for every ε > 0 there exists N =
N(ε) ∈ N such that be(κn,κ) < ε for all n ≥ N . For this particular case,
we write limn→∞ κn = κ.

(b) A sequence {κn} in Ξ is called Cauchy if for every ε > 0 there exists
N = N(ε) ∈ N such that be(κm,κn) < ε for all m,n ≥ N .

(c) A be-metric space (Ξ, be) is complete if every Cauchy sequence in Ξ is con-
vergent.

(d) A be-metric space (Ξ, be) is α-complete if every Cauchy sequence {κn} in
Ξ with α(κn,κn+1) ≥ 1 for all n ∈ N is convergent in Ξ.

For a self mapping =1 on a nonempty set Ξ and a point κ ∈ Ξ, we use the
following notation: =−1

1 (κ) = {$ ∈ Ξ : =1$ = κ}.
We apply the concepts discussed in [13] to an EBbDS.

Definition 1.6. Let (Ξ, be) be an EBbDS, α : Ξ×Ξ→ R+ and =1,=2,=4 : Ξ→ Ξ
be four mappings such that =1(Ξ) ⊆ =4(Ξ) and =2(Ξ) ⊆ =4(Ξ). The ordered pair
(=1,=2) is said to be:

(a) α-weakly increasing with respect to =4 if, for all κ ∈ Ξ, we have α(=1κ,=2$) ≥
1 for all $ ∈ =−1

4 (=1κ) and α(=2κ,=1$) ≥ 1 for all $ ∈ =−1
4 (=2κ).

(b) partially α-weakly increasing with respect to =4 if α(=1κ,=2$) ≥ 1 for all
$ ∈ =−1

4 (=1κ).

Definition 1.7. Let (Ξ, be) be an EBbDS, α : Ξ× Ξ → R+ and =1,=2 : Ξ → Ξ be
three mappings. The pair (=1,=2) is said to be an α-compatible if

lim
n→∞

be(=1=2κn,=2=1κn) = 0
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whenever {κn} is a sequence in Ξ such that α(κn,κn+1) ≥ 1 for all n ∈ N and

lim
n→∞

=1κn = lim
n→∞

=2κn = υ

for some υ ∈ Ξ.

Definition 1.8. Let (Ξ, be) be an EBbDS, α : Ξ× Ξ→ R+ and =1 : Ξ→ Ξ be two
mappings. We say that =1 is an α-continuous at a point κ ∈ Ξ if, for each sequence
{κn} in Ξ with κn → κ as n→∞ and α(κn,κn+1) ≥ 1 for all n ∈ N, we have

lim
n→∞

=1κn = =1κ.

Definition 1.9. Let (Ξ, be) be an EBbDS, and α : Ξ×Ξ→ R+. A mapping =1 : Ξ→
Ξ is said to be an α-dominating on Ξ if α(κ,=1κ) ≥ 1 for each κ in Ξ.

In [18], Jleli and Samet introduce a new type of control functions and generalized
the Banach contraction theorem. Nashine and Kadelburg [22] used this concept to
generalized the earlier work in b-metric spaces for two pairs of mappings. In this
paper, we extend the work of Nashine and Kadelburg to an α-complete extended
Branciari b-distance spaces.

2. Main results

In this section, the concept of an α − λ− rational contraction in an EBbDS is
introduced.

We begin with the following concepts.
The set of all functions θ : (0,∞)→ [1,∞) satisfying the conditions listed below

is denoted by Θ after [18].

(θ1) θ is strictly increasing;
(θ2) θ is continuous;
(θ3) for each sequence {τn} ⊆ (0, ∞), limn→∞ θ(τn) = 1 if and only if

limn→∞ τn = 0.

Now we are in a position to define new contractive concept.

Definition 2.1. Let (Ξ, be) be an EBbDS and an α : Ξ2 → R+ and λi : Ξ→ [0, 1)

(i = 1, 2, 3, 4, 5) with λ =
∑5
i=1 λi < 1. The mappings =1,=2,=3,=4 : Ξ → Ξ are

said to be rational-α− λ− JS-contractive, if there exist γ ∈ [0, 1), θ ∈ Θ such that
for κ, $ ∈ Ξ

α(=3κ,=4$) ≥ 1 with be(=3κ,=4$) > 0, be(=1κ,=2$) > 0 implies (2.1)

θ(w(κ, $)be(=1κ,=2$)) ≤ [θ(∆b(κ, $))]
γ

where

∆b(κ, $) = λ1(κ) be(=3κ,=4$) + λ2(κ) be(=3κ,=1κ) + λ3(κ) be(=4$,=2$)

+λ4(κ)
be(=4$,=2$)[1 + be(=3κ,=1κ)]

w(κ, $)[1 + be(=3κ,=4$)]

+λ5(κ)
be(=3κ,=1κ).be(=4$,=2$)

w(κ, $).be(=3κ,=4$)
.

We denote by J(Ξ, α, λ) the collection of all rational-α−λ−JS-contractive mappings
on (Ξ, be).
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Let Ξ be a nonempty set and =1,=2 : Ξ→ Ξ. Then denote

Fix(=1) := {κ ∈ Ξ : =1κ = κ},
C(=1,=2) := {κ ∈ Ξ : =1κ = =2κ}

CF (=1,=2) := {κ ∈ Ξ : κ = =1κ = =2κ}.

