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V-HILFER FRACTIONAL-ORDER LANGEVIN EQUATIONS:
EXISTENCE AND UNIQUENESS REVISITED

SAVITA RATHEE, YOGEETA NARWAL

ABSTRACT. This work discusses the existence and uniqueness findings for
Langevin equations of fractional-order with mixed nonlocal boundary condi-
tions. The existence findings are derived using Krasnoselskii’s fixed point the-
orem and the nonlinear alternative of Leray-Schauder. Uniqueness is proved
using the Banach contraction mapping principle. The fractional derivatives are
described in the W-Hilfer sense. There are numerous examples highlighting the
key findings.

1. INTRODUCTION

Initial and boundary conditions for a range of fractional differential equations
(FDEs) have been analysed by plenty of academics within the prior ten years. Since
the advent of fractional calculus in 1695, there have been numerous definitions of
integral and fractional derivatives (FDs), and these definitions have evolved [16].
For continuous functions, the most common is the Riemann-Liouville (R-L) and
Caputo FD of order v > 0. Hilfer [8] proposed a generalized fractional derivative
of order v € (0,1) and type 8 € [0,1], which may be reduced to the R-L FD for
B =0 and Caputo FD for g = 1. Several writers commonly refer to it as the Hilfer
fractional derivative (HFD).

In 2018, Asawasamrit et al. [I] proposed a new class of the Hilfer boundary value
problem (HBVP) and developed various existence and uniqueness criteria for their
solution using nonlocal integral boundary conditions:

HpvBy(t) = G(t,y(t), teab,l<v<2,0<8<1, (1.1)
y(a’) = 07 y(b) = Z)\Z‘[z“y(gl)a 2% > Oa )‘l S Ra gl S [a‘vb}, (12)
=1

where #D¥# is the HFD of order v, and parameter 3, I* is the R-L fractional
integral of order p; >0, & € [a,b],a>0and \; eR,i=1,2,...,m.
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14 S. RATHEE, Y. NARWAL

As there are so many distinct definitions of integrals and fractional derivatives,
a fractional derivative of one function with respect to another was required [13].
In 2018, Sousa et al. [16], introduced the ¥-Hilfer fractional derivative (¥-HFD),
which is the fractional derivative of one function with respect to another func-
tion in the Hilfer sense. In [I5], Ntouyas and Vivek investigated the existence and
uniqueness of solutions for a new type of sequential W-Hilfer fractional differential
equations with multi-point boundary conditions of the form

(D5 4 KD 15y () = Gty (1), tefabl 1<v<2,0<B<1, (13)
y(a) =0, y(b) = Z/\iy(gi)a k. Xi €R, 0; € [a,0], (1.4)
i=1
where DV#Y is the U-HFD of order v, 1 < v < 2 and parameter 5, 0 < 3 < 1,
G : [a,b] x R — R is a continuous function, i = 1,2,...,m.

Nuchpong et al. [14] in the year 2021 studied the existence and uniqueness results
for the following BVP of Langevin FDE with W-Hilfer fractional derivative and
nonlocal integral boundary conditions:

DI (DY 4 kyy(t) = G(t,y(1), ¢ € [a,b], (1.5)
y(a) = 07 y(b) = Z)\zlél’\yy(ez% 01 € [CLJ)], (16)
i=1

where DX::Pi¥ j = 1,2 is the W-HFD of order y;, 0 < x; < 1 and type i,
0<8<1,i=1,21<x14+x2<2,keR,a>0and G :=ZxR — Ris
a continuous function, %Y is W-R-L fractional integral of order §; > 0, \; € R,
1=1,2,...,m.

