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ON THE ELEMENTARY SOLUTION OF THE OPERATOR ⊗k

AND THE FOURIER TRANSFORM OF THEIR CONVOLUTION

SUDPRATHAI BUPASIRI

Abstract. In this paper, the operator ⊗k is introduced of the partial differ-
ential operator related to the diamond operator iterated k times and is defined
by

⊗k =




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p
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j
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k

,

where p + q = n, x = (x1, . . . , xn) ∈ R
n, k is a non-negative integer, m is

a non-negative real number and n is the dimension of R
n. In this work we

study the elementary solution of the partial differential operator related to the
diamond operator. Then, we study the Fourier transform of the elementary
solution and also the Fourier transform of their convolution.

1. Introduction

The operator ♦k has been first introduced by Kananthai [4], is named as the
diamond operator iterated k-times, and is defined by

♦k =



(

p∑

r=1

∂2

∂x2
r

)2
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
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j
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2
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k

, p+ q = n, (1.1)

where n is the dimension of the space R
n, for x = (x1, x2, . . . , xn) ∈ R

n and k is a
non-negative integer. The operator ♦k can be expressed in the form ♦k = �

k△k =
△k

�
k, the operator △k is the Laplace operator iterated k-times, which is defined

by

△k =

(
∂2
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+
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)k

(1.2)

and the operator �
k is the ultra-hyperbolic operator iterated k-times, which is

defined by

�
k =

(
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1

+
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+ · · ·+
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. (1.3)
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By putting p = 1 and x1 = t (time) in (1.3), then we obtain the wave operator

� =
∂2

∂t2
−

n−1∑

j=1

∂2

∂x2
j

. (1.4)

In 1997, Kananthai [4] has showed that the convolution (−1)kRe
2k(x) ∗ RH

2k(x) is
the elementary solution of the operator ♦k, that is

♦k((−1)kRe
2k(x) ∗R

H
2k(x)) = δ, (1.5)

where the function RH
2k(x) is defined by (2.11) and Re

2k(x) is defined by (2.10). The
elementary solution (−1)kRe

2k(x) ∗ RH
2k(x) is called the diamond kernel of Marcel

Riesz. Moreover, Kananthai, Suantai and Longani [6] have studied the elementary
solution of the operator ⊕k and the weak solution of the equation ⊕ku(x) = f(x),
where the operator ⊕k is defined by
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2
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where k is a non-negative integer, and f(x) is a generalized function.
Next, Kananthai, Suantai and Longani [5] have studied the relationship between

the operator ⊕k and the wave operator, and the relationship between the operator
⊕k and the Laplace operator. Moreover, the equation ⊕kK(x) = δ,

K(x) = [RH
2k(x) ∗ (−1)kRe

2k(x)] ∗ S2k(x) ∗ T2k(x)

is the elementary solution of the operator ⊕k. Later, Kananthai [2] has studied the
inversion of the kernel Kα,β,γ,ν related to the operator ⊕k.

In 1988, Trione [18] has studied the elementary solution of the ultra-hyperbolic
Klein–Gordon operator iterated k-times, which is defined by

(�+m2)k =

[
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+
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∂x2
p

−
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]k
.

(1.7)
Bupasiri [16] has studied the partial differential operator ⊗k, iterated k-times is
defined by

⊗k =



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+
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)2

−



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∂x2
j

−
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
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2

 , p+ q = n, (1.8)

⊗k((−1)kRe
2k(x) ∗W2k(x,m)) = δ, where ⊗k = △k(�+m2)k, m is a non-negative

real number. Later, Lunnaree and Nonlaopon [10] introduced the operator (♦ +
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m2)k, that is named as the diamond Klein-Gordon operator iterated k-times, which
is defined by

(♦+m2)k =



(

p∑

r=1

∂2

∂x2
r

)2

−




p+q∑

j=p+1

∂2

∂x2
j




2

+m2




k

, (1.9)

where p+ q = n is the dimension of the space R
n, for x = (x1, x2, . . . , xn) ∈ R

n,m
is a non-negative real number and k is a non-negative integer, see [8, 9, 12, 13] for
more details. Moreover, Kananthai [3] has studied the elementary solution for the
(♦+m4)k, which related to the Klein-Gordon operator.

