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EXISTENCE AND UNIQUENESS RESULTS FOR NONLINEAR

INTEGRAL OPERATORS IN A REPRODUCING KERNEL

HILBERT SPACE

JABAR S. HASSAN

Abstract. In this article, we aim to achieve two essential goals. The primary

goal is to investigate the existence and uniqueness of solutions for a general

class of nonlinear integral operators in a reproducing kernel Hilbert space,
denoted by X , which consists of all absolutely continuous functions whose

derivatives are square-integrable on [t0, T ]. The second objective is to apply

the reproducing kernel method to compute approximations of the solutions
to the proposed problem. Additionally, we analyze the uniform error of the

solutions based on the number of grid points on compact subintervals of [t0, T ]

and examine the stability of these solutions. Finally, we present an example
to demonstrate the effectiveness and accuracy of our results.

1. Introduction

Linear and nonlinear integral equations play a significant role in biological mod-
eling, as demonstrated by Hong, Du, and Zhong Chen (2020) [2]. These equations
are applied in various fields, including dynamical population models, mathematical
ecology, the Volterra-Lotka competition model, and biomechanics, as discussed by
Wazwaz (2011) [1], Malindzisa and Khumalo (2014) [3], and HamaRashid-Yahya
(2023) [13]. Moreover, linear and nonlinear integral equations have found wide-
spread applications in other scientific disciplines, such as physics and engineering,
including potential theory, reactor theory, heat transfer problems, semiconductor
devices, fluid dynamics, oscillation theory, elasticity, and electrodynamics, as shown
by Micula (2020) [6], Markova, Sidler, and Solodusha (2021) [5], Hassan and David
(2021) [4], Tun and Tun (2024) [15], and Khan and Suliman (2024) [16].We now
consider the general class of nonlinear integral operators:

U(x) = G(x,U(x)) + TU(x) (1.1)
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where

TU(·) =

∫
D⊂Rd

Φ(·, s,U(s))ds,

is an integral operator, D is a closed and bounded subset of Rd, which is the
standard Euclidean space of dimension d when (d = 1, 2, 3), Φ satisfies specified
regularity conditions where U(x) is an unknown solution of (1.1) and G is a given
function in an appropriate Hilbert space.

In this work, we demonstrate that there is a unique solution U to (1.1) in the
Hilbert spaces X ; contains all absolutely continuous functions f whose derivative f ′

belongs to L2[t0, T ]. Therewith, we employ the reproducing kernel method to obtain
numerical approximations to the proposed problem in these spaces. Moreover,
we investigate the local stability of the solutions, and we analyze uniform error
estimates in terms of the nodes on [t0, T ]. Our investigation of solutions of (1.1) in
the Hilbert space X should be contrasted with previous work on the existence and
uniqueness of solutions in the Banach space C[t0, T ] and the Hilbert space L2[t0, T ];
see Dobritoiu and Tricomi [14, 8] in 2020 and 1985 for summary.

We apply the contraction mapping principle as a tool to establish a unique fixed
point in a certain space on a short time interval. Thereafter, we extend the local
accomplishment to achieve the global existence and uniqueness of solutions to (1.1)

in X [a, b] or W
(p,q)
2 ([a, b] × [c, d]); depends on the dimension (d = 1, 2, or 3) for

summary; see Hassan and Cui [9, 4, 10].
Existence and uniqueness theorems for nonlinear problems such as (1.1) are

important because it is impossible to achieve exact solutions to most mathematical
models of real world problems. Existence and uniqueness results are the theoretical
foundation for successful numerical methods to determine approximate solutions.

Reproducing kernel Hilbert spaces have been vastly studied and applied in the
last century. Recently in 2009, Cui and Lin [10], introduced reproducing kernel
Hilbert spaces Wm

2 (Ω). These spaces have advantageous and convenient property
that their reproducing kernels are piece-wise polynomial functions. This would be
a great aid in numerical approximation of solutions when Ω is a Cartesian product
of compact intervals.

The work is outlined as follows. In Section 2, we introduce the main concepts and
standard notation related to reproducing kernel Hilbert spaces. Establishing the
main results regarding the existence and uniqueness of solutions to the introduced
problem is presented in Section 3. The representation of solutions will be discussed
in Section 4 for a bounded linear operator Λ that maps from the reproducing kernel
Hilbert space X into itself, where ΛU = f . In Section 5, we discuss and study some
theorems on stability and error analysis. A numerical example is provided in Section
6. Finally, the conclusions are presented in Section 7.

