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BOUNDARY VALUE PROBLEMS FOR CAPUTO-HADAMARD
FRACTIONAL DIFFERENTIAL EQUATIONS ASSOCIATED
WITH ATANGANA-BALEANU INTEGRAL

ANIL KUMAR YADAV, RUPAKSHI MISHRA PANDEY

ABSTRACT. The aim of the present work is to investigate the existence and
uniqueness of solutions to fractional differential equations involving the Caputo
Hadamard fractional operator of order 1 < A < 2 with impulsive boundary con-
ditions and Atangana-Baleanu(AB) fractional integral. To establish our main
results the Banach Contraction Principle and Schauder’s fixed point theorem
are used. Also, some examples are given to illustrate our main results.

1. INTRODUCTION

A more extensive and comprehensive type of differential equation theory is known
as fractional differential equation theory. There are several uses for boundary value
problems of fractional order in applied physics, biology, engineering, and chemical
background. By using initial and boundary conditions a lot of research has been
done by reseachers to the differential equation of arbitrary order. For more details
see ([I]. 2], 61,1101, [12).

Several researchers have recently studied the differential equations of fractional
order using the Riemann-Liouville and Caputo fractional derivatives ([3], [20], [I8]).
Furthermore to the Riemann-Liouville and Caputo derivatives, the Hadamard frac-
tional derivative is another kind of fractional derivative that has been addressed
in the literature. It includes an arbitrary logarithmic function which makes it
different from the previous ones; see ([12],[13],[14],[I8]). By using Caputo and
Hadamard fractional derivatives, Jarad et al. [I1I] defined the Caputo-Hadamard
fractional derivative. For detailed study of the Hadamard integral and derivative
see ([8],[14],[22]).

The past few decades, it has been seen an evolution in the research of impulsive
boundary value problems. Few of the established outcomes from integral boundary
value problems involving fractional derivatives of the Caputo type have been given
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by Tian and Bai [19]. The existence and uniqueness results have been developed
using the fixed point theorem. There are several research papers related to impul-
sive boundary value problems available in the literature; see ([5],[7],[9],[14],[20],[21]).

The latest study has been focused on impulsive differential equations with Hadamard
and Caputo-Hadamard derivatives. The Caputo-Hadamard fractional differential
equation in the following form with the impulsive boundary condition was examined
by the authors of [16]:

“HD2 o(0) = f(o,¢(0)), 0,0k € [l,€], 0 # ok
Ap(or) = Ix(p(ok)), k=1,2,---,m

Adp(or) = Ii(p(ow))

©(1) = hip), ple) = g(p).

The Hadamard fractional differential equation for the impulsive multi-order was
studied by W. Yukunthorn et.al. in [20]:

“Dyro(0) = f(o,9(0)), 0,04 € [L €], U#Ok
Arp(or) = ¢lik(p(ok)), k=1,2,
arp(to) + Brp(T) = Zz oV LFE z¢(0i+1)~

The Caputo fractional differential equation involving the Riemann-Liouville integral
was studied by the authors in [17] :

{CDH@( o) = f(o,9(0), 1% (o)), t € [a,b],
p(a) = pq.

In [I5] by using non instantaneous impulsive boundary conditions the authors de-
scribed the ¥-Caputo fractional integro differential equations of the form

CDP:¢§0(U) = f(O',(,O(O'),,B(p(O’)), (S (Sivo'i-i-l]’ 0<p<l,
(P(U) - Hi(0—750(0))7 k=1,2,---,m
arp(to) + Bip(T) =

Another extended form of the Caputo-Hadamard fractional differential equation
with impulsive boundary conditions is studied by the authors in [4]:

HDPo(o) = f(o,0(0),Bp(0)), o € [L,T], 0<p<1,
w(og) =w(og) +ye, yp ER, k=12, m
w(l) = 0,ag F?w(n) + BGDRw(T) = A, 2,7 € (0,1].
Motivated by the above results, here we have considered the Caputo-Hadamard frac-

tional differential equation involving Atangana-Baleanu fractional derivative with
impulsive boundary conditions:

D) (o) = f(o,0(0), AP I'((0))), 0,0k € [to,T], o # o%
Ap(og) = Ig(w(ok)), k=1,2,--- 'm

Adgp(or) = Ir(¢(ow)

p(to) = h(p), ¢(T) = g(»),



94 A. K. YADAV, R. M. PANDEY

_ is the Caputo-Hadamard fractional derivative of order 1 < A < 2
and 48T # is the Atangana-Baleanu fractional integral which is defined as

where “# D

1—p [ \RL

A

(P Iiw)(p) = (Tu)w(sﬁ) + (FM) If'w.