We can now state and demonstrate the outcome.

Theorem 2.2. Let (Ξ, be) be an α-complete EBbDS and an α : Ξ × Ξ → [0,∞).
Let =1,=3,=2,=4 : Ξ→ Ξ be given mappings satisfying

(H1) (=1,=3,=2,=4) ∈ J(Ξ, α, λ);
(H2) =1(Ξ) ⊆ =4(Ξ) and =2(Ξ) ⊆ =3(Ξ);
(H3) the pairs (=1,=2) and (=2,=1) are partially α-weakly increasing with respect

to =4 and =3, respectively;
(H4) α is a transitive mapping, that is, for κ, $, ϑ ∈ Ξ,

α(κ, $) ≥ 1 and α($,ϑ) ≥ 1⇒ α(κ, ϑ) ≥ 1;

(H5) =1,=2,=3 and =4 are α-continuous;
(H6) the pairs (=1,=3) and (=2,=4) are α-compatible.

Then there exists ζ∗ ∈ Ξ such that ζ∗ ∈ C(=1,=3) ∩ C(=2,=4). Moreover, if
α(=3ζ

∗,=4ζ
∗) ≥ 1 or α(=4ζ

∗,=3ζ
∗) ≥ 1, then ζ∗ ∈ C(=1,=2,=3,=4).

Proof. By using the condition (H2) and any starting point in Ξ, we can consider
the sequences {κn} and {$n} in Ξ that are defined by

$2n+1 = =4κ2n+1 = =1κ2n, $2n+2 = =3κ2n+2 = =2κ2n+1

for n ∈ N∗. Since κ1 ∈ =−1
4 (=1κ0), κ2 ∈ =−1

3 (=2κ1) and the pairs (=1,=2) and
(=2,=1) satisfy (H3), we have

α($1, $2) = α(=1κ0,=2κ1) ≥ 1, α($2, $3) = α(=2κ1,=1κ2) ≥ 1.

We obtain by repeating this process

α($n, $n+1) ≥ 1 for all n ∈ N∗. (2.2)

Step 1: First, we demonstrate that

lim
n→∞

be($n, $n+1) = 0. (2.3)

We define %k = be($k, $k+1) for all k ∈ N∗. If we suppose that %k0 = 0 for some
k0 ∈ N∗, then $k0 = $k0+1, and the proof is complete. Assume that $n 6= $n+1

for all n ≥ 0. Then, for all n ∈ N∗, %n > 0.
Assume n is an odd number. Since α($n, $n+1) ≥ 1, we can deduce from

(=1,=2,=3,=4) ∈ J(Ξ, α, λ) that the condition (2.1) implies that
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θ(w(κn−1,κn)%n) = θ(w(κn−1,κn)be(=1κn−1,=2κn))

≤

 θ


λ1(κn−1)be(=3κn−1,=4κn) + λ2(κn−1)be(=3κn−1,=1κn−1)

+λ3(κn−1)be(=4κn,=2κn)

+λ4(κn−1) be(=4κn,=2κn)[1+be(=3κn−1,=1κn−1)]
w(κn−1,κn)[1+be(=3κn−1,=4κn)]

+λ5(κn−1) be(=3κn−1,=1κn−1).be(=4κn,=2κn)
w(κn−1,κn).be(=3κn−1,=4κn)



γ

=

 θ

 λ1($n−1)be($n−1, $n) + λ2($n−1)be($n−1, $n)

+λ3($n−1)be($n, $n+1) + λ4($n−1) be($n,$n+1)[1+be($n−1,$n)]
w($n−1,$n)[1+be($n−1,$n)]

+λ5($n−1) be($n−1,$n).be($n,$n+1)
w($n−1,$n).be($n−1,$n)



γ

≤

 θ

 λ1($n−1)be($n−1, $n) + λ2($n−1)be($n−1, $n)
+λ3($n−1)be($n, $n+1) + λ4($n−1)be($n, $n+1)

+λ5($n−1)be($n, $n+1)

 γ

≤

 θ

 λ1($n−1)%n−1 + λ2($n−1)%n−1

+λ3($n−1)%n + λ4($n−1)%n
+λ5($n−1)%n

 γ . (2.4)

Since θ is strictly rising and γ < 1, we conclude that

w($n−1, $n)%n ≤ λ1($n−1)%n−1 + λ2($n−1)%n−1

+ λ3($n−1)%n + λ4($n−1)%n + λ5($n−1)%n. (2.5)

If %n−1 ≤ %n for some n ∈ N, then from (2.5), we have w($n, $n+1)%n ≤ λ($n−1)%n,
which is a contradiction since w ≥ 1 and λ < 1. Thus %n ≤ %n−1 for all n ∈ N
and the sequence {%n} is a decreasing sequence of real numbers. As a result, there
exists ζ such that

lim
n→∞

%n = ζ.

From (2.4), we have

θ(w($n−1, $n)%n) ≤ (θ(%n−1))γ ≤ (θ(%n−2))γ
2

.

Thus,

1 ≤ (θ(%n−1))γ ≤ (θ(%n−2))γ
2

≤ .. ≤ (θ(%0))γ
n

.