2. Preliminary Notation

Fundamental definitions and relative notations for the reproducing kernel Hilbert
spaces are given. We recommend [10, 2, 11, 9, 4, 7, 12] as references related to the
material in this section. Throughout this paper, for simplicity we consider one
dimensional (i.e., d = 1 ) nonlinear integral equations, and analogous techniques
can be used to extend and generalize the problem to higher dimensional spaces Rd.
Consider,
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u(ζ) = f(ζ) +

∫ ζ

t0

Φ(ζ, η, u(η))dη, (2.1)

where ζ ∈ [t0, T ]. We study existence and uniqueness of solutions u to (2.1) in
the Hilbert space X ; consisting of those absolutely continuous functions f whose
derivative f ′ belongs to L2[t0, T ]. Here f ∈ X and Φ satisfies specified regularity
conditions; see Theorem 3.1 and the related discussion.

Definition 2.1. Let H be a Hilbert space of continuous functions h from D into
R (D 6= ∅). Then, H is said to be a reproducing kernel Hilbert space (RKHS) if,
for each e ∈ D, there corresponds a bounded linear functional ϕe : H → R given by
ϕe(h) = h(e).

It follows from the Riesz representation theorem that there exists a unique func-
tion r : D ×D → R such that:

h(e) = ϕe(h) =
〈
h(·), r(e, ·)

〉
H ,

for each h ∈ H and all e ∈ D. In addition, the notation AC will be used for
absolutely-continuous functions on [t0, T ] in the rest of this paper.

Definition 2.2. Let X [t0, T ] =
{
f : [t0, T ]→ R | f ∈ AC[t0, T ] and f ′ ∈ L2 [t0, T ]

}
.

Lemma 2.3. ([10]) The function space
(
X [t0, T ] , 〈·, ·〉

)
, equipped with the inner

product

〈h1, h2〉X [t0,T ] = h1 (t0)h2 (t0) +

∫ T

t0

h′1(x)h′2(x)dx,

and provided with the norm ∥∥ · ∥∥X =
√
〈·, ·〉X [t0,T ] ,

is a reproducing kernel Hilbert space.

We note that, for later reference the kernel function p = p(·, ·) of X [t0, T ] is
given by:

p(ζ, η) =

{
η − t0 + 1 if t0 ≤ η < ζ ≤ T,
ζ − t0 + 1 if t0 ≤ ζ < η ≤ T.

(2.2)

3. Existence and Uniqueness results

This section is devoted to showing that, under appropriate hypotheses the non-
linear Volterra integral equation (2.1) has a unique solution in the reproducing
kernel Hilbert space X [t0, T ]. Let ∆ = {(ζ, µ) : t0 ≤ µ ≤ ζ ≤ T} and assume Φ
obeys the following hypotheses:

(H1) Φ is measurable and uniformly bounded on each compact subset of ∆×R;
(H2) ∂Φ/∂t exists and is uniformly bounded on each compact subset of ∆× R;
(H3) To each compact interval [−β, β] ⊂ R there corresponds a measurable func-

tion g = g(ζ, µ) such that
(i) |Φ(ζ, µ, u) − Φ(ζ, µ, v)| ≤ g(ζ, µ) |u − v|, for all (ζ, µ) ∈ ∆, and all u, v ∈

[−β, β];
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(ii) For almost every ζ ∈ [t0, T ] , ∂g∂ζ (ζ, µ) exists for all µ ∈ [t0, ζ] and ∂g
∂ζ (ζ, ·) ∈

L1 [t0, ζ];

(iii) sup
{∣∣∣∫ ζt0 ∂g

∂ζ (ζ, µ)dµ
∣∣∣ : t0 ≤ ζ ≤ T

}
= C, where C is a real constant.

Theorem 3.1. Let −∞ < t0 < T <∞, let Φ satisfy hypotheses (H1)− (H3), and
f ∈ X [t0, T ]. Then there exists a unique solution u ∈ X [t0, T ] to (2.1).

