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BELL-BASED PARTIALLY DEGENERATE GENOCCHI
POLYNOMIALS AND THEIR APPLICATIONS

AYED AL E'DAMAT, WASEEM AHMAD KHAN, NAEEM AHMAD

ABSTRACT. In this paper, firstly we introduce not only partially degenerate
Bell-Genocchi polynomials, but also a new generalization of degenerate Bell-
Genocchi polynomials. Secondly, we investigate some behaviors of these poly-
nomials. Furthermore, we establish some implicit summation formulae and
symmetry identities by making use of the generating function of partially de-
generate Bell-Genocchi polynomials. Finally, some results obtained here ex-
tend well-known summations and identities which we stated in the paper.

1. INTRODUCTION

Special polynomials and numbers possess much importance in multifarious areas
of science such as physics, mathematics, applied sciences, engineering and other
related research fields covering differential equations, number theory, functional
analysis, quantum mechanics, mathematical analysis, mathematical physics. Some
of the most significant polynomials in the theory of special polynomials are the
Bell, Euler, Bernoulli, Hermite, and Genocchi polynomials. Recently, many math-
ematicians namely Carlitz [4, 5], Nadeem et al. [26, 27], Khan et al. [10-18], and
Muhiuddin et al. [25] have studied and introduced various degenerate versions of
many special polynomials and numbers (like as degenerate Bernoulli polynomials,
degenerate Euler polynomials, degenerate Daehee polynomials, degenerate Fubini
polynomials, degenerate Stirling numbers of the first and second kind etc). In
this paper, we focus on partially degenerate Bell-Genocchi polynomial and num-
bers. The aim of this paper is to introduce a partially degenerate version of the
Bell-Genocchi polynomials and numbers, the so called partially degenerate Bell-
Genocchi polynomials and numbers, constructing from the degenerate exponential
function. We derive some explicit expressions and identities for those numbers and
polynomials.

Let p be a fixed prime number. Throughout this paper Z,, Q, and C, will denote
the ring of p-adic integers, the field of p-adic rational numbers and the completion of
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algebraic closure of Q,, respectively. The p-adic norm |[.|,, is normalized as |p|, = %

Let |UD(Z,) be the space of C,-valued uniformly differentiable functions on Z,.
For f € |UD(Z,), the p-adic invariant integral on Z, is defined as

p—l

/f Jdpo(z) = lim Zf Yuo(x + p" Zy)

pfl

= lim — Z f(x), (see [7]). (1.1)

N—>oop

From (1.1), we note that

Io(fn Zf , (n e N), (see [7, 8,9]). (1.2)
For n > 0, the Stirling numbers of the second kind are defined by
ZSQ (n,1)(x);, (see [19-24]). (1.3)
From (1.3), we see that
L e—l ZSQnT . (1.4)
The classical Bernoulli polynomials Bn(ac), the classical Euler polynomials E,, (z)

and the classical Genocchi polynomials G,,(z), each of degree n, are defined, re-
spectively, by the following generating functions (see [1, 2]):

ZB ',,|t|<27r (1.5)

ZE ', Jtl<m (1.6)

and

ZG — t]< (1.7)
It is easy to see that
B,(0)=B,, E,(0)=E,, G,(0) =G, (n€N).

The Daehee polynomials are defined by the generating function

log(1 +t) "
g(f ZD —| (see [7]). (1.8)

When x =0, D,, = D, (0) are called the Daehee numbers.

In (2016), Jang et al. [11] introduced the partially degenerate Genocchi polyno-
mials which are defined by the generating function

2log(1 + At)*
e Z Gna (19)
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When z = 0, G,,,» = G,,A(0) are called the partially degenerate Genocchi numbers.