Also, let f : [to,T] * R« R — R be a given continuous function and Ay(oy) =
(o) — o(oy ), Adp(oy) = dp(o) — dp(oy, ), where § = oL, Also, ¢(o;) and

@(o;, ) are the right limit and left limit of p(o) at o = oy, respectively.

This manuscript is organized as follows. In Section 2, some definitions and
lemmas are given which are used in the main results. The results based on the
theorems Banach Contraction Principle and Schauder’s fixed point are given in
section 3. To illustrate the application of our main results some examples are
explained in section 4. In section 5 conclusions are presented.

2. PRELIMINARIES

In this section, some basic definitions and lemmas are given which are used in
our main results.

Let us consider J = [to, T, to <t1 <ty <tm <tmy1 =T, Jo = [to, 1],
J1 = [t1,t2], - Jm = [tm,T], and the Banach space

PC(J,R) ={u:J = Ryu(.) € C((tg-tg+1],R), k= 0,1,2,---m}
and u(t)), u(ty) exist with u(t;) = u(ty), k=1,2,--- ,m, with the norm
lullpe = sup{lu(t)] : t € J}.

Definition 2.1. The Riemann-Liouville fractional derivative of order n > 0 for a
continuous function ¢ is defined by

1 B} H o
D7 =—| = — g)nn—t ) -1 .
o+¢(0) F(u—n)(6t> /0 ()] f(s)ds, p—1<n<p
Definition 2.2. The Riemann-Liouville fractional integral of order n > 0 for a
continuous function ¢ is defined by
1 o

I oo :—/ o —s)1T1f(s)ds,

Jo() = s | o =)
where T is defined by T'(n) = fooo e T dx.
Definition 2.3. The Caputo derivative of order n for the function ¢ : [0,00) — R,
is defined by

1 7 4,0“(3)
cpn — ) 0 -1 .
W(U)_F( 77)/0 ( 5)77 g s, o >0, u <n<pu

Definition 2.4. The Hadamard derivative of fractional order n for the function
¢:a,b] > R, 0<a<bis defined as

1 5S\H* o p p—n—1 s
"Dlp(0) = F(u—n)<050> / <1og S) %)557 p—=1<n < p, p=[n+1,

where [n] represents the integer part of the real number 7).
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Definition 2.5. The Hadamard integral of fractional order n for the function ¢ :
[a,b] — R is defined as

Hno(o) = ﬁ /: <log Z)nl@is) 3s.

Definition 2.6. The Caputo-Hadamard derivative of fractional order n for the
function ¢ : [a,b] = R, 0 < a < b is defined as
1 o pn—n—1
CHDZsD(U)=7/ <10g0> 5“9()618 p—l<n<p p=Mn+1,
F(,u - 77) a S
where § = (U%), and [n] represents the integer part of the real number 7).

Lemma 2.1. [I1] Let y € AC}[to,T] or C3[to, T] and oo € C. Then

D) = ote) 3 o (12

k=0

Lemma 2.2. Let 1 < A <2 and a € C(J,R). Then the nonlinear system
CHD?;CQD(U) = CL(O’), 0,0k € [t07T]7 a 7£ Ok
Acp(ok) = Ik(u(ak)), k= ]., 2, e,
Adp(or) = Ik (u(ow))
o(to) = h(p), ¢(T) =g(¥)

is equivalent to the following integral equation
c log(o) + h(p) + I a(0); o € Jo
¢ log(o) + h(p) +1 I, a(0) + X_, 12, a(o;)