In this paper, we study the elementary solution of the equation of the form

⊗ku(x) =
t∑

r=0

cr ⊗
r δ.

After that, we study the Fourier transform of the operator ⊗k.

2. Preliminary Notes

Definition 2.1. [11] Let L(D) be a differential operator with constant coefficients.
We say that a distribution E ∈ D′(Rn) is the elementary solution of the differential
operator L(D) if E satisfies L(D)E = δ in D′(Rn).

Definition 2.2. Let x = (x1, x2, . . . , xn) be a point of the n-dimensional space R
n,

u = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q , (2.1)

where p+ q = n.
Define Γ+ = {x ∈ R

n : x1 > 0 and u > 0}, which designates the interior of the
forward cone and Γ+ designates its closure and the following functions introduce by
Nozaki [21, p. 72], that

RH
α (x) =

{
u

α−n
2

Kn(α)
, if x ∈ Γ+;

0, if x 6∈ Γ+

(2.2)

is called the ultra-hyperbolic kernel of Marcel Riesz. Here, α is a complex parameter
and n the dimension of the space. The constant Kn(α) is defined by

Kn(α) =
π

n−1
2 Γ

(
2+α−n

2

)
Γ
(
1−α
2

)
Γ(α)

Γ
(
2+α−p

2

)
Γ
(
p−α
2

) (2.3)

and p is the number of positive terms of

u = x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − x2
p+2 − · · · − x2

p+q, p+ q = n

and let supp RH
α (x) ⊂ Γ+. Now, RH

α (x) is an ordinary function if Re α ≥ n and
is a distribution of α if Re α < n. Now, if p = 1 then (2.2) reduces to the function
Mα(u), and is defined by

Mα(u) =

{
u

α−n
2

Hn(α)
, if x ∈ Γ+;

0, if x 6∈ Γ+,
(2.4)

where u = x2
1 − x2

2 − · · · − x2
n and Hn(α) = π

(n−1)
2 2α−1Γ(α−n+2

2 ). The function
Mα(u) is called the hyperbolic kernel of Marcel Riesz.
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Definition 2.3. Let x = (x1, x2, . . . , xn) ∈ R
n and

v = x2
1 + x2

2 + · · ·+ x2
p + x2

p+1 + x2
p+2 + · · ·+ x2

p+q, p+ q = n. (2.5)

For any complex number β , we define the function

Re
β(x) = 2−βπ−n/2Γ

(
n− β

2

)
v(β−n)/2

Γ(β/2)
. (2.6)

The function Re
β(x) is called the elliptic kernel of Marcel Riesz. It is an ordinary

function if Re β ≥ n and a distribution of β if Re β < n.

Definition 2.4. Let f(x) ∈ L1(R
n) (the space of integrable function in R

n). The
Fourier transform of f(x) is defined as

f̂(ξ) =
1

(2π)n/2

∫

Rn

e−iξ·xf(x)dx, (2.7)

where ξ = (ξ1, ξ2, . . . , ξn), x = (x1, x2, . . . , xn) ∈ R
n, ξ ·x = (ξ1x1, ξ2x2, . . . , ξnxn) is

the usual inner product in R
n and dx = dx1dx2 . . . dxn. The inverse of the Fourier

transform is defined by

f(x) =
1

(2π)n/2

∫

Rn

e−iξ·xf̂(ξ)dξ. (2.8)

If f is a distribution with compact supports, by [1, Theorem 7.4-3], Equation (2.8)
can be written as

f̂(ξ) = Ff(x) =
1

(2π)n/2
〈
f(x), e−iξ·x

〉
. (2.9)

Lemma 2.5. [4] Given the equation △ku(x) = δ for x ∈ R
n, where △k is the

Laplace operator iterated k-times, which is defined by (1.2). Then u(x) = (−1)kRe
2k(x)

is the elementary solution of the operator △k, where

Re
2k(x) =

Γ
(
n−2k

2

)

22kπ
n
2 Γ(k)

|x|2k−n. (2.10)

Lemma 2.6. [17] If �ku(x) = δ for x ∈ Γ+ = {x ∈ R
n : x1 > 0 and u > 0}, where

�
kis the ultra-hyperbolic operator iterated k-times, which is defined by (1.3). Then

u(x) = RH
2k(x) is the unique elementary solution of the operator �

k, where

RH
2k(x) =

u( 2k−n
2 )