The Bell polynomials Bel, () are defined by the generating function (see [3, 6])

e = t"
e =% Bely (). (1.10)
=0

When z = 1, Bel,, = Bel,(1),(n > 0) are called the Bell numbers. From (1.2)
and (1.9), we note that

Bel,( 252 (k,n)z"*, (n > 0). (1.11)

Recently, Duran et al. [6] mtroduced the generalized Bell-Bernoulli polynomials
for two variables BelB,ga)(x, y) defined by

t \" _ N tn
() e = 3 nab (1.12)

n=0

When z =y =0 in (1.12), Bele,a) = BelB,(La) (0,0) are called the generalized Bell-
Bernoulli numbers.
From (1.12), we note that

) m t «
2 () _ mt—‘—y(et—l)
P Bean (l’, y) n! - (et _ 1) €

n

o t
- Z (Z B Bel,, )) L (1.13)

Comparing the coeﬂﬁments of above equation, we get

n
paBM (@,y) = Y BYY,, Beln(x,y).

m=0

For each k € Ny, Tj(n) [14] defined by
Ty(n) = S (~1)7j* (1.14)

is called the alternating sum. The exponential generating function for Ty (n) is

e tk 1— (_et)(n+1)
k=0

Inspired and motivated by [6], in this paper, we introduce not only partially
degenerate Bell-Genocchi polynomials but also a new generalization of partially
degenerate Bell-Genocchi polynomials and then give some of their applications.
We also derive some implicit summation formula and general symmetry identities.
For obtaining implicit summation formula and general symmetry identities, we use
the proof techniques of Khan et al. [13, 14].
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2. BELL-BASED PARTIALLY DEGENERATE GENOCCHI POLYNOMIALS

In this section, we assume that \,¢ € C, with | At |p < p_ﬂ%l.

The partially

degenerate Bell-Genocchi polynomials are defined by the generating function as

2log(1 + At)* oty t
T Y = Z BelGn,A(xvy)ﬁ

(2.1)

When z =y =01in (2.1), peGnx = BElGn,,\(O, 0) are called the partially degen-

erate Bell-Genocchi numbers.

Theorem 2.1. For n > 0, we have

BelGn)\ LL’ y Z ( ) n— m,)\Belm('ray)'

m=0

Proof. From (2.1), we note that

tn 2log(l+ At)x ,
Z BelGn (T, y) Meaﬂt-&-y(e -1)
n=0

et +1

(G (S

— T;) (n; <m> Gn_mBeln(z, y)> ]

Comparing the coefficients of ¢, we obtain (2.2).

Theorem 2.2 For n > 0, we have

BetGna(2,y) = Z (n) (_)\)mm!BelGn—m(3€7y)-

Proof. From (2.1), we have

210g(1 + )‘t)% eact+y(e‘—1) — IOg(l + At) 2t east-i—y(et—l)

et +1 Mt et +1

(8 S5 (St

m=0

- Z (Z ( ) mi)Tm!BelGnm(:E,y)> g

In view of (2.1) and ( 4), we get the required theorem.

Theorem 2.3. For n > 0, we have

n

n
= mD p— .
BelGn,)\(x7y) Z <m))\ mBelGn m(xvy)

m=0

(2.3)

(2.4)

(2.5)

(2.6)
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Proof. From (1.7) and (2.1), we have

1
210g(1 + )\t) A e$t+y(6t—1) _ log(l + )\t) 2t 6xt+y(et—1)
et +1 At et +1

(ZD )(ZBelaw )

-y (z( )" DGl y>) o @

By (2.1) and (2.7), we get tTleOdesued result. O
Theorem 2.4. For n > 1, we have
e
BetGrna(2,y) = nz__:o ( . >>\mDmBelEnm1(x,y). (2.8)
Proof. From (2.1), we observe that
i Bean,,\(%y)% _ tlog(l/\j‘ At) - j_ 1emt+y(etl)