Using the limit in the preceding relation, we get

lim
n→∞

θ(%n−1) = 1

and by the property (θ3) of θ,

lim
n→∞

%n−1 = 0.

Step 2: In this step, we will demonstrate that {$n} is a Cauchy sequence, that is,
for m > n, we prove

lim
n,m→∞

be($n, $m) = 0.
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Using (ebb3), we have

be($n, $m)

≤ w($n, $m)[be($n, $n+1) + be($n+1, $n+2) + be($n+2, $m)]

≤ w($n, $m)be($n, $n+1) + w($n, $m)be($n, $n+1) +

w($n, $m)be($n+2, $m)

≤ w($n, $m)be($n, $n+1) + w($n, $m)be($n, $n+1) +

w($n, $m)w($n+2, $m)[be($n+2, $n+3) + be($n+3, $n+4)

+be($n+4, $m)]

≤ w($n, $m)be($n, $n+1) + w($n, $m)be($n, $n+1) +

w($n, $m)w($n+2, $m)be($n, $n+1) + w($n, $m)

w($n+2, $m)be($n, $n+1) + w($n, $m)w($n+2, $m)be($n+4, $m)

...

≤ w($n, $m)be($n, $n+1) + w($n, $m)be($n, $n+1) +

w($n, $m)w($n+2, $m)be($n, $n+1) + w($n, $m)

w($n+2, $m)be($n, $n+1) + . . .+

w($n, $m)w($n+2, $m) . . . w($m−2, $m)be($n, $n+1) +

w($n, $m)w($n+2, $m) . . . w($m−2, $m)be($n, $n+1)

≤ w($n, $m)be($n, $n+1) + w($n, $m)w($n+1, $m)be($n, $n+1) +

w($n, $m)w($n+1, $m)w($n+2, $m)be($n, $n+1) + w($n, $m)

w($n+1, $m)w($n+2, $m)w($n+3, $m)be($n, $n+1) + . . .+

w($n, $m)w($n+1, $m)w($n+2, $m) . . . w($m−2, $m)be($n, $n+1) +

w($n, $m)w($n+1, $m)w($n+2, $m) . . . w($m−2, $m)w($m−1, $m)

be($n, $n+1).

Applying n,m→∞ and using (2.3), we get

lim
n,m→∞

be($n, $m) = 0.

Hence {$n} is a Cauchy sequence.
Due to the validity of the inequality (2.2) and the α-completeness of EBbDS

(Ξ, be), there exists a ζ∗ ∈ Ξ such that

lim
n→∞

be($n, ζ
∗) = 0,

and so

lim
n→∞

be($2n+1, ζ
∗) = lim

n→∞
be(=4κ2n+1, ζ

∗) = lim
n→∞

be(=1κ2n, ζ
∗) = 0 (2.6)

and

lim
n→∞

be($2n+2, ζ
∗) = lim

n→∞
be(=3κ2n+2, ζ

∗) = lim
n→∞

be(=2κ2n+1, ζ
∗) = 0. (2.7)

From (2.6) and (2.7), we have =1κ2n → ζ∗ and =3κ2n → ζ∗ as n → ∞. Since
(=1,=3) is an α-compatible, by (2.2), we have

lim
n→∞

be(=3=1κ2n,=1=3κ2n) = 0. (2.8)
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By (2.2), the α-continuity of =3, =1, we obtain

lim
n→∞

be(=3=1κ2n,=3ζ
∗) = 0 = lim

n→∞
be(=1=3κ2n,=1ζ

∗). (2.9)

By (B3) property, we have

be(=3ζ
∗,=1ζ

∗)

≤ w(=3ζ
∗,=1ζ

∗)[be(=3ζ
∗,SJκ2n) + be(SJκ2n,JSκ2n) + be(JSκ2n,=1ζ

∗)]

for all n ∈ N∗. Passing to the limit as n → ∞ in the above inequality and using
(2.8)–(2.9), we obtain be(=3ζ

∗,=1ζ
∗) ≤ 0.

As a result, it can be inferred that be(=3ζ
∗,=1ζ

∗) = 0 meaning that ζ∗ is a
coincidence point between =1 and =3. In a similar manner, we can demonstrate
that ζ∗ is a coincidence point for both =2 and =4.

This implies that be(=3ζ
∗,=1ζ

∗) = 0 and so ζ∗ ∈ C(=1,=3), that is, ζ∗ is a
coincidence point of =1 and =3. Similarly, we can prove that ζ∗ is also a coincidence
point of =2 and =4.

Finally, we show that ζ∗ is a coincidence point of =1,=3,=2 and =4 if and only
if

α(=4ζ
∗,=3ζ

∗) ≥ 1 or α(=3ζ
∗,=4ζ

∗) ≥ 1.