P(0) = § + 38 Li(p(oy) + 35, ( UJ>H13J 14(0;)

+Z§:1 <log ;)Ij(cp(aj)); c€Jy, k=1,2,---,m

= Gy (910) = M) = S5 1, ale) = S i ole)
s (1o £ )2 atoy) - S (1o 2 ) Eiolo)))

Proof. By Lemma 2.1, for o € Jy = [09, 01], we have

1 k
L DAl = o00) - Yoen (108 ) =)o e o ()

0

A—1
o 1 7 o ds o
p(o) = H—r?oa(g)?LCo-FCl 10%(;0) = o) /U <log 8) ‘1(3)?+Co+61 10g(;0)

0

39(0) =0 lo(oll = o | oy | (1o Z)Ha< )b l| =T el

0
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As (1) = h(p) implies cg = h(yp), it follows that
p(0) =115 a(0) + h(p) + c1log(o) = ¢ log(0) + h(w) + I3, a(0),

where ¢ = ¢;.

Now for o € J; = (01, 02], we have
91,00 D, )(0) = ple) —do i (10 7).
1
#(0) = 12, al0) + do + s 10 7 )
1

1 1 7 o\ 2 ds d;

= g— = - 1 _ 2o = HI)\fl )
e(0) = o telo) = | srrs [ (1062) a0 T ] < ate)

Also, (o) — (o7 ) = Ap(o1) = I (¢(01)) implies
Li(p(on)) = do — I3 a(01) = h() — ¢ log(o1)
do =113, a(01) + h(p) + ¢ log(o1) + L (¢(01))
and dp(ay) — dp(oy ) = Adp(a1) = I (¢(o1)) implies
Li(p(o1)) = di = 15 a(o1) — ¢,
di = I (¢(01)) + Hfégla(al) + c.
Applying the above arguments, we get
¢(0) = "2, a0)+ Dyalon)+ (10g & )13y aton)+ (Tow 2 ) ilon) +h(e)
+ Ii(p(01)) + ¢ log(o).

On repeating the same process, for o € J,,, = (o, T, we get

(0) = on(5) A0+ Dol + 2 (108 2 ) Blilon) +112, (0
+ Zm HI;‘J 1a(o'j) —+ Z;nzl <10g :;)HIA 1111(0'])

using the condtion ¢(T) = g(¢), we have

9(p) = clog(5)+h(p)+>071, Li(u(oy)+307, (log )I (p(o)+7 13 a(T)
ST atoy) + S (T 2 )L (o)

This implies that

‘= ) (960 = ) = S 10(00) = Ty (108 2 ) 16003

(logl

+Zm+1H]3J 1a(aj)—2?:1 <10g 0J>HI>\ 11a(0_])> 0
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3. MAIN RESULTS

Now we construct an operator X : PC(J,R) — PC(J,R) such that
log(e) + (1 — log(0))h(0) + log(0)g(¢)+ 3" Ti((0%))
Vit + S5 sy e (08 2) ™ 59042 110061
+ 300 sy S (log 2) T £ (s, 0(s) AP I ((s))) &
Vo J5 (08 F(ss0(6) 42 (o) 2

“ (logll) <_ ;Cn:l Ik@(gk))—zzn:l (10g i) F(A T(O-1) fok 1 ( ) 72f(37‘p(3)»AB I{L(QP(S)))%
~r b S (log ) T (s, () AP I (p(s)) - Yo (log )m (0 >>).

Here, we make a few suitable assumptions for establishing our main outcomes.

(H1) Suppose Py > 0 is a constant and f : J x R — R is a continuous function
such that

|f(o,51,7m1) = f(0,82,72)| < Pi|sy — s2| + Pa|r1 — 12,

for all o € J and all s1,71, 89,72 € R.

(H2) Also let P3, P, > 0 be constants such that

e (p1) — Ie(p2)| < P31 — @al, Hk(p1) — Te(p2)| < Pilpr — o,
for p1,02 € R, k=1,2,--- .'m

(Hs) There exist constants Py, Ps > 0 such that

lg(¢1) — 9(p2)| < Psllor — @allpc, |h(p1) — hwz2)] < Psller — w2llpe-

Now, we first apply the Banach Contraction Principle to demonstrate the existence
and uniqueness result.