Similarly, Guida et al. [7] in 2021 studied the existence and uniqueness for se-
quential W-Hilfer fractional pantograph differential equations with mixed nonlocal
boundary conditions as follows:

(AD" B 4 pHD =10 y(4) = G(t, y(t), y(ot)), te[0,T],0<o<1, (L.7)

y(0) =0, Y Siy(m) + Y w;i T y(0;) + > MDYy () = A, (1.8)
i=1 j=1 k=1

where HDV5Y are the W-Hilfer derivatives (HD) of order u = {v, u.}, 1 < g <
v <2,0<B<1,I%5Y are the U-R-L fractional integrals of order B, with 8; > 0
for 1 <j <m;p,Adi,w; and A\, € R are given constants, the points 7n;,0;,§; are
inJ, forl<i<m;1<j<n;1<k<rand the function G: ZxR? - Ris a
continuous function, J = [0,T], T > 0.

Motivated by [T} [7, [14] [I5], the existence and uniqueness of solutions for the fol-
lowing fractional-order langevin equation with nonlocal mixed multi-point integro-
differential boundary conditions are investigated:

DAY (praBt 4py(t) = F(t (), 0<v; <1,0< B <1,i=1,2,t € [a,b],
(1.9)
»x(a) = 0,3%(b) = Z(Si%(m) + Z w; I 5(0;) + Z MDY 5(), (1.10)

i€l j€eT keK
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where D¥i-#5¥ j = 1,21s the U-HFD of order 1;, 0 < v; < 1 and type 3;,0 < 8; < 1;
l<vi+13<2, k€R, a>0, F:ZxR — Ris a continuous function, I™¥ are
the W-RL FI of order 7;, with 7; > 0 for j € J; p,A,6;,w; and A\, € R are
given constants. The points 7;,0;,&; are in Z for T = {i € T : i = 1,2,...,m},
J={jeJ:j=12...,ntand K={keK :k=1,2,...,7}.

Special Cases:

(i) For 0; =0,V i €Z; \y =0,V j € J; the investigations of [14] regarding the
hybrid differential equation of integer order are incorporated into the results
of the current work

DA (DY 4 p)ac(t) = F(5 2 (0)
»(a) =0, »(b) = Z w; I 3¢(6;).
JjeT
(ii) For vs =0,p=10,0;, =0,Vi € Z; \y, =0,V k € K, we obtain the nonlocal
BVP
DAY (1) = F(t, x(1)),
(@) = 0, 5(b) = > w; IV 5(0)),
JjeJ

the findings of existence and uniqueness for which are acquired in [I].
(iii) For w; =0,V j €Z; Ay =0,V k € J; we obtain a nonlocal BVP for ¥-Hilfer
fractional order Langevin equations with multi-point boundary conditions

DB (DAY 4 p)c(t) = Fi(L a(0),
s(a) = 0, 5(b) =Y 6;5(ms).
ieT
(iv) For 1, B2 = 0, ¥(t) = t; we get nonlinear FDEs with multi-point fractional
integro-differential boundary conditions

REDM(REDY 4 p)se(t) = F(t (1)),
(@) = 0, 5(b) =Y Gise(ms) + D w7 52(0;) + Y MDY (&),
1€T jeET ke

Organization of paper is as follows: Section [2] reviews some necessary preliminar-
ies from fractional calculus. Section [3| focuses on the existence and uniqueness of
solutions to the BVP — using FPT. To show the important conclusions,
examples are built. The findings are summarised in Section [4]

2. AUXILIARY RESULTS
For all t € = = [a,b] and ¥'(t) # 0, consider an increasing function ¥ € C*(Z,R).

Definition 2.1 ([I1]). Let v > 0, v € R, and g € L'([a,b],R). The ¥-R-L frac-
tional integral of a function g with respect to ¥ is defined by
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Definition 2.2 ([16]). Letn—1<v <n,n € N and g € C"([a,b],R). The V-HFD
HpvB¥ () of a function g of order v and type 0 < B < 1 is defined by
1 d\"
Hopv,B;¥ — [Bln—v)¥ 2} =B (n—v)¥ )
g(t) \I/’(s) dt g(t)
Lemma 2.3 ([16]). Let v > 0 and § > 0. Then
(1) Iu;\IlIy;\Ilh(t) — Il/-'rll;\llh(t);
.. ” 6— v V46—
() 10 (W(8) — W(s)" " = sy (W) — W(s))" 07
We note also that #D®5Y) (W (1) — ¥(s))v—D = 0.
Lemma 2.4 ([16]). Let f € L(a,b), n—1<v <n,neN 0< <1, v=
v+ B —v), IG=P=v) f ¢ AC*[a,b]. Then

