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BLOW-UP PHENOMENA FOR COUPLED PSEUDO-PARABOLIC

EQUATIONS WITH VARIABLE EXPONENTS

ABDELATIF TOUALBIA

Abstract. The initial boundary value problem of a class of coupled pseudo-

parabolic equations is considered. Using a differential inequality technique,
We demonstrate that, at a finite time T , the solutions become unbounded,

and find an upper bound for this time with negative initial energy. A lower

bound for the blow-up time is also established.

1. Introduction

Let Ω represent a bounded domain in Rn(n ≥ 1) with smooth boundary ∂Ω. We
consider the following coupled pseudo-parabolic equations

ut − µ1∆ut − div(A(x, t) |∇u|m(x)−2∇u) = |uv|p(x)−2
uv2 in QT

vt − µ2∆vt − div(B(x, t) |∇v|n(x)−2∇v) = |uv|p(x)−2
u2v in QT

u(t, x) = v(t, x) = 0 on ∂QT

u(0, x) = u0(x), v(0, x) = v0(x) x ∈ Ω

(1)

where QT = Ω × (0, T ), ∂QT = ∂Ω × (0, T ), µ1, µ2 ≥ 0 are a contants and

div(A(x, t) |∇u|m(x)−2∇u), div(B(x, t) |∇v|n(x)−2∇v are the so-called m(x), n(x)-
Laplace operators with the presence of a matrices A(x, t), B(x, t) respectively. The

terms with a variable exponent |uv|p(x)−2
uv2, |uv|p(x)−2

u2v play the role of a
source, and the dissipative terms ∆ut and ∆vt are a linear strong damping term.

The matrices A = (aij(x, t))i,j and B = (bij(x, t))i,j where aij(x, t) and bij(x, t) are

a function of class C1(Ω× [0,∞[) such that for constants a0, b0 > 0 and all ξ ∈ Rn,

Aξ.ξ ≥ a0 |ξ|2 , Bξ.ξ ≥ b0 |ξ|2 (2)

A
′
ξ.ξ ≤ 0, B

′
ξ.ξ ≤ 0 (3)

where A
′

= ∂A
∂t (., t) and B

′
= ∂A

∂t (., t).
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The exponents m(.), n(.) and p(.) are continuous functions defined on Ω and satisfies

2 ≤ m− ≤ m(x) ≤ m+ ≤ n− ≤ n(x) ≤ n+ < p− ≤ p(x) ≤ p+ <∞ (4)

where

m− = ess inf m(x), m+ = ess supm(x)

n− = ess inf n(x), n+ = ess supn(x)

p− = ess inf p(x), p+ = ess sup p(x)

and the Zhikov–Fan condition:

p(x)− p(y) ≤ −a
log |x− y|

for all x, y ∈ Ω,with |x− y| < δ, a > 0 and 0 < δ < 1.

(5)
Equations or systems with variable exponents like (1) apear in the study of various
problem of the hydrodynamics, thermodynamics, filtration theory etc. (see [1, 2, 3,
4]). Obviously, if µ1 = µ2 = 0, A = B = In, m(x) = n(x) = 2, p(x) = p =constant,
then Equations (1) reduce to the following parabolic system{

ut −∆u = |uv|p−2
uv2 in Ω× (0, T )

vt −∆v = |uv|p−2
u2v in Ω× (0, T )

(6)

For system (6), many results have been obtained, such as the existence and unique-
ness in [5, 9], global extence in [10, 11], asymptotic behavior in [10, 12] and so on.
In [7] Xu et al. studied the coupled parabolic systems υt −∆υ =

(
|υ|2p + |ν|p+1 |υ|p−1

)
υ

νt −∆ν =
(
|ν|2p + |υ|p+1 |ν|p−1

)
ν

(7)

with Dirichlet boundary conditions. By introducing a family of potential wells,
the whole study is conducted by considering the following three cases according
to initial energy: low, critical, and high initial energy cases. Under the condition
J(u0, v0) < d, where d is a depth of potential well associated with the energy
functional

J(u, v) =
1

2

(
‖∇u‖22 + ‖∇v‖22

)
− 1

2(p+ 1)
‖u‖2p+2

2p+2 + ‖uv‖p+1
p+1 + ‖v‖2p+2

2p+2

they obtained the global existence and finite time blowup of the solution for the
problem (7). On the other side, if J(u0, v0) = d they proved the global solution,
blow-up solution, and asymptotic behavior of the problem (7). With the high initial
energy level J(u0, v0) > d , by adopting the comparison principle of the coupled
parabolic systems, they gave sufficient conditions to obtain the finite time blow-up
anf global existence of the solution. In the presence of the damping (µ1, µ2 > 0), Qi,
Chen and Wang [6] considered the following coupled pseudo-parabolic equations{