Theorem 3.1. Suppose that the conditions of (Hy),(Hz) and (Hs) hold and
dm + 2
I'(A)

Then the problem given by (1) has a unique solution on [ty, T).

Proof. Let sup,¢;|f(0,0,0)| = Q1, maxy [Ix(0)| = Q2, maxy, Tk (0)] = Q3, |9(0)| =
Q4, |h(0)| = Q5 and

((Pl +P)———+2m(P3s+ Py)+ Ps -‘rPg)

Uy = {w(v) € PC(JR); Jullpe < Ro},

where

(4m +2)Q1 +2mI'(V)(Q2 + Q3) + T'(A)(Q4 + @5)

Fo = F()\) — (4m + 2)(P1 + PQ) — 2mF()\)(P3 + P4) — (P5 + PG)-
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Firstly we prove that X maps Uy into itself
m o \A—1
ol < 5 Sp S (log Z) £ (s, ()48 T ((5)) — £(5,0,0)]4
s\ A—2 s
F(/\) Zm+1 Ok—1 (log Tk) |f(5707 0)|d?

+zzz1(log3; o S (log )7 f (s, (), A8 T ((s)) — £(s,0,0)] %

) (
i (ton )y £, (02 %)"17(6.0.0)1%
+ 2k Ik (@(ow) = Te(p(0))] + 2242 [Tk(2(0)))

T (108 2 ) u(elon) ~ RleO] + T3, (1o 2 ) (e (0)

m+1 Pilellpc+Pellellpc+@1 m+1 Pi||e||lpct+Pe|lellpc+Q1
<3l TOT) + 2kt INe)

+m(Bs|lellpe + Q2) + m(Pallellpe + Q3)

< T (Pillellpe + Pallellpc + Q1) + m(Psllellpc + Pullollpc + Q2 + Q).

Again

[R(p(o))] < fal + [h(p)] + [g(2)| + m(Ps]lellpo + Q2) + m(Pall¢llpc + Qs)

Pi|ellpc+Pellellpc+Q1 m  Pi||ellpctPellellpc+Q1 m  Pi|e|lpctPe|lellpc+Q1
+ T +D ket TOD) +D ket )

< 57 (Pillellpc + Pellellpo + Q1) + 2m(Ps|l¢l | pc + Q2) +2m(Pallol pc + Qs)

+ (Psllellpe + Qa) + (Pollellpe + Qs) + F55 (Pllellpe + Pallellpe + Q1)

< F57 (Pillellpe + Pllellpe + Q1) + 2m(Psllellpe + Q2) + 2m(Pall¢l pc + Qs)

+ (Bsllellpe + Qa) + (Bsllell o + Qs)
< Ry.

This shows the operator X maps Uy into itself.

Now to prove the map X is a contraction. Consider p1, 2 € PC(J,R) such that
for any o0 € Ji, K =1,2,--- ,m, we have

) = R(p2(0))] < (ﬁ&lﬁ)(HJer)*- Eo (P + P2) +2mPs + 2mPy +

IN(p1 (o
Ps + P >X||§01 2|l pc
< m+2

_<( (P1+P2)+2mP3+2mP4+P5+P6)||<p1 allpc.
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This shows that the mapping N is a contraction map. So by the Banach fixed point
theorem it is clear that the mapping N has a unique fixed point. Hence the problem
given by (1.1) has a unique solution on [ty, T]. O

Theorem 3.2. Suppose f is a continuous function and a(.) € L(J,R), s1 > 0 are
any constants such that |f(o, ¢, A8 I (p(s)))| < a(o) + s1|p]” + sa|(ABIH (p(s)))]°.
Also let I, I, g, h be continuous functions such that s; > 0 for i=3,4,5,6 s.t.,
‘Ik((p” < 83|90|H) ‘Ik((p” < 84|90|V7 |g(90>| < 85|§0|/\7 |h(§0)| < 86|50‘77 k=1,2,---,m
for any ¢ € R and for some 0 < o, u, v, A,y < 1. If
2(2m +1)(s1 + s2)
I'(A)

then the problem given by (1.1) has at least one solution on [tg,T).