It is important to mention here that hypotheses (H1) − (H3) are fundamental
in Theorem 3.1 for showing the existence of a solution u ∈ X [t0, T ] to (2.1). For
instance, suppose Φ(ζ, µ, u) = 1/(1−µ) for 0 ≤ µ ≤ ζ ≤ 2. We conclude that (H2)
and (H3) are valid and only (H1) is violated. Fix some f ∈ X [0, 2] and equation
(2.1) becomes

u(t) = f(ζ) +

∫ ζ

0

Φ(ζ, µ, u(µ))dµ

= f(ζ) +

∫ ζ

0

1

1− µ
dµ

= f(ζ)− ln |1− ζ|.

Clearly, u is not continuous on [0, 2], and as a result it does not belong to X [0, 2].
Hence, in this situation there is no solution in the space X [0, 2] to (2.1).

Analogous arguments can be used to explain why hypotheses (H2) and (H3) are
also crucial in Theorem 3.1. For example, one can take Φ(ζ, µ, u) =

√
1− ζ where

ζ ∈ [0, 1], or Φ(ζ, µ, u) = u1/3 for u ∈ [−β, β], to show (H2) and (H3) cannot be
relaxed, respectively.

Corollary 3.2. Let −∞ < t0 < T < ∞. Assume f ∈ X [t0, T ] and Φ satisfies
hypotheses (H1), (H2), and

(H̃3) to each compact interval [−β, β] ⊂ R there corresponds a real constant M
such that |Φ(ζ, µ, u)−Φ(ζ, µ, v)| ≤M |u−v| for all (ζ, µ) ∈ 4 and all u, v ∈ [−β, β].

Then there exists a unique solution u ∈ X [t0, T ] to (2.1).

The proof of our main theorem (Theorem 3.1) requires some preliminary tools.
We begin with the following result.

Lemma 3.3. If u ∈ X [t0, T ], let

(Au)(ζ) =

∫ ζ

t0

Φ(ζ, µ, u(µ))dµ, (ζ ∈ [ζ0, T ]) . (3.1)

Then Au belongs to X [t0, T ].

Proof. We first assert that Au ∈ AC [t0, T ]. Let a ≤ u(ζ) ≤ b for all t ∈ [t0, T ]. By
hypotheses (H1) and (H2),Φ and ∂Φ

∂ζ are uniformly bounded on ∆× [a, b], say by

positive numbers L and M , respectively. Next, let ε > 0 and let {(an, bn)}Nn=1 be a

finite collection of non-over lapping intervals in [t0, T ] such that
∑N
n=1 |bn − an| <
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ε
MT+L . Then

N∑
n+1

∣∣(Au)(bn)− (Au)(an)
∣∣ =

N∑
n+1

∣∣∣∣ ∫ bn

t0

Φ(bn, µ, u(µ))−
∫ an

t0

Φ(an, µ, u(µ))dµ

∣∣∣∣
=

N∑
n=1

∣∣∣∣∣
∫ an

t0

(Φ (bn, µ, u(µ))− Φ (an, µ, u(µ))) dµ+

∫ bn

an

Φ (bn, µ, u(µ)) dµ

∣∣∣∣∣
≤

N∑
n=1

∫ an

t0

∣∣ (Φ (bn, µ, u(µ))− Φ (an, µ, u(µ)))
∣∣dµ+

N∑
n=1

∫ bn

an

∣∣Φ (bn, µ, u(µ))
∣∣dµ.

It follows from (H1) and the mean value theorem that:

N∑
n=1

|(Au) (bn)− (Au) (an)| ≤
N∑
n=1

∫ an

t0

∣∣∣∣(bn − an)
∂Φ

∂ζ
(cn, µ, u(µ))

∣∣∣∣ dµ+

N∑
n=1

∫ bn

an

Ldµ

≤
N∑
n=1

(an − t0) |bn − an|M +

N∑
n=1

|bn − an|L

≤ (MT + L)

N∑
n=1

|bn − an|

< ε.

Thus, Au is absolutely continuous on [t0, T ]. Next, it follows from the Leibniz rule
and hypothesis (H2) that, for almost every ζ ∈ [t0, T ],

(Au)′(ζ) =

∫ ζ

t0

∂Φ

∂ζ
(ζ, µ, u(µ))dµ+ Φ(ζ, ζ, u(ζ)),

so (Au)′ is square integrable on [t0, T ]. We conclude by Definition (2.2) that Au
belongs to X [t0, T ]. �

Fix f ∈ X [t0, T ] and define an operator B : X [t0, T ]→ X [t0, T ] by

Bu(η) = f(η) +

∫ η

t0

Φ(η, µ, u(µ))dµ,

for all u ∈ X [t0, T ]. Then problem (2.1) can be expressed as

Bu(η) = f(η) +Au(η).