Kn(2k)
=

(x2
1 + x2

2 + · · ·+ x2
p − x2

p+1 − · · · − x2
p+q)

( 2k−n
2 )

Kn(2k)
(2.11)

and

Kn(2k) =
π

n−1
2 Γ

(
2+2k−n

2

)
Γ
(
1−2k

2

)
Γ(2k)

Γ
(

2+2k−p
2

)
Γ(p−2k

2 )
. (2.12)

Lemma 2.7. [4] Given the equation ♦ku(x) = δ for x ∈ R
n, then u(x) = (−1)kRe

2k(x)∗
RH

2k(x) is the unique elementary solution of the operator ♦k, where ♦k is the dia-
mond operator iterated k-times, which is defined by (1.1), Re

2k(x) and RH
2k(x) are

defined by (2.10) and (2.11), respectively. Moreover, (−1)kRe
2k(x) ∗ RH

2k(x) is a
tempered distribution.

It is not difficult to show that Re
−2k(x) ∗ R

H
−2k(x) = (−1)k♦kδ, for k is a non-

negative integer.
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Definition 2.8. Let x = (x1, x2, . . . , xn) be a point of Rn, the function Wα(x,m)
is defined by

Wα(x,m) =
∞∑

r=0

(
−α/2

r

)
(m2)rRH

α+2r(x), (2.13)

where α is a complex parameter, m is a non-negative real number, RH
α+2r(x) is

defined by (2.11).

From the definition of Wα(x,m) and by putting α = −2k, we have

W−2k(x,m) =

∞∑

r=0

(
k

r

)
(m2)rRH

2(−k+r)(x).

Since the operator (�+m2)k defined in (1.9) is a linearly continuous and has 1− 1
mapping, then it has inverse. From Lemma 2.7, we obtain

W−2k(x,m) =
∞∑

r=0

(
−k

r

)
(m2)r�−k−rδ

= (�+m2)kδ. (2.14)

By putting k = 0 in (2.14), we have W0(x,m) = δ. By putting α = 2k into (2.13),
we have

W2k(x,m) =

(
−k

0

)
(m2)0RH

2k+0(x)

+
∞∑

r=1

(
−k

r

)
(m2)rRH

2k+2r(x). (2.15)

The second summand of the right-hand member of (2.15) vanishes for m = 0 and
then, we have

W2k(x,m = 0) = RH
2k(x) (2.16)

is the elementary solution of the ultra-hyperbolic operator �k, iterated k-times.

Lemma 2.9. The function RH
−2k(x) and (−1)kRe

−2k(x) are the inverse in the con-

volution algebra of RH
2k(x) and (−1)kRe

2k(x), respectively. That is,

RH
−2k(x) ∗R

H
2k(x) = RH

−2k+2k(x) = RH
0 (x) = δ

and

(−1)kRe
−2k(x) ∗ (−1)kRe

2k(x) = (−1)2kRe
−2k+2k(x) = Re

0(x) = δ.

For the proof of the this Lemma is given in [19, 17].

Lemma 2.10. [20](Convolution of Re
α(x) and RH

α (x)). If Re
α(x) and RH

α (x) are
defined by (2.10) and (2.11), respectively, then

(i) Re
α(x) ∗R

e
β(x) = Re

α+β(x), where α and β are complex parameters;

(ii) RH
α (x) ∗ RH

β (x) = RH
α+β(x), where α and β are both integers and except

only the case both α and β are both integers.

Lemma 2.11. The function W2k(x,m) is the elementary solution of the opera-
tor (� + m2)k where (� + m2)k is the operator iterated k-times defined by (1.7)
W2k(x,m) defined by (2.15).

The proof of this Lemma is given in ([14], p 110).
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Lemma 2.12. The function W−2k(x,m) and (−1)kRe
−2k(x) are the inverses in the

convolution algebras of W2k(x,m) and (−1)kRe
2k(x) respectively.

Proof. We need to show that

W−2k(x,m) ∗W2k(x,m) = W−2k+2k(x,m) = W0(u,m) = δ

and

(−1)kRe
−2k(x) ∗ (−1)kRe

2k(x) = Re
−2k+2k(x) = Re

0(x) = δ.

