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MULTI-DIMENSIONAL MATRIX CHARACTERIZATION OF

(`1, `1) AND MERCERIAN-TYPE THEOREM VIA MATRIX

CONVOLUTION

SAMI M. HAMID, RICHARD F. PATTERSON

Abstract. This paper extends the study of infinite matrices to four-dimensional

matrices in (`1, `1) under convolution operation. We characterize the space

(`1, `1;P ) and establish the algebraic properties of (`1, `1), proving it forms
a Banach algebra under convolution. The main result is a Mercerian-type

theorem for four-dimensional matrices under convolution.

1. Introduction

Four-dimensional matrix transformations have grown as a key area of math-
ematical study over many decades. Robison [10] and Hamilton [5] laid the early
foundation by studying matrix regularity in four dimensions. Later, Móricz and
Rhoades [6] made important progress with their work on strongly regular matrices
for double sequences. Zeltser et al. [13] added to this knowledge by studying almost
conservative and almost regular four-dimensional matrices. A major step forward
came when Başar and Savaşcı [1] wrote their detailed book, which covered various
matrix types and presented new findings about Mercerian and Steinhaus type the-
orems, including both their own discoveries and those of others. The reader can
also refer to the recent articles [2], [3], [4], [11] and [12] covering new approaches to
double sequences. Mursaleen and Mohiuddine [7] developed crucial new methods
for analyzing double sequence convergence, filling important gaps in the theory.

The space of infinite matrices mapping `1 into itself, denoted as (`1, `1), has been
extensively studied in the two-dimensional setting. Seminal work by Natarajan in
[8] established key results on the algebraic properties of this space. Our paper ex-
tends this analysis to the four-dimensional domain, introducing a four-dimensional
matrix convolution product. This convolution operation allows us to explore the
algebraic structure of four-dimensional matrices in (`1, `1) from a new perspective.

The structure of this paper is as follows: We begin with essential definitions and
preliminary results, including a formal introduction of four-dimensional convolution
product. We then discuss the algebraic properties of (`1, `1) and (`1, `1;P ) in
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this four-dimensional matrix context, with particular emphasis on their behavior
under the convolution product. This paper presents a Mercerian-type theorem for
four-dimensional matrices in (`1, `1), demonstrating how classical results extend to
double sequences under convolution product framework.

2. Preliminaries and Definitions

Definition 2.1. By Ω, we denote the space of all real or complex valued double
sequences x = (xk,l)k,l≥0, which forms a vector space with coordinatewise addition
and scalar multiplication.

The space of absolutely summable double sequences is defined as:

Definition 2.2. The space of absolutely summable double sequences, denoted by
`1, is defined as

`1 =

x = (xk,l)k,l≥0 ∈ Ω :

∞,∞∑
k,l=0,0

|xk,l| <∞

 .

The space `1 is a Banach space with the norm ‖x‖`1 =

∞,∞∑
k,l=0,0

|xk,l|.

The A−transform of a double sequence is defined as:

Definition 2.3. Let A = (am,n,k,l)m,n,k,l≥0 be a four-dimensional infinite matrix.
The A-transform of a double sequence x = (xk,l)k,l≥0 is the double sequence Ax =
{(Ax)m,n}, where

(Ax)m,n =

∞,∞∑
k,l=0,0

am,n,k,lxk,l, m, n ≥ 0

assuming that the double series on the right exists.

The class of four-dimensional matrices that map `1 into itself is defined as:

Definition 2.4. We write A = (am,n,k,l) ∈ (`1, `1) if for every x = (xk,l) ∈ `1, the
double sequence Ax = {(Ax)m,n} belongs to the space `1.

A particularly important subclass of (`1, `1), denoted as (`1, `1;P ), which we
define as follows:

Definition 2.5. The class (`1, `1;P ) is defined as the set of all four-dimensional
matrices A = (am,n,k,l) ∈ (`1, `1) that satisfy the additional property

∞,∞∑
m,n=0,0

(Ax)m,n =

∞,∞∑
k,l=0,0

xk,l

for all x = (xk,l) ∈ `1.