_t<§:Dm At. ><ZB€IE JCy )
= f: (Z (Z) AmDmBelEnm(x,y)> ti:

n=0 \m=0
0o n—1 1 tn
n— m t
= Z:l Zon( m >/\ DmBelEn_m_l(x,y)> - (2.9)
Therefore, by (2.1) and (2.9), we get the desired result. O
Theorem 2.5. For n > 0, we have
n
n
e Gn 1, = e Gn—m ' Y)- 2.10
BetGn (2 +1,y) mz::() <m>B ! Az, y) (2.10)
Proof. Using the generating function (2.1), we have
0 tn e tn
e Gn 17 - e Gn ) -
HZ:;)B Gz + y)n! nZ%B (G (2 y)n'
1 1
_ 21081+ AN paypyier-1y _ 21081+ AN oppyero
et+1 et +1
1
_ 2log(1 4 At)> ea:t—&-y(et—l)(et —1)
14 et
= i BelGn )\(.f, y)ﬁ i ﬁ - f: BelGn A(Z’, y)L
— ’ n! = m! — ’ n!

n tn

=2 (;)BEIG" mA(2,Y) t ZBean A, y) (2.11)

n=0m=0
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Comparing the coefficients of %ﬂ, on both sides of the above equation, we get the
result (2.10). O

Theorem 2.6. For n € NU {0}, we have

n

n L m\
BeGn(2,y) = Z (m>Gn—nzZ<k>>\m Dy Belg (2, y). (2.12)
k=0

m=0

Proof. Rewriting (2.1) to get

= " 2log(l+ A)> ‘ 2t log(1 4 \t) et
ZBelGn’)\(q;’y)H = T erttule’=1) _ S v erttule’—1)

(ia t”) (ip oo ) (zgezk v ) )

An application of manipulation of series yields

_ Z <Z ( ) n_mi (?)Dm_k)\kaelk(x,yO %T: (2.13)

m=0

o
n!

Equating the coefficients of -y in above equation, we get the result (2.12). ([

Theorem 2.7. For n > 0, we have

BelGna(x,y) = d"™ 1ZBeIG Iy (CH_Z ) . (2.14)

*d
Proof. From (2.1), we have

t 2log(14+ MY oot
ZBelany = B ey

1
_ 21og(1+ X)X ety Ze(a-‘rx)t
Coedt 41

— Z <d” 1ZBelG 3 <a+m’y)) %n' (2.15)

Equating the coefﬁments of % in above equation, we get the result (2.14). (I

3. CONCLUSION

We assume that d € N with d = 1(mod2), let x be a Dirichlet character with
conductor d. The Bell-based generalized partially degenerate Genocchi polynomials
attached to y, are given by the generating function

1 d—1 e}
2 lOg(l + )\t)X a (a+z)t+y(et—1) t
dt 4 1 ;(—1) x(a)e v = ;BelGn,x,A(xa vy G

When z =y = 0 in (3.1), BetGnx,x = BetGny,2(0,0) are called the generalized
partially degenerate Bell-Genocchi numbers attached to .
Note that

)I\IL% BelGn,X,)\('xa y) = BClG"»X(]"’y) ’ (Tl eNU {0})



BELL-BASED PARTIALLY DEGENERATE GENOCCHI 67

Theorem 3.1. For n € NU {0}, we have

BelG XA J? y = Z ( ))‘ DmBelGn 7n)((3j y) (32)

m=0

Proof. From (3.1), we have

d—1
" 210g (1+ Xt) X (ata ot
E BelGn X, >\ ) " i 1 E +x)t+y(e’—1)
’ a=0

B <log(1 + At) =

2t ¢
_1\a (a+x)t+y(e—1)

(§) ()

_ 2 (io( )D A" BetGn—m.x(, y)> f:

Comparing the coefficients of % on both sides of the above equation, we get the
desired result.

(]
Theorem 3.2. For n € NU {0}, we have
d—1 otz
BaGnya(@,y) =d" 'Y (=1)"x(a)paC,, 5 (d’y> : (3.3)
a=0
Proof. From (3.1), we have
1d-1
t" 210g 1 + )\t x a+z)t+ (et—1)
Z BelGn WX )\ ) =T _dat .1 Z Y
n! edt +1 =
d-1 4
1 210g( +)\t)i atw et
=32 (D) g (=5 ) diy(et=1)
a=0
d—1 oo
1 a+x (dt)”
= 0@ Y sy ()
00 d—1
_ a+zx "
= Z (dn 12(_1)ax(a)BelGn)% (d,y>> E
n=0 a=0

Equating the coefficients of

on both sides of the above equation, we get the result
(3.3).