(Iy;\I/HDV,ﬁ;‘I/f> (t)
" W(t) — U(s vk 1 d\" . 1-8)(n—v
:f(t)_kz_:l( ].E()'y—k(—i-))l) (\I/’(s)dt) Jim, (TP (),

Here we mention some of the FPT used in this paper for the convenience of the
readers.

Lemma 2.5 ([3], Banach fixed point theorem). Let 3 be a Banach space, D C X
closed, and F : D — D a strict contraction, i.e., |F — Fy| < k| — y| for some
k€ (0,1) and all 3¢,y € D. Then F has a fized point in D.

Lemma 2.6 ([12], Krasnoselskii’s fixed point theorem). Let M be a closed, bounded,
conver and nonempty subset of a Banach space ». Let A, B be the operators such
that

(i) As>r+ By € M whenever s,y € M;
(ii) A is compact and continuous;
(iii) B is a contraction mapping.
Then there exists z = Az + Bz.
Lemma 2.7 ([6], Nonlinear alternative for single valued maps). Let E be a Banach

space, C' a closed, convex subset of E, U an open subset of C' and 0 € U. Suppose
that A : U — [C] is a continuous and compact map such that

(i) A has a fixed point in U;
(i) there is an s € QU (the boundary of U in C') and X € (0,1) with » = MNA(5c)
Then, there exist z = Az + Bz.

Remark. To simplify the notation and the proof of some results, we will introduce
the following notation Q% ' (t,a) = (¥(t) — ¥(a))" ' and vy + vy = 3.

3. MAIN RESULTS

We start by proving an auxiliary lemma for the BVP (1.9])-(1.10)).
Lemma 3.1. The function s is a solution of the following BVP

DoAY (Dr2BEY ) (t) = h(t); 0<w1; <1, heC(E,R), (3.1)
(@) =0,3(b)=> " Gise(mi) + > wiI7e(0;) + Y MDY (&), where a>0,
i€l JjeJ keK

(3.2)



V-HILFER FRACTIONAL-ORDER LANGEVIN EQUATIONS... 17

if and only if

Y1+r2—1
() = IFR(E) — prr V() + 20— (b0

AT(71 + v2)
. [%(b) +p(25ﬂ”2?‘1’%(m) + Z iju2+Tj;\I'%(9j) + Z )\kIVQ—ILk;\P%(gk»
=s jeg kek
- (Z&I?’;‘I’h(m) + )W R(0) + Y )\klﬁ_"k?‘l’h(gk)ﬂ , teg,
i€z jeg kek
(3.3)
where
Yyitve—1/ y1+re+75—1 0.
A Z(SQ (nua)_i_zwjgg (]70‘)
~  Thh+mw) = (M +v2+175)
’Yl+l/2 pr—1
her Ly 42 — Nk)
and vi = vi + (1 —vy), i =1,2, 1 <35 <2,
Proof. Applying W-R-L FI of order v; and Lemma on (3.1), we obtain
DVZ’BQ;‘I}%(O + pa(t) = ]Vl?‘yh({) + ‘o (4, a). (3.5)
L'(n)
Applying U-R-L FI of order v» and Lemma [2:4] on the above equation, we get
s(t) = IV R() — pI"Voe(t) + —— 2 QP (L a) + — QP (t,a).
(3.6)
Using »(a) = 0, we get ¢; = 0. Thus,
Co +rvo—1 R vo; W
u(t) = —— QU T (t,a) + IFVh(t) — pI"FY x(t). 3.7
0= s (ba) + () — I o). (37)
Applying operators DY and I755Y to the above equation
H ;U _ Co Y1+ve—prp—1 vo— ;¥ — ;W
DHoS¥ () = ———————Q t,a) — pI"27HRE 5(t) + I3 PR(1),
0= e % (ta) - p (¥ 0
i €0 Fro+7;—1 Vo7 W TR
I3 5(t) = ———2 QU HT T (g q) — pI2tTY s(t) 4 DTV ().
0=ty % (t,) — pI** 7 e(t) 0