3. Characterization of (`1, `1;P )

Patterson’s theorem in [9] lays the groundwork for our characterizing four-
dimensional matrices that map `1 into itself. Extending this foundation, we develop
a theorem that specifically characterizes the class (`1, `1;P ).
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Theorem 3.1 (cf. [9, Theorem 6]). A four-dimensional matrix A = (am,n,k,l) ∈
(`1, `1) if and only if there exists a positive constant MA such that for each k and
l,

∞,∞∑
m,n=0,0

|am,n,k,l| < MA.

Using Theorem 3.1, we now present a theorem that characterizes the class
(`1, `1;P ).

Theorem 3.2. Let A = (am,n,k,l) be a four-dimensional matrix. Then A ∈
(`1, `1;P ) if and only if

(i) there exists M > 0 such that sup
k,l≥0

∞,∞∑
m,n=0,0

|am,n,k,l| ≤M , and

(ii) for all k, l ≥ 0,

∞,∞∑
m,n=0,0

am,n,k,l = 1.

Proof. We will prove that conditions (i) and (ii) hold. Let A ∈ (`1, `1;P ). Then,
A ∈ (`1, `1) and there exists a positive constant MA such that for each k, l ≥ 0

by Theorem 3.1,

∞,∞∑
m,n=0,0

|am,n,k,l| < MA. This directly implies condition (i) with

M = MA.
Since A ∈ (`1, `1;P ), by definition, it preserves the sum of any (xk,l) ∈ `1. For

fixed k, l ≥ 0, let e(k,l) = (ei,j) be the double sequence defined as

ei,j =

{
1 if i = k and j = l;

0 otherwise.

Clearly, e(k,l) ∈ `1 for any k, l ≥ 0. Applying the sum-preserving property to e(k,l)

we get

∞,∞∑
m,n=0,0

(Ae(k,l))m,n =

∞,∞∑
i,j=0,0

ei,j = 1. (1)

Expanding the left side in (1) and using the fact that ei,j = 1 when i = k and j = l,
and 0 otherwise, we obtain

∞,∞∑
m,n=0,0

(Ae(k,l))m,n =

∞,∞∑
m,n=0,0

 ∞,∞∑
i,j=0,0

am,n,i,jei,j

 =

∞,∞∑
m,n=0,0

am,n,k,l. (2)

From (1) and (2), it follows that

∞,∞∑
m,n=0,0

am,n,k,l = 1 for fixed k and l. This holds

for all k, l ≥ 0, proving condition (ii). Thus, we have shown that if A ∈ (`1, `1;P ),
then conditions (i) and (ii) are satisfied, completing the proof of necessity.

For the sufficiency part, assume that both conditions (i) and (ii) hold and let
x = (xk,l) ∈ `1. We show that Ax ∈ `1 and that A preserves the sum of x. First,
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we show that Ax ∈ `1. Since

∞,∞∑
m,n=0,0

|(Ax)m,n| =
∞,∞∑

m,n=0,0

∣∣∣∣∣∣
∞,∞∑

k,l=0,0

am,n,k,lxk,l

∣∣∣∣∣∣
≤

∞,∞∑
m,n=0,0,

∞,∞∑
k,l=0,0

|am,n,k,l||xk,l| =
∞,∞∑

k,l=0,0

|xk,l|

( ∞,∞∑
m,n=0,0

|am,n,k,l|

)

≤M
∞,∞∑

k,l=0,0

|xk,l| <∞,

where the last inequality follows from condition (i) and the fact that x ∈ `1.
Now, we show that A preserves the sum of x. Since

∞,∞∑
m,n=0,0

(Ax)m,n =

∞,∞∑
m,n=0,0

∞,∞∑
k,l=0,0

am,n,k,lxk,l

=

∞,∞∑
k,l=0,0

xk,l

( ∞,∞∑
m,n=0,0

am,n,k,l

)
=

∞,∞∑
k,l=0,0

xk,l.