υt − µ1∆υt − div(|∇υ|m(x)−2∇υ) = |υν|p(x)−2
υν2 in Ω× (0, T )

νt − µ2∆νt − div(|∇ν|n(x)−2∇ν) = |υν|p(x)−2
υ2ν in Ω× (0, T )

(8)

which is just the A = B = In case of (1). By using differential inequality tech-
nique, they proved that any solutions to (8) with m+ ≥ n−, n+ ≥ m−, p− >
max {m+, n+} and min {m−, n−} ≥ 2 blow up in finite time in H1(Ω)-norm, and
also they obtained an upper bound and a lower bound for a blow-up time of the
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solution if the initial energy E(0) is negative. On the other hand, Messaoudi et al
[7] sudies the blowing up of a solution to the problem υtt − div(A(x, t)∇υ) + |υt|m(x)−2

υt = f1(x, υ, ν) in Ω× (0, T )

νtt − div(B(x, t)∇ν) + |νt|r(x)−2
νt = f2(x, υ, ν) in Ω× (0, T )

(9)

where f1(x, υ, ν) = ∂
∂υF (x, υ, ν), f1(x, υ, ν) = ∂

∂νF (x, υ, ν) with

F (x, υ, ν) = α |υ + ν|p(x)+1
+ 2b |υν|

p(x)+1
2 . According to [7], if A and B satisfy

(2) (3) and if m(x), r(x) ≥ 2 for n = 1, 2;m(x), r(x) ∈ [2, 6] for n = 3, then the
solution for nontrivial initial data blows up in finite time with positive initial energy.
In addition, we refer to [13, 17, 18, 20] for other result concerning the theory of our
type equation.

It is worth mentioning that equations with nonstandard growth conditions are
equations (or systems) that have nonlinearities of variable exponent type. This type
of equation arises in the mathematical representation of different physical phenom-
ena, such as the movement of electrorheological fluids, nonlinear viscoelasticity, flu-
ids with viscosity that depends on temperature, filtration processes through porous
media, and image processing, among others (see [8, 21, 22, 28]).

Based on the above-mentioned work and motivated by [6, 7], this paper aims
to find an upper bound for blow-up time if the variable exponents m(.), n(.), p(.),
the initial data and the matrices A(., t), B(., t) satisfy some conditions. Also, we
will give the lower bounds on blow-up time under some other conditions for the
problem (1).

The outline of this paper is as follows. In section 2, we recall the definitions of
the variable exponent Lebesgue spaces Lp(.)(Ω), the Sobolev spaces W 1,p(.)(Ω), as
well as some of their properties. In Section 3 and Section 4, we give a study of the
blow-up of solutions to the problem under consideration.

2. Essential tools

The Lp(Ω) norm for 1 ≤ p ≤ ∞ is denoted by ‖.‖pThroughout this paper, and the

inner product on Hilbert space L2(Ω) is denoted by (., .). We will equip H1
0 (Ω) with

the norm ‖u‖H1
0 (Ω) =

√
‖u‖22 + ‖∇u‖22 and the inner product (u, v)H1

0 (Ω) = (u, v) +

(∇u,∇v),∀u, v ∈ H1
0 (Ω) . Firstly, let us recall some definitions, properties, and

important lemmas related to Lebesgue and Sobolev space with a variable exponent
to state the main results of this paper. Let Ω be a domain of Rn and p : Ω −→ [1,∞)
be a measurable function. The Lebesgue space Lp(.)(Ω), with variable exponent p(.)
is defined by

Lp(.)(Ω) =

{
u : Ω −→ R|u is measurable and

∫
Ω

|λu(x)|p(x)
dx <∞ for some λ > 0

}
.

The Luxemburg-type norm is given by

‖u‖p(.) = inf

{
λ > 0 :

∫
Ω

∣∣∣∣u(x)

λ

∣∣∣∣p(x)

dx ≤ 1

}
.