Now, using the second boundary condition, we get

Q’Y1+V2 1(771 a) Q’$1+V2+Tj71<9A a) QV1+V2—,U'k—1(€k a):|
¢ 5 —’ + ) w; D2 N A ’
O{Z L(y1 +v2) Z 7Ty +1va+15) Z T+ v — )

€L JjET ke

_p|:25 V2 ‘IJ Th Z w; IV2+T] ) + Z )\klug,uk;\ll%(gk)}
€T jeT ke
) 8 h(n) + > wi FTYR(0;) + Y ATV R(E,) = s(b).
€T jeg keKx
This implies

= [0 (S ) 4 g l0y) 4 3 M)

i€T jeT ke
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(Za FYh(m) + ) w5V R(0;) + ) Akﬁﬂkﬂ’h(gk)ﬂ (3.8)

i€L JET ke
Substituting ¢q in (3.6) we get (3.3)). Direct computation using the specification of
WU-HFD of order v and type 8 and Lemma yields the converse. O

Consider the Banach space C = C(Z,R) of all functions ® : Z — R which are
continuous and endowed with the norm

|| = sup [3(t)]
te(a,b]
In light of Lemma ?7?, we set ¢ : C — C as follows:

(G0 = 7% (6 2(0) — pI Y seft) + 2o (00)

AT (71 +v2)
. {%(b)+p<z 5ilu2;qj%(77i) _|_Z ijV2+Tj;‘1/%(9j) _|_Z /\klwmc;\l/%(gk))
€L jeT kex
(S ) + 3w P 105, (65)
i€l JjET
b3 M f(e,6)) | (39)
keKx

It is worth noting that the sequential BVP (1.9)-(1.10)) has a solution if and only if
¢ has a fixed point. For the sake of brevity, we set:

QY (b,a) + Qy (b, a)
L'(z+1) |A|F(’Y1 + 1)

Q\p 7717 QZH_TJ( Q5+Mk fka )
| T +Z|J| e EO DI |

i€L kex

1=

(3.10)

i it | G
IN(ZE Y AT (y1 + v2)

[Zl Q@(m, +Z\ J‘Q”M(a a) +Z\A | Q” " (k0 )]}

= (v2 — pp + 1)
(3.11)

3.1. Existence results. We use Krasnoselskii’s FPT to demonstrate our inaugural
result for the existence of solution for the BVP ([1.9)-(L.10).

Theorem 3.2. Assume that:

(H1) |F(t,5(t))| < ¢(t) is satisfied for a continuous function F : = x R = R, and
Y (t, ) € 2 x R with ¢ € C(E,R).

(H2) Qo < 1, where Qo is given by .

Then, - has at least one solution on Z=.

Proof. We shall prove that ¢ satisfies the prerequisites of Krasnoselskii’s FPT. On
Q
the closed ball B, = {% €C:|x| < e withe> |1|¢”Ql }, we divide the operator ¢
—
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into the sum of two operators (; and (2, where
sup ¢(t) = [|¢,
teE

Q’\I‘/I1+V2—1(t,a)|: e ‘ '
- m Z5zI F(mi, 5(n:))

i€

(Grae)(t) = ¥V F(t, (1)

19

IR URTIRD DPY AT CRR Y| RCEES

jeTg kex
and

y1+v2—1
(Core)(t) = —pI"Y 5(t) + Qy ™ (ta)