On the contrary, suppose that =1ζ
∗ 6= =2ζ

∗. Then, from (2.1), we have

θ(w(ζ∗, ζ∗)be(=1ζ
∗,=2ζ

∗))

≤

 θ

 λ1(ζ∗) be(=3ζ
∗,=4ζ

∗) + λ2(ζ∗) be(=3ζ
∗,=1ζ

∗)

+λ3(ζ∗) be(=4ζ
∗,=2ζ

∗) + λ4(ζ∗) be(=4ζ
∗,=2ζ

∗)[1+be(=3ζ
∗,=1ζ

∗)]
w(ζ∗,ζ∗)[1+be(=3ζ∗,=4ζ∗)]

+λ5(ζ∗) be(=3ζ
∗,=1ζ

∗).be(=4ζ
∗,=2ζ

∗)
w(ζ∗,ζ∗).be(=3ζ∗,=4ζ∗)



γ

≤ [θ(λ1(ζ∗) be(=1ζ
∗,=2ζ

∗))]γ . (2.10)

Since θ is strictly rising and γ < 1, we conclude that

w(ζ∗, ζ∗)be(=1ζ
∗,=2ζ

∗) ≤ λ1(ζ∗) be(=1ζ
∗,=2ζ

∗))

which is a contradiction, since w ≥ 1 and λ < 1. Thus =1ζ
∗ = =2ζ

∗, and hence
ζ∗ ∈ C(=1,=3,=2,=4). �

Under certain additional assumptions, the previous result may still be valid for
=1,=3,=2,=4 that are not necessarily α-continuous. The following is the result.

Theorem 2.3. Let (Ξ, be) be an α-complete EBbDS with coefficient b ≥ 1, let
α : Ξ × Ξ → R+ and =1,=3,=2,=4 : Ξ → Ξ be given mappings. Suppose that the
assumptions (H1)–(H4) of Theorem 2.2 hold, as well as:

(Ĥ5) =4(Ξ) and =3(Ξ) are b-closed subsets of Ξ;

(Ĥ6) the pairs (=1,=3) and (=2,=4) are weakly compatible;
(H7) Ξ is an α-regular, i.e., if {$n} is a sequence in Ξ with α($n, $n+1) ≥ 1

for n ∈ N and $n → $∗ as n→∞, then α($n, $
∗) ≥ 1 for n ∈ N.

Then there exists ζ∗ ∈ Ξ such that ζ∗ ∈ C(=1,=3) ∩ C(=2,=4). Moreover, if
α(=3ζ

∗,=4ζ
∗) ≥ 1 or α(=4ζ

∗,=3ζ
∗) ≥ 1, then ζ∗ ∈ C(=1,=3,=2,=4).

Proof. In the line of proof of Theorem 2.2, we obtain a b-Cauchy sequence {$n} in
an α-complete EBbDS (Ξ, be). Hence, there exists ζ∗ ∈ Ξ such that

lim
n→∞

be($n, ζ
∗) = 0.
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Combining hypothesis (Ĥ5) for =4(Ξ) and {$2n+1} ⊆ =4(Ξ), we have ζ∗ ∈ =4(Ξ).
Hence there exists ξ ∈ Ξ such that ζ∗ = =4ξ and

lim
n→∞

be($2n+1,=4ξ) = lim
n→∞

be(=4κ2n+1,=4ξ) = 0.

Similarly, using hypothesis (Ĥ5) for =3(Ξ) and {$2n} ⊆ =3(Ξ), we have ζ∗ ∈
=3(Ξ). Hence there exists ζ ∈ Ξ such that ζ∗ = =4ξ = =3ζ and

lim
n→∞

be($2n,=3ζ) = lim
n→∞

be(=3κ2n,=4ζ) = 0.

Additionally, we demonstrate that ζ∗ is a coincidence point of =1 and =3. Since
=4κ2n+1 → ζ∗ = =3ζ as n → ∞, it follows from the hypothesis (H7), that is,
α-regularity of Ξ that α(=4κ2n+1,=3ζ) ≥ 1.

Contrarily, suppose that =1ζ 6= ζ∗. Then, derived from (2.1), we have

θ(w(ζ,κ2n+1)be(=1ζ,=2κ2n+1))

≤

 θ


λ1(ζ) be(=3ζ,=4κ2n+1) + λ2(ζ) be(=3ζ,=1ζ)
+λ3(ζ) be(=4κ2n+1,=2κ2n+1)

+λ4(ζ) be(=4κ2n+1,=2κ2n+1)[1+be(=3ζ,=1ζ)]
w(ζ,κ2n+1)[1+be(=3ζ,=4κ2n+1)]

+λ5(ζ) be(=3ζ,=1ζ).be(=4κ2n+1,=2κ2n+1)
w(ζ,κ2n+1).be(=3ζ,=4κ2n+1)



γ

. (2.11)

Since limn→∞ be(=4κ2n+1,=2κ2n+1) = 0,

θ(w(ζ,κ2n+1)be(=1ζ, ζ
∗)) ≤ [θ(be(ζ

∗,=1ζ))]γ . (2.12)

Since θ is strictly rising and γ < 1, we conclude that

w(ζ,κ2n+1)be(=1ζ, ζ
∗)) ≤ θ(be(ζ∗,=1ζ))

a contradiction, except when be(=1ζ, ζ
∗) = 0. Hence ζ∗ = =1ζ and so =3ζ = ζ∗ =

=1ζ. Owing (Ĥ6) for the pair (=1,=3), we have

=1ζ
∗ = =1=3ζ = =3=1ζ = =3ζ

∗.