Variable exponent Lebesgue spaces bear many similarities to classical Lebesgue
spaces, including being reflexive if 1 < p(x) <∞ being Banach spaces, and adhering
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to the Hölder inequality. W 1,p(.)(Ω) is the variable exponent Sobolev space defined
by

W 1,p(.)(Ω) =
{
u ∈ Lp(.)(Ω) : ∇u exists and ∇u ∈ Lp(.)(Ω)

}
.

Considering the norm

‖u‖W 1,p(.)(Ω) = ‖u‖p(.) + ‖∇u‖p(.) ,

this is a Banach space.

The space W
1,p(.)
0 (Ω) is defined to be the closure of C∞0 (Ω) in W 1,p(.)(Ω). The

definition of the space W
1,p(.)
0 (Ω) in the constant exponent case is usually different.

However, under condition (5) both definitions coincide (See [16]|). The dual space

W
−1,p

′
(.)

0 (Ω) of W
1,p(.)
0 (Ω) is defined in the same way as in the classical Sobolev

spaces, where
1

p(x)
+

1

p′(x)
= 1

Lemma 1. (Poincaré’s inequality) [16]. Suppose that p(.) satisfies (5); then,

‖u‖p(.) ≤ C ‖∇u‖p(.) , u ∈W 1,p(.)
0 (Ω)

where p(.) and Ω are the only variables that determine the constant C > 0.

Lemma 2. (Embedding Proprety)[16]. Let Ω ⊂ Rn be a bounded domain with a
smooth boundary ∂Ω. If q ∈ C(Ω) such that q ≥ 2 and q(x) < 2∗ in Ω with

2∗ =

{
2n
n−2 , if n > 2;

∞, if n ≤ 2,

then we have continuous and compact embedding H1
0 (Ω) ↪→ Lq(.)(Ω). So, there exists

C > 0 such that

‖u‖Lq(.)(Ω) ≤ C ‖u‖H1
0 (Ω)

Next, we give a precise definition of a weak solution to the problem (1).

Definition 1. Let (u0, v0) ∈
(
W

1,m(.)
0 ∩ Lp(.)(Ω)

)
×
(
W

1,n(.)
0 ∩ Lp(.)(Ω)

)
. Any pair

of functions (u, v) such that
u ∈ L∞([0, T0],W

1,m(.)
0 ∩ Lp(.)(Ω)), ut ∈ L2([0, T0], H1

0 (Ω),

v ∈ L∞([0, T0];W
1,n(.)
0 (Ω) ∩ Lp(.)(Ω)), vt ∈ L2([0, T0];W 1,2

0 (Ω)),

(10)

is called a weak solution of (1) on [0, T ), if

(ut,Ψ) + (∇ut,∇Ψ) + (A(x, t) |∇u|m(x)−2∇u,∇Ψ) = (|u|p(x)−2
uv2,Ψ),(11)

(vt,Φ) + (∇vt,∇Φ) + (B(x, t) |∇v|n(x)−2∇v,∇Φ) = (|u|p(x)−2
u2v,Φ) (12)

u(x, 0) = u0(x), v(x, 0) = v0(x), (13)

for a.e. t ∈ (0, T ) and all test functions Ψ,Φ ∈W 1,m(.)
0 (Ω)∩Lp(.)(Ω),W

1,n(.)
0 (Ω)∩

Lp(.)(Ω) respectively
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Remark 1. It is easy to see, under the condition (4) that all the terms in for-
mula (11), (12)make sense. Furthermore, frome (10), we also deduce that u, v ∈
C([0, T0], H1

0 (Ω)). This fact implies that u, v have a pointwise meaning on time, so
also (13) satisfies in the usual sense.

3. Upper bound for blow-up time

Firstly, we establish the existence and uniqueness of a local solution for prob-
lem(1). This can be achieved through the application of Faedo-Galerkin techniques,
as demonstrated in ( [7], Theorem 3.2). Here, the proof is thus omitted.

Theorem 3. Let (u0, v0) ∈
(
W

1,m(.)
0 ∩ Lp(.)(Ω)

)
×
(
W

1,n(.)
0 ∩ Lp(.)(Ω)

)
be given.