AT(y1 + 1)
' [%(b) tk ( DS () + Y w1V 5(6))
i€l JjeT
+> AkIVZ—Mk%‘P%(gk))] : (3.13)

ke
For any s,y € B, we have
Q}}Jﬂ&*l(t a)
AT (71 + 1)
[ (St + 3 sl 00

€T JjeT

[(C59) (1) + (Gy) (V)] < Sup {F’;q’lf(t s<(O)] + [Pl [y (O] +

S |Ak|1“2“k;‘1“|y<§k>) S 1P F e )

ke i€l

+ Dl [T F (65, 54(65))]

jeT

30 nlr e F (6l |

ke
Q4 (b,a)  QUT7(b,a)
"¢"{ G+ \AIF(V1+V2)

3+
{ZV”QW Nis @ +Z| ]|Q (0),0)

PG+ +1)
Q3+Hk &ﬁ)
2 — ik +1)]}

kel
Quz(b a) Q’Yl+ll2 1 b a |:Z |Q 7717 )
Py +1)  [AL(y +v2) '

" |y|||p|{

Qllz-i-rje a 1/2 p.kg’
I ez ol M}

JjeET ke
S ||¢||Ql + EQQ
<e



20 S. RATHEE, Y. NARWAL

and hence ||(15¢ + (oy|| < € which implies that ¢3¢ + oy € B.. {2 is a contraction
mapping on using (H2). Since, F is continuous. As a result, ¢; is a continuous
operator. Furthermore, on Be; (; is uniformly bounded as

[Cuaell < lloll (3.14)

We now show that the operator (; is compact.
Let

sup |F(t,»)|=F <o
(t,22)€J X B.

and thus, we have

Yy1+v2—1 a
(@) — (O] < PYI(F )0 (B + 20

AT (y1 + 12)
[Zwm*ﬂ () — (F) )]
1€T
Y g [ (F ) (65) — (F)(0))]
JjET
S B (F ) () - @)(@)]
ke
oy(ta), . 0y (t,0)
<TG e ””*\A|F<m+u2>
Q\I/ 7717 QH_TJ( )
(S +Z|]| o

S |Ak|Q“J((§’”)||fﬂn il

pyerd )

Since F is continuous, this implies ||F,., — F| — 0 as n — oo. (1 is thus equicon-
tinuous. So, on B, (i is relatively compact. Arzela-Ascoli theorem implies the

compactness of (1 on B.. Thus, by applying Krasnoselskii’s FPT, . - has
at least one solution on =.

Remark. Some special cases of the above theorem are given by:
For B =0, we get 1 = vy by setting the constant Q9 as

Q0 = |p |{ oy (ba) QO '(ba)
[(va +1) \AolF( )

oy m, Q”””(G a) Q" &k )
| ST+ S S+ S S

€l ke
(3.15)
where
3— 1 3+T;-1 3—pk—1
AO—Z5Q +Z u ZA Q—(gk’) (3.16)
ez 5) jeT L +75) kek PG — 1)
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Corollary 3.3. Let (H1) hold along with Q3 < 1. Then (1.9)-(1.10) has a unique
solution on Z, where QY is defined by (3.1} -
For By =1, we get y1 = 1 by setting the constant Q3 as

—p |{ Qﬁf(b a) 9y (b,a)
Iy +1) |A1|F vy +1)
Qr m, Q2" (0;,a) QP " (&, a)
(SRS * S S M)

el ke
(3.17)

where

Q m, v (05,a) " (G a)
5 “1’ Nt ST (318
Z +Z ]Fl/ +T]+1)+I§C kF(I/g—Mk—i-l) (3.18)

Corollary 3.4. Assume (H1) hold along with Q3 < 1. Then (L.9)-(L.10) has a
unique solution on Z, for Q3 defined by (3.17] -

Example 3.5. Taking the BVP of a fractional-order Langevin equation with a
nonlocal mized multi-point boundary condition and a V-Hilfer fractional derivative:

5 3. 3. 1 1
Digit (Dé,g,t + 12)%({) = 5\/77_(sinttan_1 >+ g), te[0,1], (3.19)
1 /1 1 1. 2 1 1, 1
Here, v1 = Z,I/Q:%,&:%B:%pfﬁ,afo bf3 mfl,nflrfl

61—27 w1 = )\1 8’ 77121 3;51 27 M1 = \I/(t)—t

We see that |.7-"(t, )| < ‘sf Using the given data, we get y1 = vy —|—ﬁ1(1 —1) = %,
A| ~ 1.5514.