+ 2mss + 2msg + 55+ s¢ < 1,

Proof. Firstly we show that the operator N is continuous. Since the functions

f,g9,h, I, I;; k =1,2,--- ,m, are continuous functions, so the operator X is contin-
uous.

Now we will show that the operator X maps a bounded set into uniformly
bounded sets.
Let

Uy = {(p(a) € PC(J,R); ||ollpc < R0}7

where

(4m +2)Q1 +2mI'(A\)(Q2 + Q3) + '(V)(Q4 + Q5)

For any arbitrary ¢ € U, we have

Ry =

ol < S elon) L (108 2 ) gy 7, (108.2) 15062 T (o)) |2
S S, (1082 1 00 IS+ (108 2 ) Falo(on))

< mszRY +msaRY + )\) Zm+1 oh1 " (log Z=

S

1+ 2 R m+1 A—=14g o S\A—2 o
PO S 7 (o %) by S (1o ) 2 (1og ) )
(s1+s T A—24s
+ f(x21 D <1Ogak> oD Jo (log2)" 7
m+1 o \A—1 s
< 1ty Zhen Jok, (log )" a(s) &
1 m T o g\ A2 ds (m+1)(s1+s2)R”
+ oD Dkt <log W) fo':_l (log Z) a(s)$ + r(Alﬂ)2

+ % + mssR* + msyRY

< A N ZmH o ((10g?)A2+(10g(’;’“)/\2)a(s)?

+ w + mssRF + msyRY
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m“ ou\A 2, (ds | (@mA1)(s1+s2)R7 " y
A 7 2kt Jop s " (logZE)" Ta(s)L + ey + mszRF + msaR

and

R(p(o))] < lal+ (@)l + [h(@) + 2250 [k (plow)) + 2255 (log Ui)lfk(w(ok))

+ i [, (log %)™ a(s) % 4 Lo 7 (1og 2) a(s) &

m A—1 s14s -
"‘ﬁZk 1fo‘k1( ) ()ds"‘(lf:(; D ohe 1fgk1(10g ") s
+ F()\l—l) >y (log 0%) f;jﬂ (log %)/\_Qa(s)%

R T (g ) [ (1og 2) a(e) %

< |a| + m35R)‘ + mS6R'Y + m33R# —+ mS4RV + (m+ ()\+1)

A— ldé

)(s1+s2)R + m(;l(;\o—j_zl))Ra

m o \A—1 s

+ F(A Z H P (IOg?k) a(s)d?
1 m 1002 ) (7% (log 25 ) 2a(s) 48
+ T'(A-1) Zk:l 0g ok fdk,l ( 0g 7 ) CL(S) s

A—2 7
< A 5 Zm+1 i l(log%) ()dé+w+mng“

T(A\+1)

+ mssRY + mss R + msgRY + mssR* + ms,RY + w
m(s1+s2)R7 m+1 o \A—2 d
+ Fl(/\+21) + F(,\ i) pIa Oho1 “ (log %)™ “a(s)$

S

+1 o\ A2 s 2(2m+1)(s1+s2)R
oy L [T (log %)™ a(s) e 4 20 gl

+ 2ms3R 4 2ms4sR + mss R + msgR

<R.
This shows that X maps U into itself.

Also to show that the operator X maps bounded sets into equicontinuous sets.

Let U C PC(J,R) be any arbitrary bounded set. Also consider Ny = max|{f(o, ) :

o€ J,p€U}+1, ¢ € U such that 01,09 € [tg,T] where o1 < 02. So we obtain

|al

O’k))‘71@
s

v N m
< msgRI +mssRY + 775 ks 1fo'k 1(

+ oty Sy (log Z) [ (log %) 7| £(s,0(s). 4P I (p(5))) | 2

k1
Nf (2m+1)

+ < Ty + msgRF* + msa R,

and

N(p(o

log(02))