Assume that the conditions listed in section 1 for m(.), n(.), p(.),A, and B hold.
Then, according to definition 1, problem (1) has a unique local weak solution (u, v)
on [0, T ). Moreover, either (u, v) can be extended to the whole of [0,∞) or there is
T <∞ such that lim

t−→T
‖u‖H1

0 (Ω) + ‖v‖H1
0 (Ω) =∞

The decay of the energy of the system (1) is given in the following Lemma

Lemma 4. For (u0, v0) ∈
(
W

1,m(.)
0 ∩ Lp(.)(Ω)

)
×
(
W

1,n(.)
0 ∩ Lp(.)(Ω)

)
. The energy

functional E of the problem (1) is decreasing function. Here

E(t) =

∫
Ω

1

m(x)
A |∇u|m(x)−2∇u.∇udx+

∫
Ω

1

n(x)
B |∇v|n(x)−2∇v.∇vdx

−
∫

Ω

1

p(x)
|uv|p(x)

dx. (14)

Proof. multiplying the first differential equations in (1) by ut, the second one by
vt, integrating the two equation over Ω, adding the two results,∫

Ω

(
|ut|2 + ∆utut − div(A |∇u|m(x)−2∇u)ut

)
dx

+

∫
Ω

(
|vt|2 + ∆vtvt − div(|∇v|n(x)−2∇v)vt

)
dx

=

∫
Ω

(
|uv|p(x)−2uutv

2 + |uv|p(x)−2u2vvt

)
dx

Then, we use the generalized Green formula and the boundary conditions, to
find ∫

Ω

(
|ut|2 + |∇ut|2 +A |∇u|m(x)−2∇u.∇ut

)
dx

+

∫
Ω

(
|vt|2 + |∇vt|2 +B |∇u|n(x)−2∇v.∇vt

)
dx =

d

dt

∫
Ω

1

p(x)
|uv|p(x)

dx
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This implies that∫
Ω

(
|ut|2 + |∇ut|2

)
dx+

d

dt

∫
Ω

1

m(x)
A |∇u|m(x)−2∇u.∇udx

−
∫

Ω

1

m(x)
A
′
|∇u|m(x)−2∇u.∇udx+

∫
Ω

(
|vt|2 + |∇vt|2

)
dx

+
d

dt

∫
Ω

1

n(x)
B |∇v|n(x)−2∇v.∇vdx−

∫
Ω

1

n(x)
B
′
|∇v|n(x)−2∇v.∇vdx

=
d

dt

∫
Ω

1

p(x)
|uv|p(x)

dx

so

E
′
(t) = −‖ut‖2H1

0 (Ω) − ‖vt‖
2
H1

0 (Ω) +

∫
Ω

1

m(x)
A
′
|∇u|m(x)−2∇u.∇udx

+

∫
Ω

1

n(x)
B
′
|∇v|n(x)−2∇v.∇vdx

Taking into account condition (3) on A
′

and B
′
, we find

E
′
(t) ≤ −‖ut‖2H1

0 (Ω) − ‖vt‖
2
H1

0 (Ω) ≤ 0.

Theorem 5. Assume that (2)- (5) hold. Let (u, v) be a solution of (1) and assume

that (u0, v0) ∈
(
W

1,m(.)
0 ∩ Lp(.)(Ω)

)
×
(
W

1,n(.)
0 ∩ Lp(.)(Ω)

)
satisfy∫

Ω

(
1

p(x)
|u0v0|p(x) − 1

m(x)
A |∇u0|m(x)−2∇u0.∇u0

− 1

n(x)
B |∇v0|n(x)−2∇v0.∇v0

)
dx ≥ 0, (15)

then the solution (u, v) blows up at finite time Tmax > 0 in H1
0 (Ω)-norm. Further-

more, there exists an upper bound for the time is given by

Tmax ≤
2 (G(0))

(
2−m−

2

)

(m− − 2)K
(16)

where K is a suitable positive constant is given later and the constant G(0) =

‖u0‖2H1
0 (Ω) + ‖v0‖2H1

0 (Ω) .

Proof. Let us define the auxiliary function

G(t) = ‖u‖2H1
0 (Ω) + ‖v‖2H1

0 (Ω) . (17)

Our objective is to demonstrate that G leads to a blow up in finite time by satisfying
a differential inequality. Multiply u and v by the first and second equations in (1),
integrate the two equations over Ω, and add the two results to obtain∫

Ω

(uut +∇u∇ut + vvt +∇v∇vt) dx

=

∫
Ω

(
2 |uv|p(x) −A |∇u|m(x)−2∇u.∇u−B |∇v|n(x)−2∇v.∇v

)
dx (18)
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By differentiating G(t) with respect to t, we get