Thus, Q1 =~ 0.8952. All the requirements of Theorem[3.2] have been met. As a result,
the given BVP has at least one solution on [0,1].

In this context, we apply the Leray-Schauder’s Nonlinear Alternative to derive
the second existence result.

Theorem 3.6. Let (H2) hold and
(H3) 3 a function q € C(Z,RT) and a function ¢ : RT — RY which is continuous
and non-decreasing such that
|F(t )| < a(O)o(]5]), V (t2) € ExR;
(H4) 3 a constant R > 0 such that
(1-Q2)R
O(R)llqll€21
Then, — has at least one solution on =, for 1y, Qs provided by and
, respectively.
Proof. Let ¢ be defined by .

Step 1. To show that in C(Z,R), ¢ maps bounded sets into bounded sets. Consider
a bounded set B, = {3 € C(E,R) : ||| < €} in C(E,R) for a number € > 0. Then,

>1



22 S. RATHEE, Y. NARWAL

forte =

‘ . QVlJer*l(t a)
£)] < sup § 15| F(t, 52(8))] + [p| T se(t)] + = ——
() (1) < tlelg{ |F(t, (1) + |p| |5(1)] |AID (71 + 12)

: {Z |8\ 13 F (i, 52 (mi))| D Loy [1F705 | F (8, 52(6))|

€T JjeET
Tl (Z 51175 ()

O IR (| F (g, 52(6r)))

ke 1€L
Y g P )+ 3 I ()| + |%<b>)} }
JjET kel

3 a ntvz—l a
< lalo(l){ Q(ﬁ S+ ST
5+Ty (g )

Qv (nisa
[ +Z\J| L

i€L
Q5+"’“(§k, ) oy (b,a)
£ Y0 ) }+|| Ilp |{
,;C +1) P(va +1)
Q’Yl-‘rVQ 1 b a Q\Il Nisa
AT (71 + o) [Zl (vg +1

Qu2+‘r7(9 a z/2 Mk(é-lm ) :|}
=v SRR b
+j§ej| J| (vair+1 +k§€’€| — )+|%( )|
= [lallo(l[>])€21 + [|5¢[|22

= [I¢xll < llgllo(e)fh + Qqe
Step 2. For » € B, and t;,t; € Z with t; < t3, we shall establish that ¢ maps
bounded sets into equicontinuous sets of C(=,R).

() (t2) = (Co) ()]
_ llall¥(e) 203, (ta, 1) + | Q% (ta, @) — Q% (1, a)|] + ﬂ%(tz,h)

TG ) N 2+1>
QP (t,a) — QP+ (11, ) [ Q3 (.a)
+ 0; \I/
AT (1 + 13) 216l (O T
Qé—H—( (gka )
£ oyl (o) LS gl >]
JjeET ! (+ +1 kel ( H +1)
Q}"H*uzfl(t% ) Q’Yl+u2 1 tlv |: qu 7717
* AT (1 + v3) 2. 15

QV2+"'J (9 a V2 Mk(é—k, )
+ Y ey e Z Ml |
F(va+7;+1) V2+uk+1)
JjEeET
Now, to — t; — 0 implies R.H.S. tends to 0, independently of s € Be. The set (B,
is relatively compact and equicontinuous. Arzela-Ascoli theorem implies complete

continuity of (.
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Step 3. To show that © = {5c: 3¢ = A(3, ¥V A € (0,1)} is bounded. If 5 is a solution
to this equation, then we have for t € = and almost the exact computations as
in Step 1; we have

