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ON SOME TOPOLOGY GENERATED BY I-DENSITY

FUNCTION

INDRAJIT DEBNATH, AMAR KUMAR BANERJEE

Abstract. In this paper we study on I-density function using the notion
of I-density, introduced by Banerjee and Debnath [2], where I is an ideal

of subsets of the set of natural numbers. We explore certain properties of I-

density function and induce a topology using this function in the space of reals,
namely I-density topology, and we give a characterization of the Lebesgue

measurable subsets of reals in terms of Borel sets in I-density topology.

1. Introduction and preliminaries

In 1961, Casper Goffman and Daniel Waterman [10] introduced the notion of
homogeneity of sets relative to metric density and Euclidean n-space was topolo-
gized by taking the homogeneous sets as open sets and this topology was referred
to as d-topology or density topology. The idea of density functions and the cor-
responding density topology were studied in several spaces like the space of real
numbers [21], Euclidean n-space [11], metric spaces [15] etc. In the recent past
the notion of classical Lebesgue density point was generalized by many authors by
weakening the assumptions on the sequences of intervals and as a result several
notions like 〈s〉-density point by M. Filipczak and J. Hejduk [9], J -density point
by J. Hejduk and R. Wiertelak [13], S-density point by F. Strobin and R. Wierte-
lak [23] were obtained. Significant generalizations on density topology was studied
by Das and Banerjee in [1, 6], by W. Wilczynski in [24] and by W. Wojdowski
in [26, 27]. Lately, Banerjee and Debnath have devised a new way to generalize
classical density topology using ideals in [2].

We shall use the notation L for the σ-algebra of Lebesgue measurable sets and λ
for the Lebesgue measure [12]. Throughout R stands for the set of all real numbers.
The symbol TU stands for the natural topology on R. Wherever we write R it means
that R is equipped with natural topology unless otherwise stated. The symmetric
difference of two sets A and B is (A \B) ∪ (B \A) and it is denoted by A4B. By
“a sequence of closed intervals {Qn}n∈N about a point c” we mean c ∈

⋂
n∈NQn.

For H ∈ L and a point c ∈ R we say the point c is a classical density point [25]

of H if and only if limt→0+
λ(H∩[c−t,c+t])

2t = 1. The set of all classical density point
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of H is denoted by Φ(H). The collection Td = {H ∈ L : H ⊆ Φ(H)} is a topology
in the real line [25] and it is called the classical density topology. Lebesgue density
theorem states that for any Lebesgue measurable set H ⊂ R, λ(H4Φ(H)) = 0.

The convergence of sequences plays a significant role in the study of basic math-
ematical theory. The idea of statistical convergence of sequences was introduced in
the middle of twentieth century by H. Fast [8]. For J ⊂ N, a set of natural numbers
and n ∈ N let Jn = {k ∈ J : k ≤ n}. The natural density of a set J is defined by

d(J) = limn→∞
|Jn|
n , provided the limit exists, where |Jn| stands for the cardinality

of the set Jn. A sequence {αn}n∈N of real numbers is said to be statistically con-
vergent to α0 if for each ε > 0 the set V (ε) = {k ∈ N : |αk − α0| ≥ ε} has natural
density zero. Later on, in the year 2000, statistical convergence of real sequences
were generalized to the idea of I-convergence of real sequences by P. Kostyrko et
al. [14] using the notion of ideal I of subsets of N, the set of natural numbers.

A subcollection I ⊂ 2N is called an ideal if A,B ∈ I implies A ∪ B ∈ I and
A ∈ I, B ⊂ A imply B ∈ I. I is called nontrivial ideal if I 6= {∅} and N /∈ I. I is
called admissible if it contains all the singletons. It is easy to verify that the family
Id = {A ⊂ N : d(A) = 0} forms a non-trivial admissible ideal of subsets of N. If I
is a proper non-trivial ideal, then the family of sets F(I) = {M ⊂ N : N \M ∈ I}
is a filter on N and it is called the filter associated with the ideal I of N.

A sequence {αn}n∈N of real numbers is said to be I-convergent [14] to α0 if the
set V (ε) = {k ∈ N : |αk−α0| ≥ ε} belongs to I for each ε > 0. A sequence {αn}n∈N
of real numbers is said to be I-bounded if there is a real number M > 0 such that
{k ∈ N : |αk| > M} ∈ I. Further many works were carried out in this direction
by many authors [3, 4, 17]. For summability theory, sequence spaces and related
topics the reader may refer to the textbooks [5, 19].

