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FIXED POINT RESULTS FOR MULTIVALUED MAPPINGS

INVOLVING Q-FUNCTION IN QUASI-METRIC SPACES

ABDUL LATIF, NADIAH ZAFER ALSHEHRI, MONAIRAH OMAR ALANSARI

Abstract. In this paper, we present some new results on the existence of

fixed points for multivalued mappings endowed with Q-function in the setting

of quasi-metric space. Examples are also provided in support of our main
results. We conclude that our results in fact either improve or generalize some

classical metric fixed point results as well.

1. Introduction And Preliminaries

Let (Z, d) be a metric space. We denote 2Z a collection of nonempty subsets
of Z, Cl(Z) a collection of nonempty closed subsets of Z, CB(Z) a collection of
nonempty closed bounded subsets of Z, H the Hausdorff-Pompeiu metric on CB(Z)
induced by the metric d, that is; for any A,B ∈ CB(Z),

H(A,B) = max

{
sup
a∈A

d(a,B), sup
b∈B

d(b, A)

}
,

where d(a,B) = infb∈B d(a, b) and R+ = [0,∞). An element z ∈ Z is called
a fixed point of a multivalued mapping Γ : Z → 2Z if z ∈ Γ(z). We denote
Fix(Γ) = {z ∈ Z : z ∈ Γ(z)}. A sequence {zn} in Z is called an orbit of Γ at
z0 ∈ Z if zn ∈ Γ(zn−1) for all n ≥ 1. A real-valued function β on Z is called a
lower semicontinuous if for any sequence {zn} ⊂ Z with zn → z ∈ Z imply that
β(z) ≤ lim inf

n→∞
β(zn). A function χ : R+ → [0, 1) is called MT -function (Mizoguchi-

Takahashi function) if lim sup
r→t+

χ(r) < 1 for all t ∈ R+. It is has been observed that

a function χ is MT -function if and only if for any strictly decreasing sequence {zn}
in R+, we have 0 ≤ sup

n
χ(zn) < 1. For more characterizations of MT -function, see;

[13].
In the sequel till Theorem 1.5, we consider (Z, d) a complete metric space.

Using the concept of Hausdorff-Pompeiu metric, Nadler [28] established the fol-
lowing multivalued version of the well known Banach contraction principle [4].
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Theorem 1.1. ([28]) Let Γ : Z → CB(Z) be a multivalued contraction mapping
(that is; for a fixed constant h ∈ (0, 1) and for every z1, z2 ∈ Z, H(Γ(z1),Γ(z2)) ≤
h d(z1, z2)). Then Fix(Γ) 6= ∅.

Using MT -function, Mizoguchi and Takahashi [27] established a real generaliza-
tion of Theorem 1.1.

Theorem 1.2. ([27]) Let Γ : Z → CB(Z) be a multivalued mapping such that for
every z1, z2 ∈ Z,

H(Γ(z1),Γ(z2)) ≤ χ(d(z1, z2))d(z1, z2),

where χ is an MT -function. Then, Fix(Γ) 6= ∅.

A number of fruitful various generalizations of these classical results have been
appeared in the literature. For example, see; [10, 12, 27] and references therein.
Some interesting fixed point results have been appeared without using the Hausdorff-
Pompeiu metric. For example, see; [7, 9, 14] and others. In [14], Feng and Liu
proved the following result without using the concept of Hausdorff-Pompeiu met-
ric, which extends Theorem 1.1.

Theorem 1.3. ([14]) Let Γ : Z → Cl(Z) be a multivalued mapping and let a
function β on Z with β(z) = d(z,Γ(z)) be a lower semicontinuous. Then Fix(Γ) 6=
∅ provided that there are some constants c, h ∈ (0, 1), h < c such that for every
z1 ∈ Z, there is z2 ∈ Iz1c satisfying

d(z2,Γ(z2)) ≤ hd(z1, z2),

where Iz1c = {z2 ∈ Γ(z1) : cd(z1, z2) ≤ d(z1,Γ(z1))}.

Later, Klim and Wardowski [19] established a generalization of Theorem 1.3 as
follows.

Theorem 1.4. ([19]) Let Γ : Z → Cl(Z) be a multivalued mapping and let a
function β on Z with β(z) = d(z,Γ(z)) be a lower semicontinuous. Then, Fix(Γ) 6=
∅ provided that there is some c ∈ (0, 1) such that for every z1 ∈ Z, there is z2 ∈ Γ(z1)
satisfying

cd(z1, z2) ≤ d(z1,Γ(z1)) and d(z2,Γ(z2)) ≤ χ(d(z1, z2))d(z1, z2)

where χ is a function from R+ to [0, c) with lim sup
r→t+

χ(r) < c, for every t ∈ R+.