To prove these, see ([14],p 110), ([15],p 123) and ([19], p 118, p 158). �

Lemma 2.13. [16] Given the equation

⊗kK(x) = △k(�+m2)kK(x) = δ, (2.17)

where ⊗k is the operator iterated k-times, δ is the Dirac delta distribution, x =
(x1, . . . , xn) ∈ R

n and k is a non-negative integer. Then we obtain

K(x) = (−1)kRe
2k(x) ∗W2k(x,m) (2.18)

is an elementary solution of the equation (2.17), where Re
2k(x) and W2k(x,m) are

defined by (2.6) and (2.15) respectively with β = 2k. Moreover, from (2.18)

(−1)kRe
−2k(x) ∗K(x) = W2k(x,m) (2.19)

as an elementary solution of the operator (�+m2)k and in particular from (2.18)
and (2.19) with p = 1, q = n− 1, k = 1, x1 = t and m = 0, we obtain

(−1)kRe
−2(x) ∗K(x) = M2(u) (2.20)

as an elementary solution of the wave operator defined by (1.4) where M2(u) is
defined by (2.4) with α = 2. Also, for q = 0 and m = 0 then (2.17) become

△2k
p K(x) = δ (2.21)

and by (2.18) we obtain

K(x) = (−1)kRe
2k(x) ∗ (−1)kRe

2k(x) = (−1)2kRe
4k(x) = Re

4k(x) (2.22)

is an elementary solution of (2.21) where △2k
p is the Laplacian of p-dimension,

iterated 2k-times and v = x2
1 + x2

2 + · · ·+ x2
p.

Lemma 2.14. [16] (The convolution of tempered distribution) Re
2k(x) ∗W2k(x,m)

exits and is a tempered distribution

Lemma 2.15. (The Fourier transform of ⊗kδ.) Let

||ξ|| =
(
ξ21 + ξ22 + · · ·+ ξ2n

)1/2

for ξ ∈ R
n . Then

∣∣F ⊗k δ
∣∣ =

∣∣∣F
(
△(�+m2)

)k
δ
∣∣∣ ≤ 1

(2π)n/2
(||ξ||2 +m2)k||ξ||2k.

That is, F ⊗k δ is bounded and continuous on the space S
′

of the tempered distri-
bution. Moreover, by the inverse Fourier transformation

⊗kδ = F−1 1

(2π)n/2

[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2

−

(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2
]k

.
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Proof. From the Fourier transform (2.7), we have

F
(
△(� +m2)

)k
δ =

1

(2π)n/2
〈
δ,△k(�+m2)ke−iξ·x

〉

=
1

(2π)n/2

〈
δ, (△k

(
ξ21 + ξ22 + · · ·+ ξ2p − ξ2p+1 − ξ2p+2 − · · · − ξ2p+q +m2

)k
e−iξ·x

〉

=
1

(2π)n/2
〈
δ, (ξ21 + ξ22 + · · ·+ ξ2p + ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)

k

·
(
ξ21 + ξ22 + · · ·+ ξ2p − ξ2p+1 − ξ2p+2 − · · · − ξ2p+q +m2

)k
e−iξ·x

〉

=
1

(2π)n/2

〈
δ,



(

p∑

i=1

ξ2i

)
+




p+q∑

j=p+1

ξ2j





k 

(

p∑

i=1

ξ2i

)
−




p+q∑

j=p+1

ξj


+m2



k

e−iξ·x

〉

=
1

(2π)n/2

〈
δ,



((

p∑

i=1

ξ2i

)
+

m2

2

)2

−






p+q∑

j=p+1

ξj


−

m2

2




2



k

e−iξ·x

〉

=
1

(2π)n/2



((

p∑

i=1

ξ2i

)
+

m2

2

)2

−






p+q∑

j=p+1

ξ2j


−

m2

2




2



k

=
1

(2π)n/2

[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2

−

(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2
]k

.