K. Demirci [7] introduced the notion of I-limit superior and inferior of a real
sequence and proved several basic properties.

Let I be an admissible ideal in N and α = {αn}n∈N be a real sequence. Let,
Bα = {b ∈ R : {k : αk > b} /∈ I} and Aα = {a ∈ R : {k : αk < a} /∈ I}. Then the
I-limit superior of α is given by,

I − lim supα =

{
supBα if Bα 6= φ
−∞ if Bα = φ

and the I-limit inferior of α is given by,

I − lim inf α =

{
inf Aα if Aα 6= φ
∞ if Aα = φ

Further Lahiri and Das [16] carried out some more works in this direction. Through-
out the paper the ideal I will always stand for a nontrivial admissible ideal of subsets
of N.

In this paper we try to give the notion of I-density function with the help of
I-density introduced by Banerjee and Debnath [2] in the space of reals. In Section
3 we explore some properties of this function. Finally, in Section 4 we study that
under certain conditions union of arbitrary collection of measurable sets can be
measurable. We consider T I to be the collection of measurable subsets of R such
that each point of the set is an I-density point and we prove that the collection
T I forms a topology on the set of reals. The mode of proofs are different from
that given in [2]. At last we characterize the Lebesgue measurable sets in the usual
topology on reals as the Borel sets in T I .
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2. I-density

Definition 2.1. [2] For a Lebesgue measurable set H ∈ L, a point c ∈ R and
n ∈ N, the upper I-density of H at the point c, denoted by I − d−(c,H), and the
lower I-density of H at the point c, denoted by I−d−(c,H), are defined as follows:
Suppose {Qn}n∈N is a sequence of closed intervals about c such that

S (Qn) =
{
n ∈ N : 0 < λ(Qn) < 1

n

}
∈ F(I).

For any such {Qn}n∈N we take

αn =
λ(Qn ∩H)

λ(Qn)
for all n ∈ N.

Then {αn}n∈N is a sequence of non-negative real numbers. Now, if

Bαk
= {b ∈ R : {k : αk > b} /∈ I}

and
Aαk

= {a ∈ R : {k : αk < a} /∈ I}
we define,

I − d−(c,H) = sup{supBαn : {Qn}n∈N such that S (Qn) ∈ F(I)}
= sup{I − lim sup αn : {Qn}n∈N such that S (Qn) ∈ F(I)}

and

I − d−(c,H) = inf{inf Aαn
: {Qn}n∈N such that S (Qn) ∈ F(I)}

= inf{I − lim inf αn : {Qn}n∈N such that S (Qn) ∈ F(I)}.

In the above two expressions it is to be understood that {Qn}n∈N’s are closed
intervals about the point c. Now, if I − d−(c,H) = I − d−(c,H), then we denote
the common value by I − d(c,H), which we call I-density of H at the point c.

A point c0 ∈ R is an I-density point of H ∈ L if I − d(c0, H) = 1.
If a point c0 ∈ R is an I-density point of the set R\H, then c0 is an I-dispersion

point of H.

Note 2.2. It was shown in [2] if I = Ifin, where Ifin is the class of all finite
subsets of N, then Definition 2.1 coincides with the definition of metric density
which was introduced by Martin in [18]. Moreover, the notion of I-density point is
more general than the notion of classical density point as the collection of intervals
about the point c considered in case of I-density is larger than that considered in
case of classical density which is illustrated in the following example.

Example 2.3. Let us consider the ideal Id of subsets of N, where Id is the ideal
containing all those subsets of N whose natural density is zero. Now, for any point
p ∈ R consider the following collections of sequences of intervals:

Cp(Ifin) = {{Kn}n∈N :
{Kn}is a sequence of closed intervals about p such that S (Kn) ∈ F(Ifin)} and

Cp(Id) = {{Kn}n∈N :
{Kn}is a sequence of closed intervals about p such that S (Kn) ∈ F(Id)}.

We claim that Cp(Ifin) $ Cp(Id). Since any finite subset of N has natural density
zero so Ifin ⊂ Id.
Now, in particular, let us take the following sequence {Qn}n∈N of closed intervals
about a point p.
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Qn =

{ [
p− 1

2n , p+ 1
2n

]
for n 6= m2 where m ∈ N

[p−
√
n, p+

√
n] for n = m2 where m ∈ N.