Consequently, ζ∗ is a point of coincidence for =1 and =3. Similarly, we can deter-
mine that ζ∗ is a point of coincidence for the pair (=2,=4). Using arguments, similar
to those in the previous theorem, we can demonstrate that ζ∗ ∈ C(=1,=3,=2,=4).

�

2.1. Results on common fixed point.

Theorem 2.4. According to the hypotheses of Theorem 2.2 (or Theorem 2.3),
=1,=3,=2,=4 have a common fixed point in Ξ if the following condition is met:

(H8) =3 or =4 is an α-dominating map.

Proof. From Theorem 2.2 (or Theorem 2.3), there exists a ζ∗ ∈ Ξ such that ζ∗ ∈
C(=1,=3,=2,=4). Since the pair (=1,=3) is weakly compatible, we have =1=3ζ

∗ =
=3=1ζ

∗. Let µ∗ = =1ζ
∗ = =3ζ

∗. Therefore, we have =1µ
∗ = =3µ

∗. Similarly,
since the pair (=2,=4) is weakly compatible, we have =2=4ζ

∗ = =4=2ζ
∗. Let

µ∗ = =2ζ
∗ = =4ζ

∗. Therefore, we have =2µ
∗ = =4µ

∗.
An α-dominating of mapping =3 (or =4),

α(µ∗,=3µ
∗) = α(=4ζ

∗,=3µ
∗) ≥ 1.

If µ∗ = ζ∗, then ζ∗ is a common fixed point of =1,=3,=2 and =4. If µ∗ 6= ζ∗, then,
using α(=4ζ

∗,=3µ
∗) ≥ 1, from (2.1), we have
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θ(w(ζ∗, µ∗)be(=1ζ
∗,=2µ

∗))

≤

 θ


λ1(ζ∗) be(=3ζ

∗,=4µ
∗) + λ2(ζ∗) be(=3ζ

∗,=1ζ
∗)

+λ3(ζ∗) be(=4µ
∗,=2µ

∗)

+λ4(ζ∗) be(=4µ
∗,=2µ

∗)[1+be(=3ζ
∗,=1ζ

∗)]
w(ζ∗,µ∗)[1+be(=3ζ∗,=4µ∗)]

+λ5(ζ∗) be(=3ζ
∗,=1ζ

∗).be(=4µ
∗,=2µ

∗)
w(ζ∗,µ∗).be(=3ζ∗,=4µ∗)



γ

(2.13)

implies that

θ(w(ζ∗, µ∗)be(µ
∗,=2µ

∗)) ≤ [θ(λ1(ζ∗) be(µ
∗,=2µ

∗))]γ .

Since θ is strictly rising and γ < 1, we conclude that

w(ζ∗, µ∗)be(µ
∗,=2µ

∗)) ≤ λ1(ζ∗) be(µ
∗,=2µ

∗))

a contradiction. Hence µ∗ = =2µ
∗ which implies that µ∗ is a common fixed point

of =1,=3,=2 and =4. �

2.2. Uniqueness of common fixed point. We will consider the following hy-
pothesis to ensure the uniqueness of the common fixed point for the pair (=1,=3)
of mappings.

(H9) : for all κ, $ ∈ CF (=3,=4), α(κ, $) ≥ 1 or α($,κ) ≥ 1.

Theorem 2.5. If the condition (H9) is true for the pair (=4,=3) and add to the
hypotheses of Theorem 2.4, the uniqueness is attained.

Proof. Let’s pretend that ξ∗ is another fixed point shared by =1,=3,=2 and =4 and
that, in contrast to what will be proved, be(=1ζ

∗,=2ξ
∗) = be(ζ

∗, ξ∗) > 0. In order
to prove that ζ∗ 6= ξ∗ ∈ CF (=3,=4), we use (H9).

α(=4ζ
∗,=3ξ

∗) = α(ζ∗, ξ∗) ≥ 1. (2.14)

Now we can replace κ by ζ∗ and $ by ξ∗ in the condition (2.1), and we get easily
with (2.14)

θ(w(ζ∗, ξ∗)be(=1ζ
∗,=2ξ

∗))

≤

 θ

 λ1(ζ∗)be(=3ζ
∗,=4ξ

∗) + λ2(ζ∗)be(=3ζ
∗,=1ζ

∗)

+λ3(ζ∗)be(=4ξ
∗,=2ξ

∗) + λ4(ζ∗) be(=4ξ
∗,=2ξ

∗)[1+be(=3ζ
∗,=2ξ

∗)
w(ζ∗,ξ∗)[1+be(=3ζ∗,=4ξ∗)]

+λ5(ζ∗) be(=3ζ
∗,=1ζ

∗).be(=4ξ
∗,=2ξ

∗)
w(ζ∗,ξ∗)).be(=3ζ∗,=4ξ∗)



γ

≤ [θ(λ1(ζ∗)be(ζ
∗, ξ∗))]

γ
.

As θ is strictly increasing and γ < 1, we get

w(ζ∗, ξ∗)be(ζ
∗, ξ∗) ≤ λ1(ζ∗)be(ζ

∗, ξ∗),

a contradiction and hence ζ∗ = ξ∗. �
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3. Illustration

Example 3.1. Consider Ξ = [0, 1] and define be : Ξ2 → R+ by be(κ, $) = |κ−$|2
and let α : Ξ× Ξ→ R+ be given as

α(κ, $) =

{
κ +$, if κ ≥ $
0, otherwise.