Next, we consider the boundedness of F ⊗k δ. Since

⊗k =

[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2

−

(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2
]k

=
[(
(ξ21 + ξ22 + · · ·+ ξ2p)− (ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q) +m2

)k

×
(
(ξ21 + ξ22 + · · ·+ ξ2p) + (ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)

)k]

=
[[
(ξ21 + ξ22 + · · ·+ ξ2p+q)

(
ξ21 + · · ·+ ξ2p − ξ2p+1 − · · · − ξ2p+q +m2

)]k]
, n = p+ q

Thus

F ⊗k δ =
1

(2π)n/2
[(
ξ21 + ξ22 + · · ·+ ξ2p+q)(ξ

2
1 + · · ·+ ξ2p − ξ2p+1 − · · · − ξ2p+q +m2

)]k
,

∣∣F ⊗k δ
∣∣ = 1

(2π)n/2
(∣∣ξ21 + ξ22 + · · ·+ ξ2n

∣∣ ∣∣ξ21 + · · ·+ ξ2p − ξ2p+1 − · · · − ξ2n
∣∣+m2

)k

≤
1

(2π)n/2
(∣∣ξ21 + ξ22 + · · ·+ ξ2n

∣∣+m2
)k ∣∣ξ21 + ξ22 + · · ·+ ξ2n

∣∣k

=
1

(2π)n/2
(||ξ||2 +m2)k||ξ||2k, p+ q = n

where ||ξ|| =
(
ξ21 + ξ22 + · · ·+ ξ2n

)1/2
, ξi(i = 1, 2, . . . , n) ∈ R. Hence, we obtain

F ⊗k δ is bounded and continuous on the space S
′

of the tempered distribution.
Since F is 1− 1 transformation from the space S

′

of the tempered distribution to
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the real space R, then by (2.8), we have

⊗k δ =
1

(2π)n/2
F−1

[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2

−

(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2
]k

.

�

3. Main Results

We now come to the proofs of our main result.

Theorem 3.1. For 0 < r < k,

⊗k
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

= W2(k−r)(x,m) ∗
(
(−1)(k−r)Re

2(k−r)(x)
)

(3.1)

and for k ≤ t,

⊗t
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
= ⊗t−kδ. (3.2)

Proof. For 0 < r < k, by Lemma 2.13,

⊗k
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
= δ.

Thus,

⊗k−r ⊗r
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
= δ

or

⊗k−rδ ∗ ⊗r
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
= δ.

Convolving both sides by W2(k−r)(x,m) ∗ (−1)(k−r)Re
2(k−r)(x), we obtain

⊗k−r
(
W2(k−r)(x,m) ∗ (−1)(k−r)Re

2(k−r)(x)
)

∗ ⊗r
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

= W2(k−r)(x,m) ∗ (−1)(k−r)Re
2(k−r)(x) ∗ δ.

By Lemma 2.13,

δ ∗ ⊗r
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

= W2(k−r)(x,m) ∗ (−1)(k−r)Re
2(k−r)(x) ∗ δ.

It follows that

⊗r
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

= W2(k−r)(x,m) ∗ (−1)(k−r)Re
2(k−r)(x)

as required. For k ≤ t,

⊗t
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

= ⊗t−k ⊗k
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

= ⊗t−kδ

by Lemma 2.13. That completes the proofs. �
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Theorem 3.2. Consider the linear differential equation

⊗ku(x) =

t∑

r=0

cr ⊗
r δ, (3.3)

where p + q = n, x ∈ R
n, cr is a constant, δ is the Dirac-delta distribution and

⊗0δ = δ . Then the type of solution to (3.3) depends on the relationship between k
and t, according to the following cases:

(1) If t < k and t = 0, then (3.3) has the solution

u(x) = W2k(x,m) ∗ c0
(
(−1)kRe

2k(x)
)

which is the elementary solution of the operator ⊗k in Lemma 2.13, is an
ordinary function when 2k ≥ n and is a temper distribution when 2k < n.

(2) If t < k and t = m = 0, then (3.3) has the solution

u(x) = c0(−1)kRe
2k(x) ∗R

H
2k(x)

which is the elementary solution of the diamond operator ♦k, is an ordinary
function when 2k ≥ n and is a temper distribution when 2k < n.

(3) If 0 < t < k then the solution of (3.3) is

u(x) =
t∑

r=1

W2(k−r)(x,m) ∗ cr

(
(−1)(k−r)Re

2(k−r)(x)
)

which is an ordinary function when 2k − 2r ≥ n and is a tempered distri-
bution when 2k − 2r < n.

(4) If t ≥ k and k ≤ t ≤ M , then (3.3) has the solution

u(x) =
M∑

r=k

cr ⊗
r−k δ

which is only a singular distribution.