Let µ ∈ [t0, T ) and σ > 0 such that µ+ σ ≤ T . It follows from Lemma 2.3 that
the inner product in X [µ, µ+ σ] is given by

〈f, g〉X [µ,µ+σ] = f(µ)g(µ) +

∫ µ+σ

µ

f ′(ξ)g′(ξ)dξ,

for all f, g ∈ X[µ, µ+ σ].

Lemma 3.4. Let u ∈ X [µ, µ+ σ]. Then |u| ≤
√

2 max{1, σ}‖u‖X [µ,µ+σ].
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Proof. Let u ∈ X [µ, µ + σ]. It follows from absolute continuity and the Cauchy-
Schwarz inequality that for all t ∈ [µ, µ+ σ],

|u(ζ)|2 =

∣∣∣∣∣u(µ) +

∫ ζ

µ

u′(s)ds

∣∣∣∣∣
2

≤ 2u2(µ) + 2

(∫ ζ

µ

u′(s)ds

)2

≤ 2u2(µ) + 2σ

∫ µ+σ

µ

(u′(s))
2
ds

≤ 2 max{1, σ}
(
u2(µ) +

∫ µ+σ

µ

(u′(s))
2
ds

)
= 2 max{1, σ}‖u‖2X [µ,µ+σ].

Therefore,

|u| ≤
√

2 max{1, σ}‖u‖X [µ,µ+σ].

�

Theorem 3.5. Let u, v ∈ X [µ, µ+ σ]. Then

‖Bu−Bv‖X [µ,µ+σ] ≤ α(σ)‖u− v‖X [µ,µ+σ],

for some positive constant α(σ) ≤ C
√

2σmax{1, σ}.

Proof. Let u, v ∈ X [µ, µ+ σ]. By definition,

‖Bu−Bv‖2X [µ,µ+σ] = ((Bu−Bv)(µ))2 +

∫ µ+σ

µ

(
d

dζ
(Bu(ζ)−Bv(ζ))

)2

dζ

=

∫ µ+σ

µ

(
d

dζ
(Au(ζ)−Av(ζ))

)2

dζ

=

∫ µ+σ

µ

(
d

dζ

∫ ζ

µ

(Φ(ζ, s, u(s))− Φ(ζ, s, v(s)))ds

)2

dζ

=

∫ µ+σ

µ

(
d

dζ

∫ ζ

µ

|Φ(ζ, s, u(s))− Φ(ζ, s, v(s))|ds

)2

dζ.
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It follows from hypothesis (H3), Lemma 3.4, and the Leibniz rule that

‖Bu−Bv‖2X [µ,µ+σ] ≤
∫ µ+σ

µ

(
d

dζ

∫ ζ

µ

g(ζ, s)|u(s)− v(s)|ds

)2

dζ

≤
∫ µ+σ

µ

(
d

dζ

∫ µ+σ

µ

g(ζ, s)|u(s)− v(s)|ds
)2

dζ

≤ 2 max{1, σ}‖u− v‖2X [µ,µ+σ]

∫ µ+σ

µ

(
d

dζ

∫ µ+σ

µ

g(ζ, s)ds

)2

dζ

= 2 max{1, σ}‖u− v‖2X [µ,µ+σ]

∫ µ+σ

µ

(∫ µ+σ

µ

∂g

∂ζ
(ζ, s)ds

)2

dζ

≤ 2 max{1, σ}‖u− v‖2X [µ,µ+σ]

∫ µ+σ

µ

C2dζ

= 2σC2 max{1, σ}‖u− v‖2X [µ,µ+σ].

Thus,

‖Bu−Bv‖X [µ,µ+σ] ≤ α(σ)‖u− v‖X [µ,µ+σ],

where α(σ) ≤ C
√

2σmax{1, σ}; σ is an arbitrary positive parameter and C is
the constant defined in hypothesis (H3). �

Now we begin the proof of Theorem 3.1.