The interchange of summation order is justified by the absolute convergence of the
series involved, which follows from the boundedness condition (i) and the fact that
x ∈ `1. Therefore, A ∈ (`1, `1;P ). �

4. Algebraic Properties of (`1, `1) and (`1, `1;P )

In this section, we introduce a norm on (`1, `1) suitable for our four-dimensional
context. We then demonstrate that (`1, `1), when equipped with this norm and the
four-dimensional matrix convolution operation, forms a Banach algebra. Subse-
quently, we investigate the algebraic characteristics of (`1, `1;P ) as a subset of
(`1, `1).

Theorem 4.1. Let A = (am,n,k,l) be a four-dimensional matrix in (`1, `1). Define
a function φ : (`1, `1)→ R by

φ(A) = sup
k,l≥0

∞,∞∑
m,n=0,0

|am,n,k,l|.

Then φ is a norm on the space of four-dimensional matrices in (`1, `1).

Proof. The verification that φ satisfies the properties of a norm (positive definite-
ness, absolute homogeneity, and the triangle inequality) follows directly from its
definition, utilizing properties of supremum and absolute value. �

Definition 4.2 (Norm for Four-Dimensional Matrices in (`1, `1)). For any four-
dimensional matrix A in (`1, `1), we define ‖A‖ = φ(A), where φ is the function
proven to be a norm in Theorem 4.1. This ‖ · ‖ is adopted as the standard norm
for the space of four-dimensional matrices in (`1, `1).

Next, we define the convolution operation for four-dimensional matrices, followed
by the concepts of identity matrix and matrix inverse in this convolution context.
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Definition 4.3 (Convolution of Four-Dimensional Infinite Matrices). Let A =
(ai,j,k,l) and B = (bi,j,k,l) be four-dimensional infinite matrices. Their convolution
C = A ∗B = (cm,n,k,l) is defined by

cm,n,k,l :=

m∑
i=0

n∑
j=0

ai,j,k,lbm−i,n−j,k,l

for all m,n, k, l ≥ 0.

Lemma 4.4 (Commutativity of Four-Dimensional Matrix Convolution). For any
two four-dimensional matrices A = (ai,j,k,l) and B = (bi,j,k,l), the convolution
operation is commutative. That is, A ∗B = B ∗A.

Proof. Consider the (m,n, k, l)-th element of B ∗A

(B ∗A)m,n,k,l =

m∑
i=0

n∑
j=0

bi,j,k,lam−i,n−j,k,l.

By making a change of variables: i′ = m− i and j′ = n− j. As i goes from 0 to m,
i′ goes from m to 0. Similarly, as j goes from 0 to n, j′ goes from n to 0. Applying
this change of variables

(B ∗A)m,n,k,l =

m∑
i′=0

n∑
j′=0

bm−i′,n−j′,k,lai′,j′,k,l.

Now, rearranging the summation terms and renaming i′ back to i and j′ back to j

(B ∗A)m,n,k,l =

m∑
i=0

n∑
j=0

ai,j,k,lbm−i,n−j,k,l

= (A ∗B)m,n,k,l.

Since this equality holds for all m,n, k, l ≥ 0, we have shown that A∗B = B∗A. �

Theorem 4.5 (Identity Element for Four-Dimensional Matrix Convolution). The
identity element E = (em,n,k,l) for the convolution product of four-dimensional
matrices is defined as

em,n,k,l =

{
1, if m = n = 0, for all k, l ≥ 0;

0, otherwise.

That is, for any four-dimensional matrix A = (am,n,k,l), we have A∗E = E∗A = A.
Moreover, ‖E‖ = 1 and E ∈ (`1, `1;P ).

Proof. Let A = (am,n,k,l) be any four-dimensional matrix. First, we will show that
A ∗ E = A. For any m,n, k, l ≥ 0, we have

(A ∗ E)m,n,k,l =

m∑
i=0

n∑
j=0

ai,j,k,lem−i,n−j,k,l

= am,n,k,le0,0,k,l +
∑

(i,j) 6=(m,n)

ai,j,k,lem−i,n−j,k,l.