Theorem 3.3. For n € NU {0}, we have

n

BelGn,X,/\(Jf‘ay) = Z <7:ll> Gn—m,x,k(m)Belm(y)' (34)
m=0
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Proof. By (3.1), we observe that

d*l
t" _ 2log(1+ ) (ot -1)
ZBelGnX/\("E y) edt#,l B
n=0 a:O
1d-1
2 log 1 + At A Z (a—‘,—_j(‘)t ey(et—l)
edt + 1 a=0

(i) gt

- <Z ( ) m,x,m)Bezm(y)) a5

m=0

Equating the coefficients of ;—, on both sides of the above equation, we get the result
(3.4). O

Theorem 3.4. For n € NU {0}, we have
BelG ’XA T y Z ( ) n— m,X,kBelm('/I;ay)' (35)

Proof. Using (3.1), we see

d—l
t" _ 2log(1+ ) Jelatbyet =)
ZB@IGTLX/\(‘T y) edt+1 a+tz)t+y(e
n=0 a:O
2log(1 + At) e et | ezttuyle’=1)
- edt +1 a:O

> t =t
= <§ Gl%k“) (;xnn) (Z Bely,(z,y) )
= Z (Z ( ) Grn—m2Beln(z, y)) ZZ

m=0
Equating the coefﬁments of t™ on both sides of the above equation, we get the result
(3.5). O

4. SUMMATION FORMULAE

In this section we give implicit formula of partially degenerate Bell-Genocchi
polynomials by making use of generating function technique. We start following
theorem as.

Theorem 4.1. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials ge;Gp a(z,y) holds true:
k,l

puGiaz) = 3 (5) (1) -0 auti . @)

n
n,p=0 b
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Proof. We replace ¢t by t 4+ u and rewrite the generating function (2.1) as

2log(1 + A(t +u))% rtu_ (b thy!
elttu) 11 e¥l D = gme(thy) Z Bele+l,>\($>y)m7 (see [18]).

k,1=0

(4.2)
Replacing = by z in the above equation and equating the resulting equation to the
above equation, we get

k l

elz=a)(t+w) Z BetGryi (2, y)kl 1 Z Bel G+ (%, y)kl e (4.3)
=0 =0

On expanding exponential function, (4.3) gives

o [z —2)(t+ )]V t* ! th !
> N Z BelGryia(, y)k' i Z BaGrria(z,9) 5 yr, (44)
N=0 k,l=0 k,l=0

which on using formula [18]

Zf = flntm)——r, (4.5)
n,m=0
in the left hand side becomes
= (2 = x)" PP & th ! tF !
> ST E— > BaGraia(z, VT Z Bl Gt A (2,Y) 7 (4.6)
n,p=0 k,l1=0 k,l1=0
z — aj th ul
Bele len—p AT, Y) 7
n;g g:O Henee (k—n)! (I —p)!
ad th 4!

=> Bel Gt A (%:Y) 17 77 (4.7)

k=0
Finally, on equating the coefficients of the powers of ¢ and u in the above equa-
tion, we get the required result. (I

Remark 4.1. By taking [ = 0 in equation (4.1), we immediately deduce the fol-
lowing result.

Corollary 4.1. The next implicit summation formulae for partially degenerate
Bell-Genocchi polynomials ge;Gpoa (2, y) holds true:

k
BaGia(z,y) = Y < ) ) (2 = )" BetGr—na (2, ). (4.8)

n
n=0

Remark 4.2. On replacing z by z 4+ = and setting y = 0 in Theorem 4.1, we

immediately deduce the following result.