We observe that S (Qn) =
{
n ∈ N : 0 < λ(Qn) < 1

n

}
= {n : n 6= m2, for some m ∈

N} \ {2} so S (Qn) ∈ F(Id). But since N \ S (Kn) = {n : n = m2, where m ∈
N} ∪ {2} is not a finite set, so it does not belong to Ifin. As a result, {Qn} ∈
Cp(Id) \ Cp(Ifin).

Let us take the set H to be the open interval (−1, 1) and the point p to be 0. Let

{Qn}n∈N ∈ C0(Id) \ C0(Ifin) be taken as above. Now, if αn = λ(Qn∩H)
λ(Qn) , then

αn =

{
1 if n 6= m2 where m ∈ N

1√
n

if n = m2 where m ∈ N.
Now, let us calculate lim sup and lim inf of the sequence {αn}. Thus,

lim supαn = inf
n

sup
k≥n

αk = 1 and lim inf αn = sup
n

inf
k≥n

αk = 0.

Consequently, limn αn does not exists. Next, we will show that 0 is Id-density
point of the set H.

Given any sequence of closed intervals {Qn}n∈N about the point 0 such that
S (Qn) ∈ F(Id) we have {n : Qn ⊂ H} ∈ F(Id). For if S (Qn) = {l1 < l2 < · · · <
ln < · · · } (say). Then there exists n0 ∈ N such that for ln > ln0

, Qln ⊂ H. Thus,
{n : Qn ⊂ H} ⊃ S (Qn) \ {l1, l2, · · · , ln0}. Since N \ {l1, l2, · · · , ln0} ∈ F(Id) so

S (Qn) \ {l1, l2, · · · , ln0
} = S (Qn) ∩ (N \ {l1, l2, · · · , ln0

}) ∈ F(Id).

Now if, Qn ⊂ H then σn = λ(Qn∩H)
λ(Qn) = λ(Qn)

λ(Qn) = 1. Thus, {n : σn = 1} ⊃ {n :

Qn ⊂ H}. Therefore, {n : σn = 1} ∈ F(Id). Therefore, Bσn = (−∞, 1) and Aσn =
(1,∞) and so, Id − lim supσn = supBσn

= 1 and Id − lim inf σn = inf Aσn
= 1.

This is true for all {Qn}n∈N ∈ C0(Id). Hence,

Id − d−(0, H) = sup{supBσn : {Qn}n∈N such that S (Qn) ∈ F(Id)} = 1

and

Id − d−(0, H) = inf{inf Aσn
: {Qn}n∈N such that S (Qn) ∈ F(Id)} = 1.

Hence Id − d(0, H) exists and equals to 1. So, 0 is an Id-density point of the set
H.

Here we are stating some important results which will be needed later in our
discussion.

Theorem 2.4. [7] For any real sequence ω = {ωn}n∈N, I−lim inf ω ≤ I−lim supω.

Theorem 2.5. [2] For any Lebesgue measurable set H ⊂ R and any point p ∈ R,

I − d−(p,H) ≤ I − d−(p,H).

Theorem 2.6. [16] If ω = {ωn}n∈N and δ = {δn}n∈N are two I-bounded real
number sequences, then

(i) I − lim sup(ω + δ) ≤ I − lim supω + I − lim sup δ
(ii) I − lim inf(ω + δ) ≥ I − lim inf ω + I − lim inf δ.
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Proposition 2.7. [2] Given an I-bounded real sequence ω = {ωn}n∈N and a real
number c,

(i) I − lim inf(c+ ωn) = c+ I − lim inf ωn
(ii) I − lim sup(c+ ωn) = c+ I − lim supωn.

Proposition 2.8. [2] For any real sequence ω = {ωn}n∈N,

(i) I − lim sup(−ω) = −(I − lim inf ω)
(ii) I − lim inf(−ω) = −(I − lim supω).

Lemma 2.9. [2] For any disjoint Lebesgue measurable subsets G and H of R and
any point p ∈ R if I − d(p,G) and I − d(p,H) exist, then I − d(p,G ∪ H) exists
and I − d(p,G ∪H) = I − d(p,G) + I − d(p,H).