G
′
(t) = 2

∫
Ω

(uut +∇u∇ut + vvt +∇v∇vt) dx

= 2

∫
Ω

(
2 |uv|p(x) −A |∇u|m(x)−2∇u.∇u−B |∇v|n(x)−2∇v.∇v

)
dx

= 4

∫
Ω

p(x)

[
|uv|p(x)

p(x)
− A |∇u|m(x)−2∇u.∇u

m(x)
− B |∇v|n(x)−2∇v.∇v

n(x)

]
dx

+4

∫
Ω


p(x)

(
1

m(x) −
1

p(x)

)
A |∇u|m(x)−2∇u.∇u

+p(x)
(

1
n(x) −

1
p(x)

)
B |∇v|n(x)−2∇v.∇v

 dx

+2

∫
Ω

A |∇u|m(x)−2∇u.∇udx+ 2

∫
Ω

B |∇v|n(x)−2∇v.∇vdx (19)

By (15) and the fact that E(t) ≤ E(0) (E
′
(t) ≤ 0) ( See Lemma 4), we have∫

Ω

p(x)

[
|uv|p(x)

p(x)
− A |∇u|m(x)−2∇u.∇u

m(x)
− B |∇v|n(x)−2∇v.∇v

n(x)

]
dx

≥
∫

Ω

p(x)

[
|u0v0|p(x)

p(x)
− A |∇u0|m(x)−2∇u0.∇u0

m(x)
− B |∇v0|n(x)−2∇v0.∇v0

n(x)

]
dx

≥ p−
∫

Ω

|u0v0|p(x)

p(x)
− A |∇u0|m(x)−2∇u0.∇u0

m(x)
− B |∇v0|n(x)−2∇v0.∇v0

n(x)
dx ≥ 0.

(20)
By (19), (20) and 4, we see

G
′
(t) ≥ 4

∫
Ω

[
p−

(
1

m+
− 1

p−

)
A |∇u|m(x)−2∇u.∇u

+ p−

(
1

n+
− 1

p−

)
B |∇v|n(x)−2∇v.∇v

]
dx

+2

∫
Ω

A |∇u|m(x)−2∇u.∇udx+ 2

∫
Ω

B |∇v|n(x)−2∇v.∇vdx

=

∫
Ω

(
4p−

(
1

m+
− 1

p−

)
+ 2

)
A |∇u|m(x)−2∇u.∇udx

+

∫
Ω

(
4p−

(
1

n+
− 1

p−

)
+ 2

)
B |∇v|n(x)−2∇v.∇vdx.

Using condition (2) on A and B, we obtain

G
′
(t) ≥ a0C1

∫
Ω

|∇v|m(x)
dx+ b0C2

∫
Ω

|∇v|n(x)
dx. (21)
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where C1 =
(

4p−

[
1
m+
− 1

p−

]
+ 2
)
> 0 and C2 =

(
4p−

[
1
n+
− 1

p−

]
+ 2
)
> 0.

Now we define the sets:

Ω+ = {x ∈ Ω : |∇u| ≥ 1, |∇v| ≥ 1} and Ω− = {x ∈ Ω : |∇u| < 1, |∇v| < 1} ,

so we get

G
′
(t) ≥ a0C1

(∫
Ω−

|∇u|m+ dx+

∫
Ω+

|∇u|m− dx

)

+b0C2

(∫
Ω−

|∇v|n+ dx+

∫
Ω+

|∇v|n− dx

)

≥ C3

(∫
Ω−

|∇u|2 dx

)m+
2

+

(∫
Ω+

|∇u|2 dx

)m−
2

+

(∫
Ω−

|∇v|2 dx

)n+
2

+

∫
Ω+

|∇v|2 dx


n−
2

 ,
using the fact that ‖∇u‖2 ≤ C ‖∇u‖r for all r ≥ 2. This implies that


(
G
′
(t)
) 2

m+ ≥ C4

∫
Ω−
|∇u|2 dx,

(
G
′
(t)
) 2

m− ≥ C5

∫
Ω+
|∇u|2 dx,

(
G
′
(t)
) 2

n+ ≥ C6

∫
Ω−
|∇v|2 dx, and

(
G
′
(t)
) 2

n− ≥ C7

∫
Ω+
|∇v|2 dx.