Then (Ξ, be) is an α-complete EBbDS with w(κ, $) = κ + $ + 2.5 but neither a
BDS (Ξ, b) nor a metric space (Ξ, d). For instances

be(0, 1) = 1 6≤ 0.5 = be(0, 0.5) + be(0.5, 1)

and

be(0, 1) = 1 6≤ 0.4902 = be(0, 0.5) + be(0.5, 0.99) + be(0.99, 1)

but

be(κ, $) = |κ −$|2

= |κ − µ+ µ− υ + υ −$|2

≤ |κ − µ|2 + |µ− υ|2 + |υ −$|2 + 2|κ − µ||µ− υ|
+ 2|µ− υ||υ −$|+ 2|υ −$||κ − µ|

≤
(
κ +$ +

5

2

)
[|κ − µ|2 + |µ− υ|2 + |υ −$|2]

= w(κ, $)[be(κ, µ) + be(µ, υ) + be(υ,$)]

for all κ, $, µ, υ ∈ Ξ.
Consider the mappings =1,=3,=2,=4 : Ξ→ Ξ defined by:

=1κ =

{
0, if 0 ≤ κ ≤ 1/4

1/16, if 1/4 < x ≤ 1;
=2κ = 0 for 0 ≤ κ ≤ 1;

=4κ =

{
κ, if 0 ≤ κ ≤ 1/4

1, if 1/4 < κ ≤ 1;
=3κ =


0, if x = 0

1/4, if 0 < κ ≤ 1/4

1, if 1/4 < κ ≤ 1.

All but one of the necessary conditions for Theorem 2.5 to hold are immediately
apparent is (H1).

Take θ ∈ Θ defined by θ(τ) = exp(τexp(τ)) (τ > 0) and γ = 9
10 , λi : Ξ →

[0, 1) by λi(κ) = 8+κ
50 for all κ ∈ Ξ, i ∈ {1, 2, 3, 4, 5} so that λ =

∑5
i=1 λi =

[ 8
50 ,

45
50 ] < 1. We will examine the contractual condition specified by (2.1), that is,

be(=1κ,=1$) > 0, be(=3κ,=4$) > 0. Consider the cases below:
(1) 1/4 < κ ≤ 1, $ = 0. Then α(=3κ,=4$) = 1, be(=1κ,=2$) = (1/16)2 6= 0,

be(=3κ,=4$) = 1 6= 0, ∆b(κ, $) ≥ 2.9532, and then (2.1) holds true as

θ

(
8 + κ

50
be(=1κ,=2$)

)
= 1.01395462 ≤ 2.9279 = (θ(∆b(κ, $)))

9
10

(2) 1/4 < κ ≤ 1, 0 < $ ≤ 1/4. Then α(=3κ,=4$) = (1, 5/4] ≥ 1, be(=1κ,=2$) =
(1/16)2 6= 0, be(=3κ,=4$) = 3/4 6= 0, ∆b(κ, $) ≥ 1.289. In this case (2.1) reduces
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to

θ

(
8 + κ

50
be(=1κ,=2$)

)
= 1.01395462 ≤ 1.3984 = (θ(∆b(κ, $)))

9
10

and holds true for the chosen value of γ. Other cases are not true as α(=3κ,=4$) �
1 with be(=3κ,=4$) = 0.

4. System of Urysohn integral equations

In this section, we discuss the existence and uniqueness of common solution of
following system of Urysohn integral equations:

κ(τ) = ℘1(τ) +
∫ T

0
Φ1(τ, s,κ(s)) ds, τ ∈ [0, T ],

κ(τ) = ℘2(τ) +
∫ T

0
Φ2(τ, s,κ(s)) ds, τ ∈ [0, T ],

κ(τ) = ℘3(τ) +
∫ T

0
Φ3(τ, s,κ(s)) ds, τ ∈ [0, T ],

κ(τ) = ℘4(τ) +
∫ T

0
Φ4(τ, s,κ(s)) ds, τ ∈ [0, T ],

(4.1)

where T > 0, τ ∈ [0, T ], and ℘i : [0, T ]→ R and Φi : [0, T ]2×R→ R (i ∈ {1, 2, 3, 4})
are given mappings.

Let I = [0, T ] and Ξ := C(I,R) be equipped with the usual maximum norm,
i.e., ‖κ‖Ξ = maxτ∈I |κ(τ)|, for κ ∈ C(I,R). Then (Ξ, ‖·‖Ξ) is a complete metric
space. The distance in Ξ is given by

d∞(κ, $) = max
τ∈I
|κ(τ)−$(τ)| for all κ, $ ∈ Ξ.

Moreover, we can define a EBbDS be on Ξ by be(κ, $) = [d∞(κ, $)]p for some
p > 1 and all κ, $ ∈ Ξ. Since (Ξ, d∞) is complete, we deduce that (Ξ, be) is a
complete EBbDS with w(κ, $) = κ+$+ 2p−1. Throughout this section, for each
i ∈ {1, 2, 3, 4} and Φi in (4.1), we will denote by Ωi : Ξ → Ξ the operator defined
by:

Ωiκ(τ) :=

∫ T

0

Φi(τ, s,κ(s)) ds, τ ∈ Ξ, τ ∈ I.