It has been observed in [19] that Theorem 1.4 do not generalize fixed point result

of Mizoguchi and Takahashi [27, Theorem 5] (Theorem 1.2). Ćirić [8, Theorem 6]
established a fixed point result for multivalued nonlinear contractions, which gen-
eralizes Theorem 1.2, Theorem 1.3 and Theorem 1.4.

Kada et al. [17] introduced a concept of w-distance on metric spaces as follows.
Let (Z, d) be a metric space. A function w : Z × Z → R+ is called w-distance

on Z if the following conditions are satisfied for each z1, z2, z3 ∈ Z:

(w1) w(z1, z2) ≤ w(z1, z3) + w(z3, z2);
(w2) for any z ∈ Z, a function w(z, ·) : Z → R+ is lower semicontinuous;
(w3) for any ε > 0, there exists δ > 0 such that w(z3, z1) ≤ δ and w(z3, z2) ≤ δ

imply d(z1, z2) ≤ ε.
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Using the concept of w-distance, they improved a number of important results of
metric fixed point theory. Note that, in general for z1, z2 ∈ Z,w(z1, z2) 6= w(z2, z1)
and not either of the implications w(z1, z2) = 0⇔ z1 = z2 necessarily hold. Clearly,
the metric d is a w-distance on Z. Examples and properties of the w-distance, see
[17, 31]. Without using the concept of Hausdorff-Pompeiu metric, Susuki and
Takahashi [30] generalized some metric fixed point results including Theorem 1.1
for contractive type mappings with respect to w-distance.

Theorem 1.5. ([30]) Let Γ : Z → Cl(Z) be a multivalued mapping. If there exists
a w-distance w on Z and a constant λ ∈ (0, 1), such that for every z1, z2 ∈ Z, and
u ∈ Γ(z1), there is v ∈ Γ(z2) satisfying

w(u, v) ≤ λ w(z1, z2).

Then, there exists z0 ∈ Z such that z0 ∈ Γ(z0) and w(z0, z0) = 0.

Latif and Albar [23] and Latif and Abdou [21] generalized Theorem 1.3 and The-
orem 1.4, respectively with respect to w-distance. For further work in this direction,
see; [15, 16, 18, 20, 24, 25, 29, 32] and others.

Now, let us recall the well-known generalization of the standard metric, known
as quasi-metric, see [33] and others.

Let Z be a nonempty set. A function D : Z×Z → R+ is said to be a quasi-metric
on Z if the following conditions are satisfied for all z1, z2, z3 ∈ Z:

(1) D(z1, z2) = 0 if and only if z1 = z2,
(2) D(z1, z2) 6 D(z1, z3) +D(z3, z2).

In this case, the pair (Z,D) is called a quasi-metric space. Every metric space
is a quasi-metric space. The concepts of Cauchy sequences, convergent sequences,
and completeness in the frame work of quasi-metric spaces can be defined in a same
manner as in the setting of metric spaces, see [3]. Further, a quasi-metric space can
be endowed with a topology induced by its convergence and almost all the concepts
and results which are valid for metric spaces can be extended to the framework of
quasi-metric space. For further examples of quasi-metric space, see; [1, 2, 5, 6].

A subset A of the quasi-metric space (Z,D) is said to be open if and only if for
any a ∈ A, there exists ε > 0 such that the open ball B0(a, ε) ⊂ A. The family
of all open subsets of Z will be denoted by τ . It has been observed that τ de-
fines a topology on (Z,D). Further, any nonempty subset A of Z is closed if and
only if for any sequence {zn} in A which converges to z, we have z ∈ A, see; [11, 26].

In [3], Al-Homidan et al. introduced a concept of Q-function on quasi-metric
spaces.