(22)

The Poincaré inequality gives ‖∇u‖22 ≥ λ ‖u‖
2
2 and ‖∇v‖22 ≥ λ ‖v‖

2
2, where λ is the

first eigenvalue of −∆ with zero Dirichlet conditions. Therefore, we get

‖∇u‖22 =
1

1 + λ
‖∇u‖22 +

λ

1 + λ
‖∇u‖22 ≥

λ

1 + λ
‖u‖2H1

0 (Ω) (23)

and

‖∇v‖22 =
1

1 + λ
‖∇v‖22 +

λ

1 + λ
‖∇v‖22 ≥

λ

1 + λ
‖v‖2H1

0 (Ω) . (24)

It follows from (22), (23) and (24) that

(
G
′
(t)
) 2

m+
+
(
G
′
(t)
) 2

m−
+
(
G
′
(t)
) 2

n+
+
(
G
′
(t)
) 2

n− ≥ C8

∫
Ω

|∇u|2 dx+C9

∫
Ω

|∇v|2 dx
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≥ λ

1 + λ

(
C8 ‖u‖2H1

0
+ C9 ‖v‖2H1

0

)
≥ C10G(t), (25)

or (
G
′
(t)
) 2

m−

(
1 +

(
G
′
(t)
)2

(
1

m+
− 1

m−

))

+
(
G
′
(t)
) 2

n−

(
1 +

(
G
′
(t)
)2

(
1

n+
− 1

n−

))
≥ C10G(t), (26)

where C8 = min (C4, C5) , C9 = min (C6, C7) and C10 = min (C8, C9) .

By (25) and the fact that G(t) ≥ G(0) > 0 (G
′
(t) ≥ 0) (see 21), we have either

(
G
′
(t)
) 2

m+ ≥ C10

4
G(t) ≥ C10

4
G(0) or

(
G
′
(t)
) 2

m− ≥ C10

4
G(t) ≥ C10

4
G(0)

(
G
′
(t)
) 2

n+ ≥ C10

4
G(t) ≥ C10

4
G(0) or

(
G
′
(t)
) 2

n− ≥ C10

4
G(t) ≥ C10

4
G(0),

(27)

this implies that
G
′
(t) ≥ C11 (G(0))

m+
2 or G

′
(t) ≥ C12 (G(0))

m−
2 or

G
′
(t) ≥ C13 (G(0))

n+
2 or G

′
(t) ≥ C14 (G(0))

n−
2

(28)

Therefore , we have that

G
′
(t) ≥ α, (29)

where α = min
{
C11 (G(0))

m+
2 , C12 (G(0))

m−
2 , C13 (G(0))

n+
2 , C14 (G(0))

n−
2

}
.

Furthermore , from

(
1

m+
− 1

m−

)
≤ 0 ,

(
1

n+
− 1

n−

)
≤ 0 and (26), we get

(
G
′
(t)
) 2

m−

(
1 + α

2
(

1
m+
− 1

m−

))
+
(
G
′
(t)
) 2

n−

(
1 + α

2
(

1
n+
− 1

n−

))
≥ C8G(t) (30)

which implies that (
G
′
(t)
) 2

m−
+
(
G
′
(t)
) 2

n− ≥ C10

β1
G(t), (31)

where the constant β1 = max

[(
1 + α

2
(

1
m+
− 1

m−

))
,

(
1 + α

2
(

1
n+
− 1

n−

))]
.

Then (
G
′
(t)
) 2

m−

(
1 +

(
G
′
(t)
)2

(
1

n−
− 1

m−

))
≥ C10

β1
G(t). (32)
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From (4), we observe that 2

(
1

n−
− 1

m−

)
≤ 0, and by using (29), we get

(
G
′
(t)
) 2

m−

(
1 + α

2
(

2
n−
− 1

m−

))
≥ C8

β1
G(t),

then

G
′
(t) ≥ K (G(t))

m−
2 , (33)

where K =

 C8

β1

(
1 + α

2
(

2
n−
− 1

m−

))


m−
2

is a positive constant. Integrating (33)

from 0 to t, we get

G(t) ≥ 1(
(G(0))(

1−m−
2 ) +

(2−m−)Kt

2

) 2
m−−2

(34)

which implies that G(t) −→∞ as t −→ Tmax in H1
0 (Ω), where

Tmax ≤
2 (G(0))

(
2−m−

2

)

(m− − 2)K
.

Consequently, the solution to the problem (1) blows up in H1
0 (Ω)-norm in finite

time. Hence the proof is completed.

4. Lower bound for blow-up time

In this section, we determine a lower bound for the blow-up time of the problem
(1).