Corollary 4.2. The next implicit summation formulae involving partially degen-
erate Genocchi polynomials Gy, »(z) holds true:
k.l

Groa(z+1) = > ( g ) ( ; )(Z)nerGk-&-l—p—n,)\(x) (4.9)

n
n,p=0 p
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whereas by setting z = 0 in Theorem 4.1, we get another result involving partially
degenerate Genocchi polynomials of one and two variables.
k.l

Grraly) = Z ( g ) ( : )(—x)nerBeszHpn,/\(ﬂcay)~ (4.10)

n
n,p=0 p

Remark 4.3. Along with the above results we will exploit extended forms of
partially degenerate Genocchi polynomials by setting y = 0 in the Theorem 4.1 to

get
K,

k l n
Grux(z) = ZO( N ) < » > (2 = )" "PGryi_p (). (4.11)
n,p=
Theorem 4.2. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials ge;Gpoa (2, y) holds true:

n

BelGn,A(x+Z7y+u) = Z < ?TL )BelGnm,A(Zau)Belm(xay)' (412)

m=0

Proof. Replacing z by z + z and y by y + u in (2.1), we have

" 210g(1+ MDY (i (pre (el
ZBelGnA( +2z,y+u ) M(+)t+(y+ )(e'—1)

t
= et +1
(ZBelGn)\ZU ) (ZBel (z,9) )
m=0
Finally replacing n by n — m and comparing the coefficients of £ o1, we get the
desired result (4.12). O

Theorem 4.3. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials ge;Gp a(z,y) holds true:

BelGn)\ ya ZZ( ) n— l)\ )ykSQ(Zak) (413)

1=0 k=0
Proof. Using (2.1), we get

t” 210e(1 + M) 3 ,
Z BelGh, Az y Mext—&-y(e -1)

et +1
) m oo 1 i tl
n=0 1=0 k=0
=S XD )Gooia@yFSa(l, k) | =
l n!
n=0 \1=0 k=0
On comparing the coefficients of t", we get (4.13). O

Theorem 4.4. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials ge;Gpoa (2, y) holds true:

BelGn,)\(xay) = Z < ZL )Gn—m,)\('x - z)Belm(z,y) (414)
m=0
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Proof. We exploit (2.1) and rewrite (2.1) as

210g(1+At)% (x—2)t zt+y(ef—1) - " - "
— e ety :E;Gm“x—zhﬁg;Bdm@whmr(45)

Finally comparing the coefficients of powers of ¢ in above equation gives the result
(4.14). |

Theorem 4.5. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials pe;Gp a(z,y) holds true:

n

BelGn,A($+1ay) = Z ( Z )BelGnm,)\(xay)~ (4~16)

m=0

Proof. Replacing x by « + 1 in (2.1), we get

oo m 2log(1 4+ AH)x , S
ZBelGn,)\(l'-‘rl,y); = MG( +1)t+y(e"—1)

t
o 1+4+e
2 log(l + )\t)i J,t—f—y(e -1)
et +1
= ZBelGn,A(x,y)a Z ok

n=0 m=0
Replacing n by n —m in the above equation and then comparing the coefficients of
L5, we get the desired result (4.16). O

Theorem 4.6. The following implicit summation formulae for partially degenerate
Bell-Genocchi polynomials ge;Gpoa (2, y) holds true:

-1 -
BetGra (@ + 1Y) + BaGna(z,y) —2712 ( " ) (CA)7m Beln 1-m(,Y).

m+1
(4.17)

Proof. Using the generating function (2.1), we have

t" m%u+m) _qy 2log(1+ At)> | b
elGn, 1 o1Gn 2o\ T AT J(edD)tty(er—1) y = 7o\ T A7 jwtty(e’—1)
ngoBz A(z+1,y) +nEOBz Az, y) ] t— T

= 2log(1 + )\t)ie”*y(etl)
— 9 (log(l + /\t)) eact—i—y(et—l)

At
=2t (2}%) (ZBel x,y) )
)m t"+1
=2 73 l—m(x, .
Zmz( ) @’

e
n!