Lemma 2.10. [2] If I − d(p,G) and I − d(p,H) exist and G ⊂ H. Then I −
d(p,H \G) exists and I − d(p,H \G) = I − d(p,H)− I − d(p,G).

Theorem 2.11. [2] For any measurable set H, I-density of H at a point p exists
if and only if I − d−(p,H) + I − d−(p,Hc) = 1.

Let H ⊂ R be a measurable set. Let us denote the set of points of R at which
H has lower I-density 1 by ΘI(H), i.e.

ΘI(H) = {p ∈ R : I − d−(p,H) = 1}.
Next we state the Lebesgue I-density theorem which is as follows.

Theorem 2.12. [2] For any measurable set H ⊂ R,
λ(H4ΘI(H)) = 0.

The statement of this theorem may also be read as almost all points of an
arbitrary measurable set H are points of I-density for H and moreover we can
conclude that ΘI(H) is measurable.

3. I-density function

The function ΘI(.) : L → 2R is called I-density function since ΘI(.) takes
measurable set as input and it returns the set of all points which have I-density 1
in that measurable set. Now, we explore some properties of I-density function.

Proposition 3.1. If A and B are measurable sets and λ(A4B) = 0, then ΘI(A) =
ΘI(B).

Proof. Let {Qn}n∈N be any sequence of closed interval in R. If λ(A4B) = 0, then
we claim that λ(A ∩Qn) = λ(B ∩Qn) for each interval Qn ⊂ R. Now,

A = A ∩ (B ∪Bc)
= (A ∩B) ∪ (A ∩Bc)
= (A ∩B) ∪ (A \B)

⊂ B ∪ (A4B).

For any Qn ⊂ R we have

λ(A ∩Qn) ≤ λ((B ∪ (A4B)) ∩Qn)

≤ λ((A4B)) ∩Qn) + λ(B ∩Qn)

= λ(B ∩Qn) since λ((A4B)) ∩Qn) ≤ λ(A4B) = 0.



6 I. DEBNATH, A. K. BANERJEE

Similarly, λ(B∩Qn) ≤ λ(A∩Qn) for any interval Qn ⊂ R. So we have λ(A∩Qn) =
λ(B ∩Qn) for any interval Qn ⊂ R. Now, we will show ΘI(A) = ΘI(B).

Let x ∈ ΘI(A). So, I − d−(x,A) = 1. Now,

I − d−(x,A) = inf{I − lim inf
λ(A ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)}

= inf{I − lim inf
λ(B ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)}

= I − d−(x,B).

So, I − d−(x,B) = 1 and hence x ∈ ΘI(B). So, ΘI(A) ⊆ ΘI(B). Similarly,
ΘI(B) ⊆ ΘI(A). Thus, ΘI(A) = ΘI(B). This completes the proof.

�

Corollary 3.2. Let A ⊆ R be measurable then ΘI(A) = ΘI(ΘI(A)), i.e. I-density
function is idempotent.

Proof. By Lebesgue I-Density Theorem 2.12 λ(A4ΘI(A)) = 0. So by Proposition
3.1 we have ΘI(A) = ΘI(ΘI(A)).

�

Lemma 3.3. Given a pair of Lebesgue measurable sets A and B such that A ⊆ B,
ΘI(A) ⊆ ΘI(B), i.e. I-density function is monotonic.

Proof. If A ⊆ B, λ(A∩Qn) ≤ λ(B∩Qn) for each interval Qn ⊂ R. So if x ∈ ΘI(A),
then I − d−(x,A) = 1. Hence,

I − d−(x,A) = inf{I − lim inf
λ(A ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)}

≤ inf{I − lim inf
λ(B ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)}

= I − d−(x,B).

Hence, I−d−(x,B) ≥ 1. So, I−d−(x,B) = 1 and hence x ∈ ΘI(B). Consequently,
ΘI(A) ⊆ ΘI(B). �

Theorem 3.4. For every pair of Lebesgue measurable sets H,G ∈ L, ΘI(H∩G) =
ΘI(H) ∩ΘI(G).