We will also use the following partial order on Ξ:

κ � $ ⇐⇒ κ(τ) ≤ $(τ) for all τ ∈ [0, T ].

Theorem 4.1. Assume the following hypotheses are correct:
(U1): There exist λi : Ξ → [0, 1) (i = {1, 2, 3, 4, 5}), γ ∈ [0, 1) and p > 1 such

that for all κ, $ ∈ Ξ, 
2κ − Ω3κ − ℘3 � 2$ − Ω4$ − ℘4

or

2κ − Ω4κ − ℘4 � 2$ − Ω3$ − ℘3

(4.2)

implies that

(κ +$ + 2p−1) max
τ∈I
W1(κ, $)(τ) exp{(κ +$ + 2p−1) max

τ∈I
W1(κ, $)(τ)}

≤ γ2 max
τ∈I

∆b(κ, $)(τ) exp{max
τ∈I

∆b(κ, $)(τ)},
(4.3)
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where

∆b(κ, $)(τ) = λ1(κ)W2(κ, $)(τ) + λ2(κ)W3(κ, $)(τ) + λ3(κ)W4(κ, $)(τ)

+ λ4(κ)
W4(κ, $)(τ)[1 +W5(κ, $)(τ)]

w(κ, $)[1 +W2(κ, $)(τ)]
+ λ5(κ)

W5(κ, $)(τ).W4(κ, $)(τ)

w(κ, $)W2(κ, $)(τ)

and

W1(κ, $)(τ) = |Ω1κ(τ) + ℘1(τ)− Ω2$(τ)− ℘2(τ)|p

W2(κ, $)(τ) = |2κ(τ)− Ω3κ(τ)− ℘3(τ)− 2$(τ) + Ω4$(τ) + ℘4(τ)|p

W3(κ, $)(τ) = |Ω1κ(τ) + ℘1(τ)− 2κ(τ) + Ω3κ(τ) + ℘3(τ)|p

W4(κ, $)(τ) = |Ω2$(τ) + ℘2(τ)− 2$(τ) + Ω4$(τ) + ℘4(τ)|p

W5(κ, $)(τ) = |2κ(τ)− Ω3κ(τ)− ℘3(τ)− Ω1κ(τ)− ℘1(τ)|p.
(U2): For each κ ∈ Ξ, there is some $ ∈ Ξ such that

Ω1κ + ℘1 = 2$ − Ω4$ − ℘4

and for each κ ∈ Ξ there is some $ ∈ Ξ such that

Ω2κ + ℘2 = 2$ − Ω3$ − ℘3.

(U3): For all κ, $ ∈ Ξ,

2$ − Ω4$ − ℘4 = Ω1κ + ℘1 =⇒ Ω1κ + ℘1 � Ω2$ + ℘2,

and for all κ, $ ∈ Ξ,

2$ − Ω3$ − ℘3 = Ω2κ + ℘2 =⇒ Ω2κ + ℘2 � Ω1$ + ℘1.

(U4): The mappings ℘i : I → R and Φi : [0, T ]2 × R → R (i ∈ {1, 2, 3, 4}) are
continuous.

(U51): If {κn} is a sequence in Ξ such that κn � κn+1 for all n ∈ N and $ ∈ Ξ
is such that

max
t∈I
|Ω1κn(τ) + ℘1(τ)−$(τ)|p → 0 as n→∞,

max
τ∈I
|2κn(τ)− Ω3κn(τ)− ℘3(τ)−$(τ)|p → 0 as n→∞,

then

max
τ∈I
|[℘1(τ) + Ω1(2κn(τ)− Ω3κn(τ)− ℘3(τ))]

− [2(Ω1κn(τ) + ℘1(τ))− Ω3(Ω1κn(τ) + ℘1(τ))− ℘3(τ)]|p → 0 as n→∞.
(U52): If {κn} is a sequence in Ξ such that κn � κn+1 for all n ∈ N and $ ∈ Ξ

is such that

max
τ∈I
|Ω2κn(τ) + ℘2(τ)−$(τ)|p → 0 as n→∞,

max
τ∈I
|2κn(τ)− Ω4κn(τ)− ℘4(τ)−$(τ)|p → 0 as n→∞,

then

max
τ∈I
|[℘2(τ) + Ω2(2κn(τ)− Ω4κn(τ)− ℘4(τ))]

− [2(Ω2κn(τ) + ℘2(τ))− Ω4(Ω2κn(τ) + ℘2(τ))− ℘4(τ)]|p → 0 as n→∞.
(U6): κ � 2κ − Ω3κ − ℘3 for all κ ∈ Ξ or κ � 2κ − Ω4κ − ℘4 for all κ ∈ Ξ.

Then the system (4.1) has a solution. Moreover, if
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(U7): for any two solutions κ∗, $∗ of the system (4.1), κ∗ � $∗ or $∗ � κ∗
holds,

then the solution of (4.1) is unique.