Comparing the coefficients of -7 in above equation, we get the result (4.17). O
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5. SYMMETRY IDENTITIES

Recently Khan et al. [13, 14] have established some interesting symmetry iden-
tities for various polynomials. Here, we present certain symmetry identities for the
partially degenerate Bell-Genocchi polynomials ge; Gy a (2, y) in the following form.

Theorem 5.1. For each pair of integers a and b and all integers n > 0, the following
symmetry identity holds true:
- n m _n—m
Z < m > b"a BelGn—m,)\(bxay)Bele,,)\(axay)
m=0

n

< :Jn ) Gmbn_mBelGn—m,,\(a%Z/)Bele,A(bx,y)- (51)

m=0
Proof. Let
a b
A(t) — (2 IOg(l(j;at)‘? Aliiibltoi(ll;_ )‘t) A ) e2abwt+y(e“t—1)+y(ebt—l). (5.2)

Then the expression A(t) is symmetric in @ and b and can be expressed into series
in two ways to obtain

m!

0o £ o bt)™
A(t) = Z BelGn,)\(bxay)% Z Bele,)\(axa y)( )
n=0 ’

m=0

oo

S n m_n—m t
== ZO (Z < m >b a BelGn—m,)\(bxaby)Bchm,)\(axvy)> E (53)

=0

Similarly, A(t) can be written as

N ()" (at)™
A(t) = BaGnalaz,y) p > BeaGm(bz,y) o
n=0 m=0
= Z (Z < > a b BelGnm,A(a:r,y)Bele’A(bx,y)> 7' (54)
n=0 \m=0 m n:
By comparing the coefficients of ¢ on the right hand sides of the last two equations,
we get the identity (5.1). O

Remark 5.1. Replacing y = 0 in Theorem 5.1, we get

Corollary 5.1. Let a,b > 0 with a # b and x € R and n > 0, the following
symmetry identity holds true:
i ) pmgnmmG A(02)Gy  (a2)
— m n—m, m,
=3 ( Z >amb"man_m,A(ax)Gm,A(bx). (5.5)
m=0

Remark 5.2. Replacing b = 1 in Theorem 5.1, we get
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Corollary 5.2. Let a,b > 0 with a # b and x,y € R and n > 0, the following
symmetry identity holds true:

m

Z < " )a"mBean—m,A(bSC,y)Bele,A(ax,y)

m=0

=> ( Zz >amBelGn—m,)\(anay)Bele,)\(xay)- (5.6)
m=0

Theorem 5.2. For each pair of integers a and b and all integers n > 1, the following
symmetry identity holds true:

n a—1b—1
L b. .
Z ( Z > a" ko Z Z(_l)lJerelank,A <b$1 + 51 +]vy> BetGra(az2,y)

k=0 1=0 j=0

n n b—1la—1 a

Z < 3 > b Fa” ZZ D paGrgoa (aI1 + gi +j,y) BelGra(bxa, y).
k=0 1=0 j=0

(5.7)

Proof. Consider

a b
(21log(1 + At)3)(2log(1 + At) X ) (et +1)2 Jab(1+a2) -yt —1) by(e—1)

B(t) =
( ) (eat + 1)2(€bt + 1)2
(5.8)
_ 210g(L+M)F gy (enrony (€7 4 1 2log(1 + At)% gabasty(er—n) (€41
et 41 ebt +1 ebt +1 et 41
210g(1+ A3 ety 1) ail( igbti 2log(1 + At)*% abrat+y(et'—1) bi( 1)t
=— "7’ ¢ — = 7 —1)e
eat + 1 — 6bt +1 =

a a—1b—1
210 14 At)x paba at _ )i T+ 24 bt)"
21og(1+ AN payigy(ent—1) SN (1)t +eits)a (E B Gra(ay, y)(k) )

et +1
+ 1=0 57=0 k=0

oo a—1b-—1 o0
" b, at)” bt )k
= (22> ()G <b331 + —i +J>y) ( ,) > BaGralazs,y) ( k)' ;
n=0i=0 j—0 a n: =0 (k)!
o) n n a—1b—1 o b
EOEDDY ( k ) a" NN (1) paGrga (bivl + =i+ g, y> BetGra(az2,y)
n=0 \ k=0 i=0 j=0 a
(5.9)
On the other hand, we have
o) n n b—1a—1 o a
Bt)= | ( k ) 0" FaR Y TN (1) g G (axg +5it y) BelGr(bx2,Y)
n=0 \ k=0 i=0 j=0
(5.10)