Proof. Since H ∩G ⊆ H and H ∩G ⊆ G, so by Lemma 3.3, ΘI(H ∩G) ⊆ ΘI(H)
and ΘI(H ∩ G) ⊆ ΘI(G). Consequently, ΘI(H ∩ G) ⊆ ΘI(H) ∩ ΘI(G). Now
we are to prove ΘI(H) ∩ ΘI(G) ⊆ ΘI(H ∩ G). Let x ∈ ΘI(H) ∩ ΘI(G). Thus
x ∈ ΘI(H) and x ∈ ΘI(G). So, I − d−(x,H) = 1 and I − d−(x,G) = 1. We are
to show I − d−(x,H ∩G) = 1. It is sufficient to show I − d−(x,H ∩G) ≥ 1.

Let {Qk}k∈N be any sequence of closed intervals about the point x such that
S (Qk) ∈ F(I). Then for all k ∈ S (Qk), λ(H∩Qk)+λ(G∩Qk)−λ(H∩G∩Qk) ≤
λ(Qk).

So, for k ∈ S (Qk) we have

λ(H ∩Qk)

λ(Qk)
+
λ(G ∩Qk)

λ(Qk)
≤ 1 +

λ((H ∩G) ∩Qk)

λ(Qk)
.
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Let us take αk = λ(H∩Qk)
λ(Qk) , βk = λ(G∩Qk)

λ(Qk) , ζk = λ((H∩G)∩Qk)
λ(Qk) . So, ζk ≥ αk+βk−1.

Thus,

I − lim inf ζn ≥ I − lim inf(αn + βn − 1)

= I − lim inf(αn + βn)− 1 by Proposition 2.7

≥ I − lim inf αn + I − lim inf βn − 1 by Theorem 2.6.

Hence,

inf{I − lim inf ζn : {Qn} such that S (Qn) ∈ F(I)}
≥ inf{I − lim inf αn + I − lim inf βn − 1 : {Qn} such that S (Qn) ∈ F(I)}

≥ inf{I − lim inf αn : {Qn} such that S (Qn) ∈ F(I)}
+ inf{I − lim inf βn : {Qn} such that S (Qn) ∈ F(I)} − 1.

So,

I − d−(x,H ∩G) = inf{I − lim inf ζn : {Qn} such that S (Qn) ∈ F(I)}
≥ I − d−(x,H) + I − d−(x,G)− 1

= 1 + 1− 1 = 1.

Therefore, I − d−(x,H ∩G) = 1. So, x ∈ ΘI(H ∩G). Hence, ΘI(H)∩ΘI(G) ⊆
ΘI(H ∩G). This completes the proof. �

Lemma 3.5. Let H,G ⊆ R such that λ(H \G) = 0, then ΘI(H) ⊆ ΘI(G).

Proof. Let us assume λ(H \ G) = 0 and ΘI(H) * ΘI(G). Then there exists
x ∈ ΘI(H) such that x /∈ ΘI(G), i.e I − d−(x,H) = 1 but I − d−(x,G) < 1. Now
we have the following two cases.

Case(i): If I − d−(x,H \G) > 0, then

inf

{
I − lim inf

λ((H \G) ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)

}
> 0.

So, for some sequence of closed intervals about x, say {Qn}n∈N such that S (Qn) ∈
F(I) we have

I − lim inf
λ((H \G) ∩Qn)

λ(Qn)
> 0.

Thus for some n0 ∈ N we have λ((H \G)∩Qn0
) > 0. So there exists a measurable

subset W ⊆ H such that W ∩G = ∅ and λ(W ) > 0. So, λ(H \G) ≥ λ(W ) > 0. It
contradicts the fact that λ(H \G) = 0.

Case(ii): If I−d−(x,H \G) = 0. Note that H can be written as a disjoint union
of (H \G) and (H ∩G). Since (H \G) and (H ∩G) are measurable, so by Lemma
2.9

I − d−(x,H) = I − d−(x,H \G) + I − d−(x,H ∩G) = I − d−(x,H ∩G).

Thus I−d−(x,H∩G) = 1. Now since H∩G ⊂ G so I−d−(x,H∩G) ≤ I−d−(x,G)
which implies I − d−(x,G) ≥ 1 which is a contradiction since x /∈ ΘI(G).

So our assumption was wrong. Hence the result follows. �

Lemma 3.6. Let H be any subset of R such that λ(H) = 0, then ΘI(H) = ∅ and
ΘI(R \H) = R.
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Proof. If λ(H) = 0, then at each point x ∈ R we have

I − d−(x,H) = sup

{
I − lim sup

λ(H ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)

}
= 0.