Let (Z,D) be a quasi-metric space. A function q : Z × Z → R+ is called a
Q-function on Z if the following conditions are satisfied for any z1, z2, z3 ∈ Z:

(q1) q(z1, z2) 6 q(z1, z3) + q(z3, z2);
(q2) If {zn} is a sequence in Z such that zn → z ∈ Z and q (z1, zn) 6 N for

some N = N(z1) > 0 then q(z1, z) 6 N ;
(q3) for any ε > 0, there exists δ > 0, such that q(z3, z1) 6 δ and q(z3, z2) 6 δ

imply D(z1, z2) 6 ε.
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It has been observed [3] that every w-distance is a Q-function but the converse may
not be true, in general. It is also worth to mention that the concepts of a Q-function
and a quasi-metric are not comparable, see [3, Example 3.1 and Example 3.2]. Each
discrete metric on quasi-metric space (Z,D) is a Q-function and for other examples
of Q-functions, see [26].

Using the technique of [25], the following result is obvious.

Lemma 1.6. Let S be a closed subset of a quasi-metric space (Z,D) and q be a
Q-function on Z. Suppose that there exists z1 ∈ Z such that q(z1, z1) = 0. Then
we have q(z1, S) = 0⇔ z1 ∈ S, where q(z1, S) = inf{q(z1, z2) : z2 ∈ S}.

The following result is useful for our results.

Lemma 1.7. ([3, 24]) Let (Z,D) be a quasi-metric space and q be a Q-function on

Z. Let {zn} and {z′

n} be sequences in Z, let {αn} and {γn} be sequences in R+

converging to zero. Then, the following hold for every z1, z2, z3 ∈ Z :

(i) if q(zn, z2) ≤ αn and q(zn, z3) ≤ γn for any n ∈ N, then z2 = z3. In
particular, if q(z1, z2) = 0 and q(z1, z3) = 0, then z2 = z3;

(ii) if q(zn, z
′

n) ≤ αn and q(zn, z3) ≤ γn for any n ∈ N, then D(z
′

n, z3)→ 0;
(iii) if q(zn, zm) ≤ αn for any n,m ∈ N with m > n, then {zn} is a Cauchy

sequence;
(iv) if q(z2, zn) ≤ αn for any n ∈ N, then {zn} is a Cauchy sequence.

In [3], Al-Homidan et al. generalized Theorem 1.1 with respect to Q-function.

Theorem 1.8. ([3]) Let (Z,D) be a complete quasi-metric space and let Γ : Z →
Cl(Z) be a multivalued mapping. If there exists a Q-function q on Z and a constant
λ ∈ (0, 1) such that for every z1, z2 ∈ Z and u ∈ Γ(z1), there is v ∈ Γ(z2) satisfying

q(u, v) ≤ λ q(z1, z2).

Then, there exists z0 ∈ Z such that z0 ∈ Γ(z0) and q(z0, z0) = 0.

The aim of this paper is to present new general results on the existence of
fixed points for multivalued mappings involving Q-function on quasi-metric spaces.
Consequently, our results unify and generalize the corresponding several known
metric fixed point results.

2. Results

In this section, we consider (Z,D) is a quasi-metric space with Q-function q and
χ is an MT -function.

First, we prove the following key lemma.

Lemma 2.1. Let Γ : Z → 2Z be a multivalued mapping such that for any u1 ∈ Z,
there exists u2 ∈ Γ(u1) satisfying

q(u1, u2) ≤ (2− χ(q(u1, u2)))q(u1,Γ(u1)),
q(u2,Γ(u2)) ≤ χ(q(u1, u2))q(u1, u2).

(2.1)

Then, the existence of an orbit {zn} of Γ in Z implies that the sequences of non-
negative reals {q(zn,Γ(zn))} and {q(zn, zn+1)} converge to zero.
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Proof. Let z0 ∈ Z be a fixed arbitrary element. Then, we get z1 ∈ Γ(z0) satisfying

q(z0, z1) ≤ (2− χ(q(z0, z1)))q(z0,Γ(z0)),
q(z1,Γ(z1)) ≤ χ(q(z0, z1))q(z0, z1).

(2.2)

From (2.2), we get

q(z1,Γ(z1)) ≤ χ(q(z0, z1))(2− χ(q(z0, z1)))q(z0,Γ(z0)). (2.3)

Define a function ρ : R+ → R+ by

ρ(t) = χ(t)(2− χ(t)) = 1− (1− χ(t))2. (2.4)

Note that for any t ∈ R+, ρ (t) < 1, and lim sup
r→t+

ρ(r) < 1. From (2.3) and (2.4),

we have

q(z1,Γ(z1)) ≤ ρ(q(z0, z1))q(z0,Γ(z0)). (2.5)