By comparing the coefficients of tn—n, on the right hand sides of the last two equations,
we arrive at the desired result. (]
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Theorem 5.3. For each pair of integers a and b and all integers n > 0, the following
symmetry identity holds true:

n a—1b—1
> ( Z ) a" Y N (1) G (b’h + Si, y) Bel G\ (a$2 + %j, Z/)

k=0 =0 j=0
n n b—1a—1 a b
— n—k_k i+j ; ;
=> ( A ) b "a ZZ(—U ! BelGn—k,» (ax1 + g%y) BelGrx <b$2 + a]a:’/) :
k=0 =0 j7=0
(5.11)

Proof. The proof is analogous to Theorem 5.2 but we need to write equation (5.8)
in the form

210g(1+>\t)% britty(edt—1) ot bt‘ 210g(1+)\t)% baot bt _
1) = b1 y(e z % b2 +y(e”"—1) at]
C( ) < eat + 1 ; ebt +1 Z
a—1b—1 oo oo
: b tn a tk
_ z+ n . k -
= Z J Za BelGn,A <b$1 + alay> o Zb BelGix (CMQ + gjay> T
i=0 j:O n=0 k=0
(5.12)
On the other hand ”equation” (5.8) can be shown equal to
b—1a—1 [e%s) a m 0o b tk
_ 1+7 n . k .
C(t) = ZZ(—U 7Y 0BG (axl + gz,y) o > a* paGha (bl‘z + a.%?/) T
1=0 j=0 n=0 k=0
(5.13)
Next making change of index and by equating the coefficients of t ; to zero in
(5.12) and (5.13), we get the result (5.11). O
Theorem 5.4. For each pair of integers a and b and all integers n > 0, the following
symmetry identity holds true:
- n & k
Z ( 1 ) a" ROk g G (b1, ) ( ; > Ti(a — 1) petGr—ix(ax2, y)
k=0 i=0
n n k
= Z ( i ) a0 g Gk (az1,9) Y ( > = 1) BetGr—ix (b2, y),
=0 =
(5.14)
where the sum of alternative integer powers Tj(n) is given by (1.15).
Proof. We now use
(2log(1 + At)%)(2log(1 + At) 3 )(1 — (—ebt)a)eablzate)tty(e™ ~1)ty(e" ~1)
D(t) = )
(eat + 1)(6bt + 1)2
to find that
a b
D(t) _ (2 IOg(]. + )‘t) >‘ ) eabazlt+y(e“t71) 1- (_ ) (2 IOg(l + )‘t) A) abwgter(ebt 1)
et 41 ebt +1 ebt +1

<Z BetGn(bz1,7) ) (ZT > (Z BeGr (a2, y) (b]:')’f> .
n=0 )

k=0
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Using a similar plan, we get

= bt)™ > at)? s at)E
D(t) = Zo Bean,,\(a:cl,y)% E Ti(b - 1)% E Bele,A(bx%y)%
n= i=0 k=0

Finally (5.14) follows after an appropriate change of summation index and compar-
ison of the coefficients of ’;Tn, O

6. CONCLUSION

Motivated by importance and potential for applications in certain problems in num-
ber theory, combinatorics, classical and numerical analysis and other fields of ap-
plied mathematics, various special numbers and polynomials, and their variants and
generalizations have been extensively investigated (for example, see the references
here and those cited therein). The results presented here, being very general, can
be specialized to yield a large number of identities involving known or new simpler
numbers and polynomials. For example, the case y = 0 of the results presented
here give the corresponding ones for the generalized partially degenerate Genocchi
polynomials [8].
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