This implies, I − d−(x,H) = 0. Thus, ΘI(H) is an empty set.
Clearly, ΘI(R \ H) ⊆ R. We need to show R ⊆ ΘI(R \ H). Let x ∈ R and

let {Qk}k∈N be any sequence of closed intervals about x such that S (Qk) ∈ F(I).
Then for k ∈ S (Qk) we have

λ(R ∩Qk) = λ((R \H) ∩Qk) + λ(H ∩Qk) = λ((R \H) ∩Qk).

Now,

I − d−(x,R \H) = inf

{
I − lim inf

λ((R \H) ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)

}
= inf

{
I − lim inf

λ(R ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)

}
= 1.

Thus, x ∈ ΘI(R \H). So, R ⊆ ΘI(R \H). This completes the proof. �

Theorem 3.7. If A is a measurable subset of R, then ΘI(A) ∩ΘI(Ac) = ∅.

Proof. If possible let ΘI(A) ∩ΘI(Ac) 6= ∅. Then there exists a point x ∈ ΘI(A) ∩
ΘI(Ac). So, I − d−(x,A) = 1 and I − d−(x,Ac) = 1. Thus,

inf

{
I − lim inf

λ(A ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)

}
= 1

and

inf

{
I − lim inf

λ(Ac ∩Qn)

λ(Qn)
: {Qn}n∈N such that S (Qn) ∈ F(I)

}
= 1.

So for any fixed interval {Qn}n∈N, I−lim inf λ(A∩Qn)
λ(Qn) ≥ 1 and I−lim inf λ(Ac∩Qn)

λ(Qn) ≥
1. Therefore,

I − lim inf
λ(A ∩Qn)

λ(Qn)
+ I − lim inf

λ(Ac ∩Qn)

λ(Qn)
≥ 2.

As a result,

I − lim inf

{
λ(A ∩Qn)

λ(Qn)
+
λ(Ac ∩Qn)

λ(Qn)

}
= I − lim inf

λ(R ∩Qn)

λ(Qn)
= 1 ≥ 2

which is a contradiction. So the result follows.
�

4. I-density topology

First we see under certain conditions, union of arbitrary collection of measurable
sets can be measurable.

Theorem 4.1. If {Aα}α∈Λ is an arbitrary collection of measurable sets, where Λ
is arbitrary indexing set, such that for all α ∈ Λ, Aα ⊆ ΘI(Aα) and λ(Aα \B) = 0
for any measurable set B so that B ⊆

⋃
α∈ΛAα, then

⋃
α∈ΛAα is measurable.
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Proof. Since for all α ∈ Λ, λ(Aα\B) = 0 thus by Lemma 3.5, ΘI(Aα) ⊆ ΘI(B). So,⋃
α∈Λ ΘI(Aα) ⊆ ΘI(B). Since, B is measurable so by Theorem 2.12, λ(B4ΘI(B)) =

0 which implies ΘI(B) is measurable. Thus,

B ⊆
⋃
α∈Λ

Aα ⊆
⋃
α∈Λ

ΘI(Aα) ⊆ ΘI(B).

Since, B and ΘI(B) are both measurable and they differ by a null set, so
⋃
α∈ΛAα

is measurable. �

Next, we consider T I to be the collection of measurable subsets of R such that
each point of the set is I-density point. So,

T I = {A ∈ L : A ⊂ ΘI(A)}.
Whether such a collection forms a topology is the next question. The difficulty

lies in the fact that a topology must be closed under arbitrary unions and arbitrary
union of measurable sets may not be necessarily measurable.

Theorem 4.2. The Lebesgue measure λ on R satisfies the countable chain condi-
tion, i.e. any collection of measurable sets each with positive measure, such that the
intersection of two distinct elements of that collection has measure zero, is count-
able.

Proof. Let A be a collection of sets {Aα}α∈Λ, where Aα ⊆ R and Λ is arbitrary
indexing set such that for each α ∈ Λ, Aα is measurable, λ(Aα) > 0 and λ(Aα ∩
Aβ) = 0 whenever α 6= β, then we need to show that A is countable. Let us assume
that A is uncountable. Consider R as

⋃
n∈Z[n, n+ 1] where Z is the set of integers.