Continuing this process we can get an orbit {zn} of Γ in Z satisfying the following
for each integer n ≥ 0,

q(zn, zn+1) ≤ (2− χ(q(zn, zn+1)))q(zn,Γ(zn)), (2.6)

q(zn+1,Γ(zn+1)) ≤ ρ(q(zn, zn+1))q(zn,Γ(zn)). (2.7)

Thus for all n ≥ 0, we have

q(zn+1,Γ(zn+1)) < q(zn,Γ(zn)). (2.8)

It follows that the sequence of non-negative real numbers {q(zn,Γ(zn))} is conver-
gent. Therefore, there is some δ ≥ 0 such that

lim
n→∞

q(zn,Γ(zn)) = δ. (2.9)

Note that

q(zn,Γ(zn)) ≤ q(zn, zn+1) < 2q(zn,Γ(zn)), (2.10)

thus, it follows that the sequence {q(zn, zn+1)} is bounded. Thus, there is some
θ ≥ 0 such that

lim inf
n→∞

q(zn, zn+1) = θ. (2.11)

Note that for each n ≥ 0, q(zn, zn+1) ≥ q(zn,Γ(zn)) , and thus we get θ ≥ δ. Now,
we show that θ = δ. Suppose that δ = 0. Then we get

lim
n→∞

q(zn, zn+1) = 0. (2.12)

Now, if θ > δ > 0, then θ − δ > 0 From (2.9) and (2.11) there is a positive integer
n0 such that

q(zn,Γ(zn)) < δ +
θ − δ

4
∀n ≥ n0, (2.13)

θ − θ − δ
4

< q(zn, zn+1) ∀n ≥ n0. (2.14)

Then from (2.6), (2.13) and (2.14), we get

θ − θ − δ
4

< q(zn, zn+1)

≤ (2− χ(q(zn, zn+1)))q(zn,Γ(zn)) (2.15)

< (2− χ(q(zn, zn+1)))

[
δ +

θ − δ
4

]
.
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Thus for all n ≥ n0,

(2− χ(q(zn, zn+1))) >
3θ + δ

3δ + θ
, (2.16)

that is,

1 + (1− χ(q(zn, zn+1))) > 1 +
2(θ − δ)
3δ + θ

, (2.17)

and we get

− (1− χ(q(zn, zn+1)))2 < −
[

2(θ − δ)
3δ + θ

]2
. (2.18)

Thus for all n ≥ n0,

ρ(q(zn, zn+1)) = 1− (1− χ(q(zn, zn+1)))2 < 1−
[

2(θ − δ)
3δ + θ

]2
. (2.19)

Put h = 1 − [2(θ − δ)/(3δ + θ)]
2
. Clearly h < 1 as θ > δ. Thus, from (2.7) and

(2.19), we get

q(zn+1,Γ(zn+1)) ≤ hq(zn,Γ(zn)) ∀n ≥ n0. (2.20)

From (2.13) and (2.20), for any k ≥ 1 we have

q(zn0+k,Γ(zn0+k)) ≤ hkq(zn0
,Γ(zn0

)). (2.21)

Since δ > 0 and h < 1, there is a positive integer k0 such that hk0q(zn0
,Γ(zn0

)) < δ.
Now, since δ ≤ q(zn,Γ(zn)) for each n ≥ 0, by (2.21) we have

δ ≤ q(zn0+k0 ,Γ(zn0+k0)) ≤ hk0q(zn0 ,Γ(zn0)) < δ, (2.22)

a contradiction. Hence, our assumption θ > δ is wrong. Thus δ = θ. Now, we show
that θ = 0. Since θ = δ ≤ q(zn,Γ(zn)) ≤ q(zn, zn+1), then from (2.11) we can read
as

lim inf
n→∞

q(zn, zn+1) = θ+, (2.23)

so, there exists a subsequence {q(znk
, znk+1)} of {q(zn, zn+1)} such that

lim
k→∞

q(znk
, znk+1) = θ+. (2.24)

Note that

lim sup
q(znk

,znk+1)→θ+
ρ(q(znk

, znk+1)) < 1, (2.25)

and from (2.7), we have

q(znk
,Γ(znk

)) ≤ ρ(q(znk
, znk+1))q(znk

,Γ(znk
)). (2.26)

Using (2.9), we get

δ = lim sup
k→∞

q(znk+1,Γ(znk+1))

≤
(

lim sup
k→∞

ρ(q(znk
, znk+1))

)(
lim sup
k→∞

q(znk
,Γ(znk

))

)
(2.27)

=

(
lim sup

q(znk
,znk+1)→θ+

ρ(q(znk
, znk+1))

)
δ.