Theorem 6. Suppose that the conditions on s(x), r(x), A, and B, given in section
1, hold. Furthermore assume that 2 < s+ < ∞ if n ≤ 2, 2 < s+ ≤ 2n

n−2 if n >

2, (u0, v0) ∈
(
W

1,m(.)
0 ∩ Lp(.)(Ω)

)
×
(
W

1,n(.)
0 ∩ Lp(.)(Ω)

)
and (u, v) be a blow-up

solution of problem (1), then a lower bound for blow-up time Tmin can be estimated
in the form

Tmin ≥
∫ ∞
G(0)

dξ

2
(
B

2P+

+ ξP+ +B
2P−
− ξP−

) (35)

where B−, B+ are the corresponding embedding constants satisfying ‖w‖L2p− ≤
B− ‖∇w‖2 and ‖w‖L2p+ ≤ B+ ‖∇w‖2 , where w = u or v.
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Proof. Consider G(t) as in (17)

G(t) = ‖u‖2H1
0 (Ω) + ‖v‖2H1

0 (Ω) .

Multiply the first equation in (1) by u the second one by v integrating the two
equation over Ω, adding the two results to get∫

Ω

(uut +∇u∇ut + vvt +∇v∇vt) dx =

∫
Ω

(
2 |uv|p(x) −A |∇u|m(x)−2∇u.∇u

−B |∇v|n(x)−2∇v.∇v
)
dx

A direct differentiation of G(t) yields

G
′
(t) = 2

∫
Ω

(uut +∇u∇v + vvt +∇v∇vt) dx

= 2

[∫
Ω

(
2 |uv|p(x) −A |∇u|m(x)−2∇u.∇u−B |∇v|n(x)−2∇v.∇v

)
dx

]
.

Taking into account condition (2) on A and B, we find

G′(t) ≤ 4

∫
Ω

|uv|p(x)
dx. (36)

Defining the sets Ω+ = {x ∈ Ω : |u| ≥ 1, |v| ≥ 1} and Ω− = {x ∈ Ω : |u| < 1, |v| < 1} ,
and by simple use of Young’s inequality, we get∫

Ω

|uv|p(x)
dx ≤

∫
Ω+

|uv|p+ dx+

∫
Ω−

|uv|p− dx

≤ 1

2

(∫
Ω+

|u|2P+ dx+

∫
Ω+

|v|2P+ dx+

∫
Ω−

|u|2P− dx+

∫
Ω−

|v|2P− dx

)

≤ 1

2

(∫
Ω

(
|u|2P+ + |v|2P+

)
dx+

∫
Ω

(
|u|2P− + |v|2P−

)
dx

)
,

now, by Sobolev embeddings (Lemma 2 ), we have

∫
Ω

|uv|p(x)
dx ≤ 1

2
B

2P+

+

((∫
Ω

|∇u|2 dx
)P+

+

(∫
Ω

|∇v|2 dx
)P+

)

+
1

2
B

2P−
−

((∫
Ω

|∇u|2 dx
)P−

+

(∫
Ω

|∇v|2 dx
)P−)

≤ 1

2

[
B

2P+

+

(∫
Ω

(
|∇u|2 + |∇v|2

)
dx

)P+

+B
2P−
−

(∫
Ω

(
|∇u|2 + |∇v|2

)
dx

)P−]

≤ 1

2

[
B

2P+

+ (G(t))
P+ +B

2P−
− (G(t))

P−
]
, (37)

where B−, B+ are the corresponding embedding constants satisfying ‖w‖L2p− ≤
B− ‖∇w‖2 and ‖w‖L2p+ ≤ B+ ‖∇w‖2 , where w = u, v. Therefore (36) becomes
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G
′
(t) ≤ 2

(
B

2P+

+ (G(t))
P+ +B

2P−
− (G(t))

P−
)

(38)

By integrating both sides of the inequality (38) over (0, T ), we obtain∫ G(t)

G(0)

dξ

2
(
B

2P+

+ ξP+ +B
2P−
− ξP−

) ≤ T
If (u, v) blows up in H1

0 -norm, then we obtain a lower bound for Tmin given by

Tmin ≥
∫ ∞
G(0)

dξ

2
(
B

2P+

+ ξP+ +B
2P−
− ξP−

) . (39)

The integral (39) is bound since exponents p+ ≥ p− > 2. This completes the proof
of Theorem6.
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