Now, by the definition of E, we have e0,0,k,l = 1 for all k, l ≥ 0 and em−i,n−j,k,l = 0
for all (i, j) 6= (m,n). Therefore,

(A ∗ E)m,n,k,l = am,n,k,l · 1 + 0 = am,n,k,l
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which imply that A ∗ E = A. Now E ∗A = A follows by the commutativity of the
convolution operation as proved in Lemma 4.4. Therefore, A ∗ E = E ∗ A = A for
all four-dimensional matrices A.

The norm of E is given by

‖E‖ = sup
k,l≥0

∞,∞∑
m,n=0,0

|em,n,k,l|

= sup
k,l≥0

|e0,0,k,l|+ ∑
(m,n)6=(0,0)

|em,n,k,l|

 = 1.

To show E ∈ (`1, `1;P ), we prove for all x = (xk,l) ∈ `1 that

∞,∞∑
m,n=0,0

(Ex)m,n =

∞,∞∑
k,l=0,0

xk,l. Let x = (xk,l) ∈ `1, then for any m,n ≥ 0, we have

(Ex)m,n =

∞,∞∑
k,l=0,0

em,n,k,lxk,l =


∞,∞∑

k,l=0,0

xk,l, if m = n = 0;

0, otherwise.

Summing over all m and n yields

∞,∞∑
m,n=0,0

(Ex)m,n = (Ex)0,0 +
∑

(m,n)6=(0,0)

(Ex)m,n

=

∞,∞∑
k,l=0,0

xk,l + 0 =

∞,∞∑
k,l=0,0

xk,l,

and therefore, E ∈ (`1, `1;P ). �

Definition 4.6 (Inverse of a Four-Dimensional Matrix under Convolution). Let
A = (am,n,k,l) be a four-dimensional matrix. If there exists a four-dimensional
matrix B = (bm,n,k,l) such that their convolution is equal to the identity element
E, i.e., A ∗ B = B ∗ A = E, then the matrix B is called the inverse of the matrix
A under convolution and is written B = A−1.

We shall now establish two critical lemmas concerning the convolution of trans-
formations on four-dimensional matrices in (`1, `1) space which will be used in the
subsequent theorems.

Lemma 4.7. Let A = (am,n,k,l) and B = (bm,n,k,l) be in (`1, `1). Then their con-
volution A∗B is also in (`1, `1). Moreover, the norm in (`1, `1) is submultiplicative
under convolution, i.e., ‖A ∗B‖ ≤ ‖A‖‖B‖.

Proof. Let A = (am,n,k,l) and B = (bm,n,k,l) be in (`1, `1). Then, by Definition 4.2,

‖A‖ = sup
k,l≥0

∞,∞∑
m,n=0,0

|am,n,k,l| <∞ and ‖B‖ = sup
k,l≥0

∞,∞∑
m,n=0,0

|bm,n,k,l| <∞.
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Let C = A ∗B = (cm,n,k,l). Then, by Definition 4.3 of convolution

cm,n,k,l =

m∑
i=0

n∑
j=0

ai,j,k,lbm−i,n−j,k,l.

Now

∞,∞∑
m,n=0,0

|cm,n,k,l| =
∞,∞∑

m,n=0,0

∣∣∣∣∣∣
m∑
i=0

n∑
j=0

ai,j,k,lbm−i,n−j,k,l

∣∣∣∣∣∣
≤

∞,∞∑
m,n=0,0

m∑
i=0

n∑
j=0

|ai,j,k,l||bm−i,n−j,k,l|

=

∞,∞∑
i,j=0,0

|ai,j,k,l|
∞∑

m=i

∞∑
n=j

|bm−i,n−j,k,l|

=

∞,∞∑
i,j=0,0

|ai,j,k,l|
∞,∞∑

m,n=0,0

|bm,n,k,l| ≤ ‖A‖‖B‖.

Since this bound is independent of k and l, we have

‖C‖ = sup
k,l≥0

∞,∞∑
m,n=0,0

|cm,n,k,l| ≤ ‖A‖‖B‖ <∞.