(8] < @(llzl)llqll€2 + ] €22
which gives
(1= D)l _
o(llxDllglin —
In view of (H3), 3 R such that ||| # R. Considering 4 = {5 € C(E,R) : ||| < R},
¢ is a continuous and completely continuous mapping from $ — C(Z,R). By the

choice of il we could not find any s € 94 such that » € ©. From Lemma
the fixed point s € il of ¢ is also a solution of (|1.9)-(1.10]. O

Example 3.7. Given the multi-point BVP with V-HFD

2 4. 4 2, 1 1/1 1 || 1
D35t D3oat =—(= = —_— = 1
o ( v 14)%(t) 10<6|%|+8C0S%+4(1+|%|)+16>’ telod]
(3.21)
1 0.5;t 2 1.55t 1
#(0) = 0, (1) = 0.25¢( 5 ) +0251%5( 2 ) +0.6D" 70 ( ). (3.22)

%, 1 %, 71 = 0.5, 1 = 1.5. We observe that
1 /1 7
< (= L
7 < 15 (gl + 75)
1 /1 7 1 o
and for ¢(|x|) = 0\5 x|+ %) llall = 0 (H3) is satisfied.

Also, A =~ 0.25713, Q1 =~ 0.9782 and Qs = 0.30266. Now,
(1-92)R
(R)llqllfh
for R > 0.16746. Thus, by Theorem problem — must have at least

one solution on [0, 1].

>1

3.2. Uniqueness results. We have the following uniqueness result based on Ba-
nach FPT.

Theorem 3.8. Assume that
(H1) F satisfies Lipschitz condition for second variable with constant L,

and L + Qo < 1, for Q1 and Qo defined by (3.10) and (3.11)), respectively. Then,
the BVP (1.9)-(1.10) has a unique solution on =.

Proof. To show equation (3.9) has a fixed point which is then a solution of the BVP
(C9)-(T10). Set

sup |[F(t,0)| =R < 0
te=

and choose
RO
€E> —————
—1-LO — Qs
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Now, we show that (B, C B, where B, = {5 € C(Z,R); ||| < €}. For any s € B,
we have

[(C) ()] < sup {p”(F(t (1) = F(t,0)] + [F(t,0)]) + [pl 172 [5(t)]

Q"}jl*i’l/z 1(,L a ‘1,
+|AIF(71+{Z|5 |15 (| F (5, 5¢(n)) — F (i, 0)] + | F (i, 0)])

) Wi BT (|F (05, 54(05)) — F(85,0)] + [F(65,0)])

JjeT
NI (| F (&, 52(€k)) — F (&, 0)] + | F (&, 0)])
ke
T se(b) + o (Z BT )|+ 3l |77 (0
€L jeTJ
+y |M"2wz<sk>|ﬂ }
kel
Q\Il(b’ a) Q71+u2 1 b a [ qu Nira
< (el + )] (5+1)+ ) 2 TG R
QHT (0; Qﬁ“k &k, a)
P Y oy e a5, }}
jez; i 3+ +1 ;C —pr+ 1)
Q% (b,a) | Oyt Q@ iy a
+||%||<|p|{ [(va+1) + |A|T( V2+1 {Z| T (v, +1
Qu2+‘r7(9 a 1/2 p,k(&“ )}:|
+7;7|j| T(va+1+1) Z‘ V—,uk—l—l)

< (Ll + R + |||
S (£€ -+ R)Ql + EQQ
<eE.

Therefore, ||(x| < e which implies (B, C B.. Next, let s,y € C(Z,R). Then, for
t € Z, we have

3 a Y1+v2 1 a s
60 - (o < { T+ B ,hfw ST

o3 (0, Qﬁ**"f(gk, a)
+ S bl M”

jeT keK

0% (b,a) Qw '(h,a)
*""( Tlva 1 1) T~ AT T v2)

Qy (nira ;" (05,0)
(St )+Z|]\ e

bloe =

QUZ Mk(glm )
+ Ak
g};l O p—




V-HILFER FRACTIONAL-ORDER LANGEVIN EQUATIONS... 25

= (LD + Qo) |5 — |
= |G = Cyll < (£91 + Qa)[5c -y
Thus, ¢ is a contraction mapping provided (££; + Q) < 1, and owing to that