%V”@—IQU%%Y”%|

s ok

r(,\ ‘ (

+ | log(o1)—log(o2)| Ny Z?n o ( Og%))\—QQ + (IOg(Ul) _ log(ag))mS4RV

T'(A-1) s

< (la] + s5R* 4+ s¢ R* + msgR")(log(o1) — log(o2))

1))=R(p(02))| < |al(log(e1)—log(02))+s5R* (log(c1) —log(02)) +s6 B> (log (1) —



BOUNDARY VALUE PROBLEMS FOR CAPUTO-HADAMARD FRACTIONAL 101

+ 251 S (log(or) — log(s)) ™2 — [7* (log(on) —log(s) " £|| .,

log(o log(o2)|N A=24g
+ Lenloposrale s [ (log %)~
< (Ja| + ssBR* + s R* + msyRY)(log(a1) — log(o2))
og(o1)—log(o m A—1
- Ldos( 1)1“;)\%( S >hei (log(ok) — log(ok—1))

+ oy [(log (1) — log(ox)) ™ — (log(a) —log(aw)) ],

— 0 as 01 — 03. This shows that the operator X maps bounded sets into equicon-
tinuous sets of PC'(J,R). On combining the complete proof we get X is a completely
continuous operator. Therefore by the Schauder’s fixed point theorem the operator
N has at least one fixed point and hence the problem given by (1.1) has at least one
solution in [to, T7. O

4. NUMERICAL EXAMPLES

Example 1. Consider the following non-linear boundary value problem

CHD(;.%k(p(O'> _ sm(cpé(;)ll w(o) + 1+027 (S [%73]7 o 7& %
Ap(2) = 2o(2), +
Adp(2) = F5u(?), .
e(2) = h(9); ¢(3) = glp),
where
he) = SIy 0np(6). gle) = S Buplns). € # 2 € (3.3)
and
Yei< o Y8
i=1 10° i=1 0
Here
_ sin(p(0)) — (o) 1
f(O',QD)— 20 +1 1+02

We can easily see that,

(0,01, I (01(5))) = f o 02,28 I (02(9))) 1 — @2| + 2*10|<P1 — .

|_24

So P1 = 247P2 Slmllarly P3 = 10, P4 = %7 P5 = %, P6 = % AISO here
A= 7, o1 = g, = 1 and therefore
4m + 2
((P1+P2) TFTL()\) +2m(P3+P4)+P5+P6> =0.749 < 1.

As all the conditions of Theorem 3.1 are satisfied. So the above boundary value
problem has a unique solution on [to, 7.

Example 2. Consider the following boundary value problem
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3 o
CHDZ pl0) = 254, o€ (4,3, 0 # 3

) 10e°+8 37 3
5y — %5
Ap(3) = 13+€(§))’ (4.2)
5 Pi3
Adp(2) = sm5p03
o(3) = h(p); ©(3)=g(p),
where N 1
(p(X;))3 (p(B)))7
h(p) = min ——*—, g(¢) = max -————~ 4.3
() 154+ p())) (%) 15 4 o(B;) 43
with j = 1,2,---,10, A;, 5 # 3 € (5,3). Here sy = 51, s2 = 151, 83 = 13,
S4= 5=, S5 = 1=, S¢ = 1= and m = 1. Clearly
2(2 1
( ( m+F())E;91 +52) + 2ms3 + 2msy + s5 + 56) =0.368 < 1. (4.4)

As all the conditions of Theorem 3.2 are satisfied. So the above boundary value
problem has at least one solution on [tg, T

5. CONCLUSION

The investigation of IBVP has advanced in the past few decades. It has also
been extremely useful to develop a variety of applied mathematical models of actual
processes in applied sciences and engineering. Recently, much attention has been
paid to the existence of solutions for fractional differential equations due to its wide
application in engineering, economics and other fields. In this work the Banach
Contraction Principle and Schauder’s fixed point theorem are used to establish the
existence and uniqueness of solutions to fractional differential equations involving
the Caputo Hadamard fractional operator with impulsive boundary conditions and
Atangana-Baleanu(AB) fractional integral. Also to validate our main results some
examples are given. In future works, it could be apply for the more complicated
fractional systems and uses some other kinds of operators.
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