Therefore, C = A ∗ B ∈ (`1, `1) and the norm is submultiplicative under the con-
volution product. �

Lemma 4.8 (Completeness of (`1, `1)). The space (`1, `1) of four-dimensional ma-

trices A = (am,n,k,l) with the norm ‖A‖ = sup
k,l≥0

∞,∞∑
m,n=0,0

|am,n,k,l| is complete.

Proof. Let (A(p))p∈N be a Cauchy sequence in (`1, `1), where A(p) = (a
(p)
m,n,k,l). We

show that this sequence converges to an element in (`1, `1). By the definition of a
Cauchy sequence, for any ε > 0, there exists K ∈ N such that for all p, q > K,

‖A(p) −A(q)‖ = sup
k,l≥0

∞,∞∑
m,n=0,0

|a(p)m,n,k,l − a
(q)
m,n,k,l| < ε.

This implies that for each fixed m,n, k, l, (a
(p)
m,n,k,l)p∈N is a Cauchy sequence in

C. Since C is complete, this sequence converges. We can thus define αm,n,k,l =

lim
p→∞

a
(p)
m,n,k,l. Let A = (αm,n,k,l)m,n,k,l≥0. We show that A ∈ (`1, `1). For any

ε > 0, choose K as above. Then for any p > K and any k, l ≥ 0,
∞,∞∑

m,n=0,0

|αm,n,k,l| =

∞,∞∑
m,n=0,0

lim
p→∞

|a(p)m,n,k,l|

≤ lim inf
p→∞

∞,∞∑
m,n=0,0

|a(p)m,n,k,l| ≤ lim inf
p→∞

‖A(p)‖ <∞,

where the first inequality follows from Fatou’s lemma, and the last inequality holds
because (A(p)) is a Cauchy sequence in C and thus bounded, which proves that
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A ∈ (`1, `1). To prove that A(p) → A in the (`1, `1) norm, observe that for any
p, q > K,

‖A−A(p)‖ = sup
k,l≥0

∞,∞∑
m,n=0,0

|αm,n,k,l − a(p)m,n,k,l|

= sup
k,l≥0

∞,∞∑
m,n=0,0

lim
q→∞

|a(q)m,n,k,l − a
(p)
m,n,k,l|

≤ lim inf
q→∞

(
sup
k,l≥0

∞,∞∑
m,n=0,0

|a(q)m,n,k,l − a
(p)
m,n,k,l|

)
= lim inf

q→∞
‖A(q) −A(p)‖ ≤ ε.

As ε is arbitrary, we conclude that A(p) → A in the (`1, `1) norm. Therefore, (`1, `1)
is complete. �

With these properties established, we can now prove our main result in this
section about the algebraic structure of (`1, `1).

Theorem 4.9. Let A = (am,n,k,l) ∈ (`1, `1). Then, the class (`1, `1) is a Ba-

nach algebra under the norm ‖A‖ = sup
k,l≥0

∞,∞∑
m,n=0,0

|am,n,k,l|, with the usual matrix

addition, scalar multiplication, and convolution as the multiplication operation.

Proof. We begin by observing that (`1, `1) forms a vector space over the complex
field. The closure under addition and scalar multiplication follows from the prop-
erties of absolute convergence of the series defining the norm. The vector space
axioms are readily verified.

In Definition 4.2, the norm on (`1, `1) has been defined and shown to satisfy all
norm axioms in Theorem 4.1. Therefore, (`1, `1) is a normed linear space under
this norm.

The completeness of (`1, `1) under this norm has been established in Lemma 4.8,
demonstrating that (`1, `1) is a Banach space.

To show that (`1, `1) is an algebra, we need to demonstrate closure under convolu-
tion, and the continuity of this operation. The closure of (`1, `1) under convolution
and the submultiplicativity of the norm under convolution have been established
in Lemma 4.7. This lemma also demonstrates that the submultiplicativity prop-
erty implies the continuity of the convolution operation, as required for a Banach
algebra.
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To show the associativity of convolution, let A = (am,n,k,l), B = (bm,n,k,l) and
C = (cm,n,k,l) ∈ (`1, `1), then for any m,n, k, l ≥ 0 we have