Proof. (1) For t = 0, we have ⊗ku(x) = c0δ , and by Lemma 2.13 we obtain

u(x) = W2k(x,m) ∗ c0
(
(−1)kRe

2k(x)
)
.

Now, W2k(x,m) ,(−1)kRe
2k(x) are the analytic functions for 2k ≥ n and

also W2k(x,m) ∗ (−1)kRe
2k(x) exits and is an analytic function by (2.18).

It follows that W2k(x,m)∗ (−1)kRe
2k(x) is an ordinary function for 2k ≥ n.

By Lemma 2.14, W2k(x,m) ∗ (−1)kRe
2k(x) is the tempered distributions

with 2k < n.
(2) For t = m = 0, we have ⊗ku(x) = ♦ku(x) = c0δ , and by Lemma 2.13,

Lemma 2.7 and (2.16) we obtain

u(x) = W2k(x, 0) ∗ c0
(
(−1)kRe

2k(x)
)

= c0
(
(−1)kRe

2k(x) ∗R
H
2k(x)

)
.

Now, (−1)kRe
2k(x) and RH

2k(x) are the analytic functions for 2k ≥ n and
also (−1)kRe

2k(x) ∗ RH
2k(x) exits and is an analytic function by (2.18). It

follows that (−1)kRe
2k(x) ∗ R

H
2k(x) is an ordinary function for 2k ≥ n. By

Lemma 2.7, (−1)kRe
2k(x) ∗R

H
2k(x) is a tempered distributions with 2k < n.
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(3) For the case 0 < t < k, we have

⊗ku(x) = c1 ⊗ δ + c2 ⊗
2 δ + · · ·+ ct ⊗

t δ.

We convolved both sides of the above equation by W2k(x,m)∗(−1)kRe
2k(x)

to obtain

⊗k W2k(x,m) ∗
(
(−1)kRe

k(x)
)
∗ u(x)

= c1 ⊗
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

+ c2 ⊗
2
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

+ · · ·+ ct ⊗
t
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
.

By Lemma 2.13 and Theorem 3.1, we obtain

u(x) = c1

(
W2(k−1)(x,m) ∗ (−1)(k−1)Re

2(k−1)(x)
)

+ c2

(
W2(k−2)(x,m) ∗ (−1)(k−2)Re

2(k−2)(x)
)

+ · · ·+ ct

(
W2(k−t)(x,m) ∗ (−1)(k−t)Re

2(k−t)(x)
)
.

or

u(x) =

t∑

r=1

cr

(
W2(k−r)(x,m) ∗ (−1)(k−r)Re

2(k−r)(x)
)
.

Similarly, as in the case (1), u(x) is an ordinary function for 2k − 2r ≥ n
and is a tempered distribution for 2k − 2r < n.

(4) For the case t ≥ k and k ≤ t ≤ M , we have

⊗ku(x) = ck ⊗k δ + ck+1 ⊗
k+1 δ + · · ·+ cM ⊗M δ.

Convolved both sides of the above equation by W2k(x,m)∗ (−1)kRe
2k(x) to

obtain

⊗k
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
∗ u(x)

= ck ⊗
k
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

+ ck+1 ⊗
k+1

(
W2k(x,m) ∗ (−1)kRe

2k(x)
)

+ · · ·+ cM ⊗M
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
.

By Lemma 2.13 and Theorem 3.1 again, we obtain

u(x) = ckδ + ck+1 ⊗ δ + ck+2 ⊗
2 δ + · · ·+ cM ⊗M−k δ

=

M∑

r=k

cr ⊗
r−k δ.

Since ⊗r−kδ is a singular distribution, hence u(x) is only the singular dis-
tribution. That completes the proof.

�

Theorem 3.3.

F
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
= 1

(2π)n/2

[

(

(ξ21+ξ22+···+ξ2p)+
m2

2

)2
−

(

(ξ2p+1+ξ2p+2+···+ξ2p+q)−
m2

2

)2
]k

=
∣∣F
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)∣∣ ≤ 1

(2π)
n
2
N (3.4)
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for a large ξi ∈ R, where m is a non-negative real number and N is a constant.
That is, F is bounded and continuous on the space S

′

of the tempered distributions.