If we suppose that δ > 0, then from last inequality, we have

lim sup
q(znk

,znk+1)→θ+
ρ(q(znk

, znk+1)) ≥ 1, (2.28)
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which contradicts with (2.25). Thus δ = 0. Then from (2.9) and (2.10), we have

lim
n→∞

q(zn,Γ(zn)) = 0+, (2.29)

and thus
lim
n→∞

q(zn, zn+1) = 0+. (2.30)

�

Using Lemma 2.1, we obtain the following fixed point result.

Theorem 2.2. Assume that all the hypotheses of Lemma 2.1 hold. If Z is com-
plete, then there exists an orbit of Γ which converges in Z. Further, if there is
a lower semicontinuous function β on Z with β(z) = q(z,Γ(z)), then, there ex-
ists u0 ∈ Z such that β(u0) = 0. Also, if the mapping Γ is closed valued and
q(u0, u0) = 0 then u0 ∈ Γ(u0).

Proof. In the light of Lemma 2.1, we have an orbit {zn} of Γ such that (2.29) and
(2.30) hold. Now, let

α = lim sup
q(znk

,znk+1)→θ+
ρ(q(znk

, znk+1)). (2.31)

Clearly, α < 1. Let a be such that α < a < 1. Then there is some n0 ∈ N such that

ρ(q(zn, zn+1)) < a ∀n ≥ n0. (2.32)

Thus it follows from (2.7),

q(zn+1,Γ(zn+1)) ≤ aq(zn,Γ(zn)) ∀n ≥ n0. (2.33)

By induction we get

q(zn+1,Γ(zn+1)) ≤ an+1−n0q(zn0
,Γ(zn0

)) ∀n ≥ n0. (2.34)

Now, using (2.10) and (2.34), we have

q(zn, zn+1) ≤ 2an−n0q(zn0
,Γ(zn0

)) ∀n ≥ n0. (2.35)

Now, we show that {zn} is a Cauchy sequence, for all m > n ≥ n0, we get

q (zn, zm) ≤
m−1∑
k=n

q (zk, zk+1)

≤ 2

m−1∑
k=n

ak−n0q (zn0
,Γ (zn0

)) (2.36)

≤ 2

(
an−n0

1− a

)
q(zn0 ,Γ(zn0)).

Since a < 1, an orbit {zn} turned to be a Cauchy sequence in the complete space
Z. Thus we have some u0 ∈ Z with lim

n→∞
zn = u0. Since β is lower semicontinuous

and from (2.29) , we have

0 ≤ β(u0) ≤ lim inf
n→∞

β(zn) = q(zn,Γ(zn)) = 0, (2.37)

and thus, β(u0) = q(u0,Γ(u0)) = 0. Since q(u0, u0) = 0, and Γ(u0) is closed, it
follows from Lemma 1.6 that u0 ∈ Γ(u0). �

Now, we present another interesting fixed point result by replacing the assump-
tion of the real-valued function β of Theorem 2.2 with another suitable assumption.
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Theorem 2.3. Suppose that all the hypotheses of Theorem 2.2 except the assump-
tion of the real-valued function β hold. Assume that

inf{q(z, u) + q(z,Γ(z)) : z ∈ Z} > 0, (2.38)

for every u ∈ Z with u /∈ Γ(u). Then Fix(Γ) 6= ∅.

Proof. As in the proof of Theorem 2.2, we get a Cauchy sequence {zn} such that
zn ∈ Γ(zn−1). Since Z is complete, there exists u0 ∈ Z such that the sequence {zn}
converges to u0. From (2.35) and (2.36), we get for all n ≥ n0

q(zn, u0) ≤
(

2an−n0

1− a

)
q(zn0

,Γ(zn0
)),

q(zn,Γ(zn)) ≤ q(zn, zn+1) ≤ 2an−n0q(zn0 ,Γ(zn0)).