((A ∗B) ∗ C)m,n,k,l =

m∑
i=0

n∑
j=0

(A ∗B)i,j,k,lcm−i,n−j,k,l

=

m∑
i=0

n∑
j=0

(
i∑

p=0

j∑
q=0

ap,q,k,lbi−p,j−q,k,l

)
cm−i,n−j,k,l

=

m∑
p=0

n∑
q=0

ap,q,k,l

m∑
i=p

n∑
j=q

bi−p,j−q,k,lcm−i,n−j,k,l

=
m∑

p=0

n∑
q=0

ap,q,k,l(B ∗ C)m−p,n−q,k,l

= (A ∗ (B ∗ C))m,n,k,l.

The distributivity of convolution over addition can be verified through similar
computations as those used for associativity. Therefore, (`1, `1) satisfies all the
requirements of a Banach algebra under convolution. �

We now examine the properties of the subclass (`1, `1;P ).

Theorem 4.10. The class (`1, `1;P ), as a subset of (`1, `1), is a closed, convex
semigroup with identity, the multiplication being the four-dimensional matrix con-
volution.

Proof. Let A = (am,n,k,l) and B = (bm,n,k,l) ∈ (`1, `1;P ). Then by definition,

there exist MA > 0 and MB > 0 such that sup
k,l≥0

∞,∞∑
m,n=0

|am,n,k,l| ≤ MA and

sup
k,l≥0

∞,∞∑
m,n=0

|bm,n,k,l| ≤MB . Let M = max{MA,MB}. Then, we have

sup
k,l≥0

∞,∞∑
m,n=0,0

|am,n,k,l| ≤M and sup
k,l≥0

∞,∞∑
m,n=0,0

|bm,n,k,l| ≤M .

Let λ and µ be non-negative real numbers such that λ+ µ = 1. Then, one can see
that

sup
k,l≥0

∞,∞∑
m,n=0

|λam,n,k,l + µbm,n,k,l|

≤ λ sup
k,l≥0

∞,∞∑
m,n=0

|am,n,k,l|+ µ sup
k,l≥0

∞,∞∑
m,n=0

|bm,n,k,l| ≤M .

Also, for all k, l ≥ 0

∞,∞∑
m,n=0

(λam,n,k,l + µbm,n,k,l) = λ

∞,∞∑
m,n=0

am,n,k,l + µ

∞,∞∑
m,n=0

bm,n,k,l = 1,
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by using the fact that

∞,∞∑
m,n=0

am,n,k,l =

∞,∞∑
m,n=0

bm,n,k,l = 1. This shows that λA +

µB ∈ (`1, `1;P ) and that (`1, `1;P ) is a convex subset of (`1, `1).
To show that (`1, `1;P ) is closed in (`1, `1), let (A(r))r∈N be a sequence in

(`1, `1;P ) converging to some A in (`1, `1). We prove that A ∈ (`1, `1;P ). Given
ε > 0, there exists a positive integer N such that

‖A(r) −A‖ < ε, r > N

i.e.,

sup
k,l≥0

∞,∞∑
m,n=0,0

|a(r)m,n,k,l − am,n,k,l| < ε, r > N .

Now, fix r > N . Since A(r) ∈ (`1, `1;P ), we know that for all k, l ≥ 0,

∞,∞∑
m,n=0,0

a
(r)
m,n,k,l = 1.

For any fixed k, l ≥ 0, we have∣∣∣∣∣
∞,∞∑

m,n=0,0

am,n,k,l − 1

∣∣∣∣∣ =

∣∣∣∣∣
∞,∞∑

m,n=0,0

am,n,k,l −
∞,∞∑

m,n=0,0

a
(r)
m,n,k,l

∣∣∣∣∣
≤

∞,∞∑
m,n=0,0

|am,n,k,l − a(r)m,n,k,l|

≤ sup
k,l≥0

∞,∞∑
m,n=0,0

|am,n,k,l − a(r)m,n,k,l| < ε.

Since ε is arbitrary, we conclude that

∞,∞∑
m,n=0,0

am,n,k,l = 1 for all k, l ≥ 0. This,

combined with the fact that A ∈ (`1, `1), implies that A ∈ (`1, `1;P ). Therefore,
(`1, `1;P ) is closed in (`1, `1).