Proof. By Lemma 2.13, we obtain

⊗k
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
= δ

or

(⊗kδ)
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
= δ

Taking the Fourier transform on both sides of the above equation, we obtain

F
(
(⊗kδ)

(
W2k(x,m) ∗ (−1)kRe

2k(x)
))

= Fδ =
1

(2π)n/2
.

By (2.9), we have

1

(2π)n/2

〈
(⊗kδ)

(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
, e−i(ξ·x)

〉
=

1

(2π)n/2
.

By the definition of convolution

1

(2π)n/2

〈
(⊗kδ)

(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
, e−iξ·(x+r)

〉
=

1

(2π)n/2
,

1

(2π)n/2

〈(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
, e−i(ξ·r)

〉
·
〈
(⊗kδ), e−i(ξ·x)

〉
=

1

(2π)n/2
,

F(W2k(x,m) ∗ (−1)kRe
2k(x))(2π)

n
2 F
(
⊗kδ

)
=

1

(2π)n/2
.

By Lemma 2.15, we obtain

F(W2k(x,m) ∗ (−1)kRe
2k(x))

×

[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2

−

(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2
]k

=
1

(2π)n/2
.

It follows that

F(W2k(x,m) ∗ (−1)kRe
2k(x))

=
1

(2π)n/2
[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2
−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2]k .

Since

1
[

(

(ξ21+ξ22+···+ξ2p)+
m2

2

)2
−

(

(ξ2p+1+ξ2p+2+···+ξ2p+q)−
m2

2

)2
]

= 1

[(ξ21+ξ22+···+ξ2n)((ξ21+ξ22+···+ξ2p−ξ2p+1−···−ξ2p+q)+m2)]
. (3.5)

Let ξ = (ξ1, ξ2, . . . , ξn) ∈ Γ+ with Γ+ defined by Definition 2.2. Then (ξ21 + ξ22 +
· · · + ξ2p + ξ2p+1 + ξ2p+2 + · · · + ξ2p+q) > 0 and for a large k, the right-hand side of
(3.5) tend to zero. It follows that it is bounded by a positive constant N say, that

is we obtain (3.4) as required and also by (3.4) F is continuous on the space S
′

of
the tempered distribution. �
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Theorem 3.4.

F
(
W2k(x,m) ∗ (−1)kRe

2k(x) ∗ (W2l(x,m) ∗ (−1)lRe
2l(x)

)

= (2π)n/2F
[
W2k(x,m) ∗ (−1)kRe

2k(x)
]
F
[
(W2l(x,m) ∗ (−1)lRe

2l(x)
]

=
1

(2π)n/2
[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2
−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2]k+l
,

where k and l are non-negative integers and F is bounded and continuous on the
space S

′

of tempered distribution.

Proof. Since Re
2k(x) and W2k(x,m) are tempered distribution with compact sup-

port,
(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
∗
(
(W2l(x,m) ∗ (−1)lRe

2l(x)
)

=
[
(−1)k+lRe

2k(x) ∗R
e
2l(x)

]
∗ [W2k(x,m) ∗W2l(x,m)]

=
[
(−1)k+lRe

2(k+l)(x)
]
∗
[
W2(k+l)(x,m)

]

by ( [1], p.156–159), Lemma 2.10 and [14]. Taking the Fourier transform on both
sides and using Theorem 3.3, we obtain

F
[(
W2k(x,m) ∗ (−1)kRe

2k(x)
)
∗
(
(W2l(x,m) ∗ (−1)lRe

2l(x)
)]

=
1

(2π)n/2
[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2
−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2]k+l

=
1

(2π)n/2
[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2
−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2]k

×
(2π)n/2

(2π)n/2
[(
(ξ21 + ξ22 + · · ·+ ξ2p) +

m2

2

)2
−
(
(ξ2p+1 + ξ2p+2 + · · ·+ ξ2p+q)−

m2

2

)2]l

= (2π)n/2F
[
W2k(x,m) ∗ (−1)kRe

2k(x)
]
F
[
(W2l(x,m) ∗ (−1)lRe

2l(x)
]
.

Since (−1)k+lRe
2(k+l)(x) ∗ W2(k+l)(x,m) ∈ S

′

, the space of tempered distribution

and by Theorem 3.3, we obtain that F is bounded and continuous on S
′

. �
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