(2.39)

Assume that u0 /∈ Γ(u0). Then, we have

0 < inf{q(z, u0) + q(z,Γ(z)) : z ∈ Z}
≤ inf{q(zn, u0) + q(zn,Γ(zn)) : n ≥ n0}

≤ inf

{(
2an−n0

1− a

)
q(zn0

,Γ(zn0
)) + 2an−n0q(zn0

,Γ(zn0
))

}
(2.40)

=
2(2− a)

(1− a)an0
q(zn0 ,Γ(zn0)) inf{an : n ≥ n0} = 0,

which is impossible and hence u0 ∈ Fix(Γ). �

Theorem 2.4. Let Γ : Z → Cl(Z) be a multivalued mapping with the space Z
complete. Assume that the following conditions hold:

(i) there exists a function µ : R+ → [b, 1), with b > 0, µ non-decreasing such that
for each t ∈ R+

χ(t) < µ(t), lim sup
r→t+

χ(r) < lim sup
r→t+

µ(r), (2.41)

(ii) for any u1 ∈ Z, there exists u2 ∈ Γ(u1) satisfying

µ(q(u1, u2))q(u1, u2) ≤ q(u1,Γ(u1)),

q(u2,Γ(u2)) ≤ χ(q(u1, u2))q(u1, u2),
(2.42)

(iii) a real-valued function β on Z defined by β(z) = q(z,Γ(z)) is lower semicontin-
uous.
Then, there exists u0 ∈ Z such that β(u0) = 0. Further, if q(u0, u0) = 0 then
u0 ∈ Γ(u0).

Proof. Let z0 be an arbitrary, then there exists z1 ∈ Γ(z0) such that

µ(q(z0, z1))q(z0, z1) ≤ q(z0,Γ(z0)),

q(z1,Γ(z1)) ≤ χ(q(z0, z1))q(z0, z1).
(2.43)

From (2.43) we have

q(z1,Γ(z1)) ≤ χ(q(z0, z1))

µ(q(z0, z1))
q(z0,Γ(z0)). (2.44)

Define a function ρ : R+ → R+ by

ρ(t) =
χ(t)

µ(t)
∀t ∈ R+. (2.45)
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Since µ(t) > χ(t), we get ρ(t) < 1, and lim supr→t+ ρ(r) < 1 ∀ t ∈ R+. It follows
from (2.44)

q(z1,Γ(z1)) ≤ ρ(q(z0, z1))q(z0,Γ(z0)). (2.46)

Similarly, there exists z2 ∈ Γ(z1) such that

µ(q(z1, z2))q(z1, z2) ≤ q(z1,Γ(z1)),

q(z2,Γ(z2)) ≤ χ(q(z1, z2))q(z1, z2).
(2.47)

Then by definition of ρ, we get

q(z2,Γ(z2)) ≤ ρ(q(z1, z2))q(z1,Γ(z1)). (2.48)

Finally, we have an orbit {zn} of Γ at z0 satisfying

µ(q(zn, zn+1))q(zn, zn+1) ≤ q(zn,Γ(zn)), (2.49)

q(zn+1,Γ(zn+1)) ≤ χ(q(zn, zn+1))q(zn, zn+1). (2.50)

Thus,

q(zn+1,Γ(zn+1)) ≤ ρ(q(zn, zn+1))q(zn,Γ(zn)). (2.51)

Since ρ(t) < 1 for all t ∈ R+, we get

q(zn+1,Γ(zn+1)) < q(zn,Γ(zn)). (2.52)

Thus the sequence of non-negative real numbers {q(zn,Γ(zn))} becomes conver-
gent. Also, we claim that the sequence {q(zn, zn+1)} is decreasing. Suppose that
q(zn, zn+1) ≤ q(zn+1, zn+2), then as µ(t) is non-decreasing, we have

µ(q(zn, zn+1)) ≤ µ(q(zn+1, zn+2)), (2.53)

Now using (2.49), (2.50) and (2.53) with n = n+ 1, we get

q(zn+1, zn+2) ≤ χ(q(zn, zn+1))

µ(q(zn+1, zn+2))
q(zn, zn+1)

≤ χ(q(zn, zn+1))

µ(q(zn, zn+1))
q(zn, zn+1) (2.54)

< ρ(q(zn, zn+1))q(zn, zn+1)

< q(zn, zn+1),

a contradiction. Thus the sequence {q(zn, zn+1)} is decreasing. Now let

lim sup
n→∞

ρ(q(zn, zn+1)) = α, (2.55)

Note that α < 1 and for any a ∈ (α, 1), there is an n0 ∈ N such that

ρ(q(zn, zn+1)) < a ∀n ≥ n0. (2.56)

So, from (2.51), for all n ≥ n0, we get

q(zn+1,Γ(zn+1)) < aq(zn,Γ(zn)). (2.57)