Proof. Consider four mappings =1,=2,=3,=4 : Ξ→ Ξ by

=1κ(τ) = Ω1κ(τ) + ℘1(τ) =

∫ T

0

Φ1(τ, s,κ(s)) ds+ ℘1(τ)

=2κ(τ) = Ω2κ(τ) + ℘2(τ) =

∫ T

0

Φ2(τ, s,κ(s)) ds+ ℘2(τ)

=3κ(τ) = 2κ(τ)− Ω3κ(τ)− ℘3(τ) = 2κ(τ)−
∫ T

0

Φ3(τ, s,κ(s)) ds− ℘3(τ)

=4κ(τ) = 2κ(τ)− Ω4κ(τ)− ℘4(τ) = 2κ(τ)−
∫ T

0

Φ4(τ, s,κ(s)) ds− ℘4(τ).

(4.4)

Define also a function α : Ξ2 → R+ by

α(κ, $) =

{
1, if κ(τ) ≤ $(τ) for all τ ∈ I
0, otherwise.

We will check the validity of conditions (H1)–(H6) of Theorem 2.2 and (H8) of
Theorem 2.4, as well as (under assumption (U7)), (H9) of Theorem 2.5.

(H1). By the definition (4.4) of mappings =1,=2,=3,=4 and the definition of an
EBbDS be, we have that, for all κ, $ ∈ Ξ,

be(=1κ,=2$) = max
τ∈[0,T ]

|Ω1κ(τ) + ℘1(τ)− Ω2v(τ)− ℘2(τ)|p

be(=3κ,=4$) = max
τ∈[0,T ]

|2κ(τ)− Ω3κ(τ)− ℘3(τ)− 2$(τ) + Ω4$(τ) + ℘4(τ)|p

be(=1$,=3κ) = max
τ∈[0,T ]

|Ω1κ(τ) + ℘1(τ)− 2κ(τ) + Ω3κ(τ) + ℘3(τ)|p

be(=2$,=4$) = max
τ∈[0,T ]

|Ω2$(τ) + ℘2(τ)− 2$(τ) + Ω4$(τ) + ℘4(τ)|p

be(=3κ,=1κ) = max
τ∈[0,T ]

|2κ(τ)− Ω3κ(τ)− ℘3(τ)− Ω1κ(τ)− ℘1(τ)|p.

Suppose that α(=3κ,=4$) ≥ 1. Then, =3κ � =4$, i.e., the assumption (4.2) of
(U1) holds, and consequently, so does its conclusion (4.3). This, however, indicates
that the implication (2.1) holds true for the function that the implication (2.1)

is valid for the function θ ∈ Θ given as θ(τ) = exp{
√
τ exp(τ)}. Thus, (H1) is

demonstrated.
(H2) is a direct consequence of the assumption (U2).
(H3). Let κ ∈ Ξ and $ ∈ =−1

4 (=1κ). Then 2$ − Ω4$ − ℘4 = Ω1κ + ℘1, and
by the assumption (U3), Ω1κ+℘1 � Ω2$+℘2 holds. That is =1κ � =2$, and so
α(=1κ,=2$) ≥ 1. As a result, the pair (=1,=2) is a partially α-weakly increasing
w.r.t. =4. Similar to this, the pair (=2,=1) is a partially α-weakly increasing w.r.t.
=3.

(H4) is easily derived from the definition of mapping α, and (H5) is derived from
the assumption (U4).
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(H6). Let {κn} be a sequence in Ξ such that α(κn,κn+1) ≥ 1, i.e., κn � κn+1

for n ∈ N, and let limn→∞=1κn = limn→∞ =3κn = $ in (Ξ, be), i.e.,

max
τ∈I
|Ω1κn(τ) + ℘1(τ)−$(τ)|p → 0 as n→∞,

max
τ∈I
|2κn(τ)− Ω3κn(τ)− ℘3(τ)−$(τ)|p → 0 as n→∞.

By the assumption (U51), it follows that

max
τ∈I
|[℘1(τ) + Ω1(2κn(τ)− Ω3κn(τ)− ℘3(τ))]

− [2(Ω1κn(τ) + ℘1(τ))− Ω3(Ω1κn(τ) + ℘1(τ))− ℘3(τ)]|p → 0 as n→∞,

i.e., limn→∞ be(=1=3κn,=3=1κn) = 0. Hence, the pair (=1,=3) is an α-compatible.
Similarly, it follows from (U52) that the pair (=2,=4) is an α-compatible.

The condition (H8) (that =3 or =4 is an α-dominating map) follows directly
from the assumption (U6).

As a result, all of the conditions of Theorem 2.4 are met, and the mappings
=1,=2,=3,=4 have a common fixed point κ∗ ∈ Ξ. It is obvious that κ∗ is a
solution of the system (4.1).

Finally, if the assumption (U7) is satisfied, the condition (H9) of Theorem 2.5
holds, and thus the solution of (4.1) is unique. �

Conclusion

We introduce a notion of an α-complete extended Branciari b-distance space and
rational α− λ− JS-contractive conditions, and derive coincidence point, common
fixed points, and uniqueness of fixed points for two pairs of mappings. We use
these findings to obtain the solution of a system of Urysohn integral equations. An
example is given to illustrate the result.
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