For any α ∈ Λ, Aα = Aα ∩ R = Aα ∩ (
⋃
k∈Z[k, k + 1]) =

⋃
k∈Z(Aα ∩ [k, k + 1]).

Therefore, λ(Aα) =
∑
k∈Z λ(Aα ∩ [k, k + 1]). Since λ(Aα) > 0 so there exists at

least one k such that λ(Aα ∩ [k, k + 1]) > 0. Thus for each Aα there exists some
i ∈ Z such that λ(Aα ∩ [i, i + 1]) > 0. Now, if each interval [k, k + 1] for k ∈ Z
intersect with only countably many Aα’s such that λ(Aα ∩ [k, k + 1]) > 0 then
the collection {Aα}α∈Λ will be countable since countable union of countably many
elements is again countable; which is a contradiction. Therefore, there exists some
k0 ∈ Z such that [k0, k0 + 1] intersect with uncountably many Aα in A such that

λ(Aα ∩ [k0, k0 + 1]) > 0. Take, Λ
′

= {α ∈ Λ : λ(Aα ∩ [k0, k0 + 1]) > 0}. Then

clearly, Λ
′

is uncountable and Λ
′ ⊆ Λ. Now,

Λ
′

= {α ∈ Λ : λ(Aα∩ [k0, k0 +1]) > 0} =
⋃
m∈N

{
α ∈ Λ : λ(Aα ∩ [k0, k0 + 1]) ≥ 1

m

}
.

If each set in the above expression under union is countable then Λ
′

will be count-

able. So, there exists some m0 such that
{
α ∈ Λ : λ(Aα ∩ [k0, k0 + 1]) ≥ 1

m0

}
is

uncountable.

Let Λ
′′

=
{
α ∈ Λ : λ(Aα ∩ [k0, k0 + 1]) ≥ 1

m0

}
. Then Λ

′′ ⊆ Λ
′ ⊆ Λ. Since we

have assumed λ(Aα ∩Aβ) = 0 whenever α 6= β, so

λ ([k0, k0 + 1]) ≥
∑
α∈Λ′

λ(Aα∩[k0, k0+1]) ≥
∑
α∈Λ′′

λ(Aα∩[k0, k0+1]) ≥
∑
α∈Λ′′

1

m0
=∞.

This is a contradiction. So, A must be a countable collection. This completes the
proof.

�
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Theorem 4.3. The collection T I is a topology on R.

Proof. Clearly by Lemma 3.6, ΘI(∅) = ∅ and ΘI(R) = R and both ∅ and R are
measurable. So, ∅,R ∈ T I . Now, we will show T I is closed under finite intersection.
Let {Aα1

, Aα2
, · · · , Aαn

} be any finite collection in T I . So each Aαk
is measurable

and Aαk
⊆ ΘI(Aαk

) for each k. Clearly,
⋂n
k=1Aαk

is measurable. By Theorem 3.4,

n⋂
k=1

Aαk
⊆

n⋂
k=1

ΘI(Aαk
) = ΘI

(
n⋂
k=1

Aαk

)
.

Therefore,
⋂n
k=1Aαk

∈ T I .
Next, we need to show T I is closed under arbitrary unions. If {Aα}α∈Λ is an

arbitrary collection of sets in T I , where Λ is arbitrary indexing set, then
⋃
α∈ΛAα ∈

T I , i.e. we are to show
⋃
α∈ΛAα ⊆ ΘI(

⋃
α∈ΛAα) and

⋃
α∈ΛAα is measurable.

Since for each α ∈ Λ, Aα ∈ T I we have Aα ⊆ ΘI(Aα) and it follows that⋃
α∈ΛAα ⊆

⋃
α∈Λ ΘI(Aα). Let x ∈

⋃
α∈Λ ΘI(Aα), then there exists β ∈ Λ such

that x ∈ ΘI(Aβ). Note that Aβ ⊂
⋃
α∈ΛAα, so ΘI(Aβ) ⊆ ΘI(

⋃
α∈ΛAα). Thus

x ∈ ΘI(
⋃
α∈ΛAα). So,

⋃
α∈Λ ΘI(Aα) ⊆ ΘI(

⋃
α∈ΛAα). Therefore,

⋃
α∈ΛAα ⊆

ΘI(
⋃
α∈ΛAα).