Thus by induction, we get for all n ≥ n0
q(zn+1,Γ(zn+1)) ≤ an+1−n0q(zn0

,Γ(zn0
)). (2.58)

As µ(t) ≥ b, using (2.49) and (2.58), we have

q(zn, zn+1) ≤ 1

b
q(zn,Γ(zn)) ≤ 1

b
an−n0q(zn0

,Γ(zn0
)), (2.59)
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for all n ≥ n0. Note that q(zn,Γ(zn))→ 0. Now, for each m > n ≥ n0, we have

q(zn, zm) ≤
m−1∑
k=n

q(zk, zk+1)

≤ 1

b

m−1∑
k=n

ak−n0q(zn0
,Γ(zn0

)) (2.60)

≤ 1

b

(
an−n0

1− a

)
q(zn0 ,Γ(zn0)).

Thus {zn} becomes a Cauchy sequence and hence there is some u0 ∈ Z with
β(u0) = q(u0,Γ(u0)) = 0 and u0 ∈ Γ(u0), as in the proof of Theorem 2.2. �

In the light of Theorem 2.3, we have the following result.

Theorem 2.5. If all the assumptions of Theorem 2.4 without (iii) hold and

inf{q(z, u) + q(z,Γ(z)) : z ∈ Z} > 0, (2.61)

for every u ∈ Z with u /∈ Γ(v). Then Fix(Γ) 6= ∅.

Theorem 2.6. Let Γ : Z → Cl(Z) be a multivalued mapping with Z complete and
satisfying the conditions as under:

(i) for any u1 ∈ Z, there exists u2 ∈ Γ(u1) satisfying

q(u1, u2) = q(u1,Γ(u1)),

q(u2,Γ(u2)) ≤ χ(q(u1, u2))q(u1, u2),
(2.62)

(ii) a real-valued function β on Z, defined by β(z) = q(z,Γ(z)) is lower semicontin-
uous.
Then, β(u0) = 0, for some u0 ∈ Z. Moreover, u0 ∈ Γ(u0), provided q(u0, u0) = 0.

Proof. Let z0 ∈ Z be any arbitrary point. Then we can choose z1 ∈ Γ(z0) such
that

q(z0, z1) = q(z0,Γ(z0)),
q(z1,Γ(z1)) ≤ χ(q(z0, z1))q(z0, z1), χ(q(z0, z1)) < 1.

(2.63)

Thus, as in the proof of Lemma 2.2 [24], we can get a Cauchy sequence {zn} in Z
satisfying zn ∈ Γ(zn−1) and

q(zn, zn+1) = q(zn,Γ(zn)),
q(zn+1,Γ(zn+1)) ≤ χ(q(zn, zn+1))q(zn, zn+1), χ(q(zn, zn+1)) < 1.

(2.64)

Consequently, there exists u0 ∈ Z such that lim
n→∞

zn = u0. Since β is lower semi-

continuous, we have

0 ≤ β(u0) ≤ lim inf
n→∞

β(zn) = 0, (2.65)

thus, g(u0) = q(u0,Γ(u0)) = 0. Further by closedness of Γ(u0) and since q(u0, u0) =
0, it follows from Lemma 1.6 that u0 ∈ Γ(u0). �

Remark.
(1) Theorem 2.2 generalizes fixed point results of Ćirić [8, Theorem 5] and Latif
and Abdou [22, Theorem 2.1].

(2) Theorem 2.4 generalizes fixed point results of Ćirić [8, Theorem 6], and Latif
and Abdou [22, Theorem 2.3].
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(3) Theorem 2.6 improves the results of Ćirić [8, Theorem 7], and Latif and Ab-
dou [22, Theorem 2.5]. Consequently, it contains fixed point result of Klim and
Wardowski [19, Theorem 2.2] as a special case.

3. Examples

In support of Theorem 2.2, we present the following example.

Example 1. Consider Z = [−1, 1] with the quasi-metric D defined by

D(z1, z2) =

{
0; if z1 = z2,

|z2|; otherwise.

Define a Q-function on Z by

q(z1, z2) = |z2|, for all z1, z2 ∈ Z.

Let Γ : Z → Cl(Z) be defined as

Γ(z) =

{ {
1
2z

2
}

; z ∈
[
−1, 12

)
∪
(
1
2 , 1
]
,{

1
7 ,

1
4

}
; z = 1

2 .

Define χ : R+ → [0, 1) by

χ(t) =

{
3
4 t; t ∈

[
0, 12
)
,

3
8 ; t ∈

[
1
2 ,∞

)
.