As shown in Theorem 4.5, the identity element E is in (`1, `1;P ) for the four-
dimensional matrix convolution.

To complete the proof of the theorem, it suffices to check closure under convolu-
tion. Let A = (am,n,k,l) and B = (bm,n,k,l) be in (`1, `1;P ). We need to show that
their convolution C = A ∗B = (cm,n,k,l) is also in (`1, `1;P ). For fixed k, l,

∞,∞∑
m,n=0,0

cm,n,k,l =

∞,∞∑
m,n=0,0

m,n∑
i,j=0,0

ai,j,k,lbm−i,n−j,k,l

=

∞,∞∑
i,j=0,0

ai,j,k,l

∞,∞∑
m=i,n=j

bm−i,n−j,k,l

=

∞,∞∑
i,j=0,0

ai,j,k,l

∞,∞∑
m,n=0,0

bm,n,k,l = 1.
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This shows that

∞,∞∑
m,n=0,0

cm,n,k,l = 1 for all k, l ≥ 0, proving that A∗B ∈ (`1, `1;P ).

This completes the proof of the theorem. �

Remark. The class (`1, `1;P ) is not an algebra since the sum of two elements of
(`1, `1;P ) is not necessarily in (`1, `1;P ).

To illustrate this last point, we provide the following example.

Example 4.11. Define four-dimensional matrices A = (am,n,k,l) and B = (bm,n,k,l)
as

am,n,k,l =

{
1, if m = n = k = l = 0;

0, otherwise,

and

bm,n,k,l =

{
1, if m = n = 0 and k = l ≥ 1;

0, otherwise.

Both A,B ∈ (`1, `1;P ) since

∞,∞∑
m,n=0,0

am,n,k,l =

{
1, if k = l = 0;

0, otherwise,

and
∞,∞∑

m,n=0,0

bm,n,k,l =

{
1, if k = l ≥ 1;

0, if k 6= l or k = l = 0.

The sum C = A+B = (cm,n,k,l) is given by

cm,n,k,l =

{
1, if m = n = 0 and k = l ≥ 0;

0, otherwise,

with
∞,∞∑

m,n=0,0

cm,n,k,l =

{
1, if k = l ≥ 0;

0, if k 6= l.

Since

∞,∞∑
m,n=0,0

cm,n,k,l 6= 1 when k 6= l, we conclude C /∈ (`1, `1;P ). Thus, (`1, `1;P )

is not closed under addition and does not form an algebra under usual matrix op-
erations.

5. Mercerian-type Theorem for Four-Dimensional Matrices

We first establish a connection between double sequences in `1 and four-
dimensional matrices in (`1, `1). We begin by defining a correspondence and then
proving its properties in the following lemma.

Definition 5.1. Define a correspondence φ between `1 and a subset of (`1, `1) as
follows: For any (zm,n) ∈ `1, let φ((zm,n)) = Z = (zm,n,k,l) where

zm,n,k,l =

{
zm−k,n−l, if m ≥ k and n ≥ l,
0, otherwise.



MULTI-DIMENSIONAL MATRIX CHARACTERIZATION VIA CONVOLUTION 127

Lemma 5.2. The correspondence φ defined above is a bijection between `1 and a
subset of (`1, `1). Moreover, this correspondence is norm-preserving, i.e.,

∞,∞∑
m,n=0,0

|zm,n| = sup
k,l≥0

∞,∞∑
m,n=0,0

|zm,n,k,l|

for all (zm,n) ∈ `1.

Proof. The well-definedness, injectivity, and norm-preserving properties of φ are
immediate consequences of its definition and fundamental properties of summation
and supremum. It remains to establish the surjectivity of φ. Given such a Z, define
(zm,n) by zm,n = zm,n,0,0 for all m,n ≥ 0. We show that (zm,n) ∈ `1 and that
φ((zm,n)) = Z. First, (zm,n) ∈ `1 because

∞,∞∑
m,n=0,0

|zm,n| =
∞,∞∑

m,n=0,0

|zm,n,0,0| ≤ sup
k,l≥0

∞,∞∑
m,n=0,0

|zm,n,k,l| <∞.