Banach contraction mapping principle implies that the fixed point of ( is nothing
but the unique solution of the BVP (1.9)-(1.10). O

Remark. In case, L1489 £ 1, that is, the mapping is not a contraction mapping,
then we can use Bielecki’s renorming method [2] instead of the Banach contraction
mapping principle.
Remark. Some special cases of the above theorem are given by:
For 31 =0, we get 1 = 11 by setting constants QY and QY as
0 Qylba) | O (ba)
TG+ \Ao\F( )
Qi (2 Q““k (&, )
| e Z S e D B U et
I'G+1) INGEE + 1 — e+ 1))

€T kex

(3.23)

—p |{ Qi (b, a) Q‘:’I,_l(b, a)
D(vg +1) \AﬂF( )

Qq, m, Q"ﬁ” 0;,a) Q” M (Exy a)
(S T 2 S )

i€l ke
(3.24)
where
Q4 m, Q7 (9),0) Q4 " (&, a)
0; ‘I’ Wi + A2 BB (3,25
; Z TTGT) ,;C FTG— ) (32

Corollary 3.9. For EQ&J + Qg < 1 and (H5) being satisfied, (1.9)-(1.10) has a
unique solution on Z, QF and Q3 specified by (3.23)) and (3.15).
For By =1, we get y1 = 1 by setting constants Q1 and Q3 as

Q3 (b, a) Q7 (b,a)
(z+1) |A|F(V2 + 1)

qu 777,7 Q3+TJ( 3+Mk gka ):|
[;m +Z\ sl +k;€| g,
(3.26)

al =

L = |p |{ Qi (ba) | Qf(ba)
L(ve +1) |A|F(z/2+1)
Qm m, Q””” (9 a) Q42 (&, a)
S ST S]]
(3.27)

where

Q@ 7717 Q" (8, ) " (6 a)
26 Z +T+1)+1§C>\kr(yg—,u}g+l)' (3.28)
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Corollary 3.10. If £LO1 + Q) < 1 and (H5) is satisfied, then the problem (1.9))-
(1.10) has a unique solution on =, for Qi and QY defined by (3.27) and (3.28).

Example 3.11. Given the BVP of a fractional-order Langevin equation with a
nonlocal mixed multi-point boundary condition and a V-Hilfer fractional derivative:

5 2. 3 1. 1 1 |5(1)]
D DI B4 — ) (t) = te1,3], 3.29
PP L)) = e e e L] (3.20)
1 3 1 1 4 1 2 5
Here, i =3, =3 =2 =35 0=t wi=t, =5 m=3,6=3,

2O e 1, 2]

=% m=35 m=3 Y1) =tand F(t %) = gimr 10

3
For any »,y € R and t € [1, 3],

1
— <z —ql.
F(t,22) = F(t )l < o5l —

Here, v1 = v1 + 1(1 — v1) = 1.22. From the given data, we observe that 1 +
Vo = 272, I 2 e i 322, Y1 + vy — H1 = 322, 3 = 316, 3 + 71 = 366,
3 — w1 = 1.72. Hence, condition (H1) is satisfied with £ = 3—12 We discover using
the data provided, A ~ 0.0477, 1 =~ 1.30023 and Qs = 0.3439. This implies that
L + Qs =~ 0.384532 < 1. It follows from Theorem that the problem —

(13.30) has a unique solution.
4. CONCLUSION

The existence and uniqueness of fractional-order Langevin differential equations
with multi-point integral and differential boundary conditions were investigated in
this study. We first transformed the problem into an equivalent fixed point prob-
lem, and then demonstrated its existence using the Krasnoselskii FPT and then
the Leray-Schauder Nonlinear Alternative. The Banach FPT was used to prove
uniqueness. Also, our results are generalizations of fractional differential equations
with multi-point and integral boundary conditions. Finally, we provided instances
with each of the theories in order to buttress our theoretical conclusions.
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