Note that

β(z) = q(z,Γ(z)) =

{
1
2z

2; z ∈
[
−1, 12

)
∪
(
1
2 , 1
]
,

1
7 ; z = 1

2 ,

and β is lower semicontinuous. Moreover, for each z1 ∈ [−1, 1/2)∪ (1/2, 1], we have
Γ(z1) = {(1/2)z21}. Take z2 = (1/2)z21 , then we have

q(z1, z2) = q(z1,
1

2
z21) =

1

2
z21 ≤ [2−χ(q(z1, z2))]

1

2
z21 = [2−χ(q(z1, z2))]q(z1,Γ(z1)),

also,

q(z1,Γ(z1)) = q

(
1

2
z21 ,

1

2

(
1

2
z2
)2
)

=

(
1

4
z21

)
q(z1, z2) <

3

4

(
1

2
z21

)
q(z1, z2) = χ (q(z1, z2)) q(z1, z2).

Thus, for all z1 ∈ [−1, 1], z1 6= 1/2, Γ satisfies all the conditions of Theorem 2.2.
Now, let z1 = 1/2, then we have Γ(z1) = {1/7, 1/4} , and

q(z1,Γ(z1)) = q

(
1

2
,

{
1

7
,

1

4

})
=

1

7
.

Note that for z1 = 1/2 there is z2 = 1/7 ∈ Γ(z1) such that

q(z1, z2) =
1

7
<

[
2− 3

4

(
1

7

)](
1

7

)
= [2− χ(q(z1, z2))]q(z1,Γ(z1)),

q(z2,Γ(z2)) = q

(
1

7
,

1

2

(
1

7

)2
)

=
1

2

(
1

7

)2

<
3

4

(
1

7

)(
1

7

)
= χ(q(z1, z2))q(z1, z2).

Thus, for z1 = 1/2 all the conditions of Theorem 2.2 are satisfied and hence
Fix(Γ) 6= ∅. Note that Fix(Γ) = {0}. Clearly, Γ fails to satisfy the conditions
of [8, Theorem 5] and [22, Theorem 2.1] because (Z,D) is not a metric space.
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Further, our result Theorem 2.6 is also a genuine generalization of [19, Theorem
2.2], and [22, Theorem 2.5] as shows under.

Example 2. Let Z = R+. Define a quasi-metric on Z by

D(z1, z2) =

{
0; if z1 = z2,

z1; otherwise.

Define a Q-function on Z by

q(z1, z2) = z1 + z2, for all z1, z2 ∈ Z.

Now, for any real number a > 1, define Γ : Z → Cl(Z) by

Γ(z) = {z
a
} ∪ [(1 + 2z),∞), for all z ∈ Z.

Define χ : R+ → [0, 1) by

χ(t) =
1

a
, for all t ∈ R+.

Clearly, χ(t) < 1 for all t ∈ R+. For any z ∈ Z we get

β(z) = q(z,Γ(z)) = z +
z

a
=

(
a+ 1

a

)
z.

Thus, β is continuous. Now for each z1 ∈ Z, there exists z2 = (z1/a) ∈ Γ(z1)
satisfying

q(z1, z2) = q(z1,
z1
a

) = q(z1,Γ(z1)),

q(z2,Γ(z2)) =
z1
a

+
z1
a2

=
1

a

(
a+ 1

a

)
z1 = χ(q(z1, z2))q(z1, z2).

Clearly, all the conditions of Theorem 2.6 are true and Fix(Γ) = {0}. Note that
Γ(z) is not compact for all z ∈ Z and the Q-function q is not a w-distance on Z,
so Γ fails to satisfy assumptions of [19, Theorem 2.2] and [22, Theorem 2.5].

Conclusion. Among others, Feng and Liu [14], Klim and Wardowski [19], and

Ćirić [8] studied the existence of fixed points for multivalued contractive mappings
without using the HausdorffPompeiu metric, and consequently, they generalized
some classically known fixed point results, including Theorem 1.1. In this paper,
we established some general fixed point results for multivalued generalized contrac-
tive mappings on quasi-metric spaces with respect to the Q-function. Our results
generalize and improve a number of known fixed point results, including the corre-
sponding fixed point results which are stated in Section 2. In support of our main
fixed point theorems, examples are also provided.

Acknowledgments. The authors thank the referees for their valuable comments
and suggestions.
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