Now, we show that φ((zm,n)) = Z. Let φ((zm,n)) = Y = (ym,n,k,l). By definition
of φ,

ym,n,k,l =

{
zm−k,n−l, if m ≥ k and n ≥ l;
0, otherwise.

But this is exactly how Z is defined, so Y = Z. �

With this bijective correspondence established, we can now state and prove our
main theorem.

Theorem 5.3 (Mercerian-type Theorem under Convolution). Let (ym,n) and (xm,n)
be double sequences of complex numbers related by

ym,n = xm,n + λ

m∑
k=0

n∑
l=0

cm−kdn−lxk,l,

where λ, c, and d are complex numbers satisfying |c| < 1, |d| < 1, and (ym,n) ∈ `1.
Then (xm,n) ∈ `1 provided |λ| < (1− |c|)(1− |d|).

Proof. We represent the double sequences (xm,n) and (ym,n) as four-dimensional
matrices using the correspondence established in Lemma 5.2

Xm,n,k,l =

{
xm−k,n−l, if m ≥ k and n ≥ l,
0, otherwise,

and

Ym,n,k,l =

{
ym−k,n−l, if m ≥ k and n ≥ l,
0, otherwise.

Define the four-dimensional matrix A as

Ai,j,k,l =

{
cidj if k = l = 0,

0 otherwise.
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The (m,n, k, l)-th element of the convolution A ∗X is given by

(A ∗X)m,n,k,l =

m∑
i=0

n∑
j=0

Ai,j,k,lXm−i,n−j,k,l

=

m∑
i=0

n∑
j=0

cidjXm−i,n−j,k,l (when k = l = 0)

=

m∑
i=0

n∑
j=0

cidjxm−i−k,n−j−l (when m− i ≥ k and n− j ≥ l)

=

m−k∑
p=0

n−l∑
q=0

cm−k−pdn−l−qxp,q.

The last step involves a change of variables: p = m− i− k and q = n− j− l. Since
the original sums are constrained by m − i ≥ k and n − j ≥ l, the indices i and j
only run up to m− k and n− l, respectively. Therefore, p and q are guaranteed to
be non-negative, with valid ranges 0 ≤ p ≤ m − k and 0 ≤ q ≤ n − l. Now, when
we set k = l = 0, we get

(A ∗X)m,n,0,0 =

m∑
p=0

n∑
q=0

cm−pdn−qxp,q,

and thus, we can express our original equation in terms of these four-dimensional
matrices for the case k = l = 0

Ym,n,0,0 = Xm,n,0,0 + λ(A ∗X)m,n,0,0.

Moreover, for k > 0 or l > 0, both sides of the equality are zero by the definition
of our matrices Y , X, and A. Therefore, the equation

Ym,n,k,l = Xm,n,k,l + λ(A ∗X)m,n,k,l

holds for all m,n, k, l ≥ 0, or concisely in the four-dimensional matrix form Y =
X + λ(A ∗X).

Now

‖A‖ = sup
k,l≥0

∞,∞∑
i,j=0,0

|Ai,j,k,l| =
∞,∞∑

i,j=0,0

|c|i|d|j

=

( ∞∑
i=0

|c|i
) ∞∑

j=0

|d|j
 =

1

(1− |c|)(1− |d|)
.

We have previously established in Theorem 4.9 that (`1, `1) is a Banach algebra
under four-dimensional matrix convolution. Therefore, if |λ| < ‖A‖−1 = (1 −
|c|)(1 − |d|), then I + λA has an inverse in (`1, `1). When |λ| < (1 − |c|)(1 − |d|),
we can solve for X

X = (I + λA)−1 ∗ Y .

Since Y ∈ (`1, `1) (as (ym,n) ∈ `1) and (I + λA)−1 ∈ (`1, `1), we conclude that
X ∈ (`1, `1). By Lemma 5.2, this implies (xm,n) ∈ `1, completing the proof. �
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