It remains to show that arbitrary union of members of T I is measurable. Let
{Aα}α∈Λ be an arbitrary collection of sets in T I , where Λ is arbitrary indexing set.
Since by Lemma 3.6, λ(A) = 0 implies ΘI(A) = ∅, which in turn implies A /∈ T I
so clearly, λ(Aα) > 0 for all α. We choose a sequence in Λ in the following way. By
Well Ordering Principle, every set can be well ordered. So, we can linearly order
the elements of Λ. Choose the first element of Λ to be α0. Following the linear
order on Λ compare each element Aα′ with Aα0

. If λ(Aα′ \ Aα0
) > 0, let α1 = α

′
.

If no such α
′

exists let us take the sequence to be (α0, α0, · · · ). Once α1 is chosen
search through Λ starting after α1 to find Aα2 such that λ(Aα2 \ (Aα0 ∪Aα1)) > 0.
If no such α2 exists then take the sequence as (α0, α1, α1, · · · ). Continuing for
each n ∈ N at any step m, assuming αm−1 is already chosen, search through Λ

starting after αm−1 to find Aαm
such that λ(Aαm

\
⋃m−1
n=0 Aαn

) > 0. If no Aαm

can be found let the sequence be (α0, α1, · · · , αm−1, αm−1, · · · ). Whether or not a
unique αn can be found for each n, by Theorem 4.1 the sequence may be atmost
countably long. So we obtain a sequence {αn}n∈N such that for any α ∈ Λ we have
λ(Aα \

⋃∞
n=0Aαn

) = 0. Since {Aαn
} is a countable sequence of measurable sets so⋃∞

n=0Aαn
is measurable. Now, by Lemma 3.5 for any α ∈ Λ,

λ(Aα \
∞⋃
n=0

Aαn) = 0 =⇒ ΘI(Aα) ⊆ ΘI(

∞⋃
n=0

Aαn).

Hence,
⋃
α∈Λ ΘI(Aα) ⊆ ΘI (

⋃∞
n=0Aαn

). By Lebesgue I-density Theorem 2.12,

λ

( ∞⋃
n=0

Aαn
4ΘI

( ∞⋃
n=0

Aαn

))
= 0.

So, ΘI (
⋃∞
n=0Aαn

) is measurable. Thus,

∞⋃
n=0

Aαn
⊆
⋃
α∈Λ

Aα ⊆
⋃
α∈Λ

ΘI(Aα) ⊆ ΘI

( ∞⋃
n=0

Aαn

)
.
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Since,
⋃∞
n=0Aαn

and ΘI (
⋃∞
n=0Aαn

) both are measurable and differ by a null set, so⋃
α∈ΛAα is measurable. Thus, T I is closed under arbitrary unions. This completes

the proof.
�

We name the topology T I to be the I-density topology on R and the pair (R, T I)
is the corresponding topological space.

The σ-algebra that is generated by the open sets of any given topology is the
collection of Borel sets of that topology. The collection of Borel sets can be char-
acterized as the σ-algebra generated by the open sets. Thus, we can talk about
Borel sets on any given topological space. The I-density topology requires open
sets to be Lebesgue measurable, but not all measurable sets are open in (R, T I).
In [22], S. Scheinberg proved the existence of a topology on the space of reals in
which the Borel sets are precisely the Lebesgue measurable sets. Likewise we give a
characterization of Lebesgue measurable subsets of reals in the following theorem.

Theorem 4.4. The Borel sets in the I-density topology T I on the space of reals
are precisely the Lebesgue measurable sets.

Proof. Let B be a Borel set in T I . So B is formed through the operation of
countable union, countable intersection and relative complement of sets in T I .
Since each element of T I is measurable so B is measurable.

Conversely, let B be lebesgue measurable. Then by Theorem 2.12 we can write
B = C ∪ D, where C = B ∩ ΘI(B) and D is measure zero set. Then clearly the
set C is measurable since both B and ΘI(B) are measurable. Next, ΘI(C) =
ΘI(B) ∩ ΘI(ΘI(B)) = ΘI(B) ⊇ C. Therefore, the set C is T I-open. Again,
λ(D) = 0, so D is measurable which implies R \ D is measurable and by Lemma
3.6, ΘI(R \ D) = R ⊇ R \ D. So, R \ D is T I-open and consequently D is T I-
closed. Thus, B is union of T I-open and T I-closed set. So, B is a Borel set in T I .
Therefore, the result follows. �
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