Proof. We observe that u 7→ Bu = f + Au maps X [µ, µ + σ] into X [µ, µ + σ] for
all u and f in X [µ, µ + σ], by Theorem 3.5. If we choose σ sufficiently small such
that α(σ) < 1 in Theorem 3.5, then B is a contraction mapping on X [µ, µ + σ].
Furthermore,

(
X [µ, µ+ σ], ‖ · ‖X [µ,µ+σ]

)
is a complete metric space. Therefore, the

Banach contraction mapping principal guarantees that B has a unique fixed point
u in X [µ, µ+ σ]. That is, there is a unique solution u? such that Bu? = u?.

The global existence and uniqueness solution for (2.1) can be obtained by iterat-
ing the local existence result. This can be done by taking [t0, α(σ)] , [α(σ), 2α(σ)], . . .
to cover [t0, T ]. �

4. Representation of the Solution

In this section, we study representation of the solution to (2.1). We suggest
appropriate references [10, 11, 4] for this section. Define an integral operator Λ :
X [t0, T ]→ X [t0, T ] as follows:

Λu = u−Au,

where A is defined in (3.1). For a given f ∈ X [t0, T ] which satisfies (2.1), then we
conclude that Λu = f . Let {ti}∞i=1 be a countable dense set of points of [t0, T ] and
let Λ∗ be adjoint operator of Λ. Define

θi = Λ∗qti ,

when qti is the kernel function of X [t0, T ] and is defined by (2.2).
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Theorem 4.1. Let {ti}∞i=1 be dense in X [t0, T ]. Then {θi}∞i=1 is a complete system
in the space X [t0, T ] and

θi = Λqti ,

for all i ∈ {1, 2, 3, . . .}.

An orthogonal system
{
θ̂i

}∞
i=1

for X [t0, T ] can be obtained by applying the

Gram-Schmidt orthogonalization process to {θi}∞i=1:

θ̂i =

n∑
i=1

cikθi,

where the cik are orthonormalization coefficients of {θi}∞i=1.

Theorem 4.2. Let {ti}∞i=1 be a countable dense set of points of [t0, T ] and let u ∈
X [t0, T ] be a solution of Λu = f for fixed f ∈ X [t0, T ]. Then u has the following
representation:

u =

∞∑
i=1

i∑
j=1

cijf (tj) θ̂i.

We note that the truncation,

un =

n∑
i=1

i∑
j=1

cijf (tj) θ̂i, (4.1)

is an approximation of the exact solution u to Λu = f .

5. Stability and Error Analysis

In this section, we provide sufficient conditions for local uniform stability for the
solution to (2.1) in X [t0, T ] with respect to the driver f in X [t0, T ]. Moreover, we
study the global uniform error when the truncation un is used to approximate the
solution u in X [t0, T ] to Bu = u. Note that the supremum norm of a continuous
real function ψ in [t0, T ] will be denoted by:

‖ψ‖∞ := sup {|ψ(ζ)| : t0 ≤ ζ ≤ T} .

Theorem 5.1. Let σ be a sufficiently small positive number, for all ζ ∈ [t0, T ),
and let u1 and u2 be the unique solutions in X [ζ, ζ+σ] to Λuj = fj where fj belong
to X [ζ, ζ + σ] (j = 1, 2). Then there corresponds a constant C such that

‖u1 − u2‖∞ ≤ C ‖f1 − f2‖∞ .

Proof. Let ζ ∈ [t0, T ) and let choose σ < 1/M where M is defined in (H̃3). It

follows from (H̃3) that

|u1(ζ)− u2(ζ)| =

∣∣∣∣∣f1(ζ)− f2(ζ) +

∫ ζ+σ

ζ

(Φ (ζ, µ, u1(µ))− Φ (ζ, µ, u2(µ))) dµ

∣∣∣∣∣
≤ |f1(ζ)− f2(ζ)|+M

∫ ζ+σ

ζ

|u1(µ)− u2(µ)| dµ

≤ |f1(ζ)− f2(ζ)|+Mσ ‖u1 − u2‖∞
≤ ‖f1 − f2‖∞ +Mσ ‖u1 − u2‖∞ ,
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which implies for all ζ ∈ [t0, T ) that,

‖u1 − u2‖∞ ≤ ‖f1 − f2‖∞ +Mσ ‖u1 − u2‖∞ .

Therefore,

‖u1 − u2‖∞ ≤ C ‖f1 − f2‖∞ ,

where C = (1− σM)−1. �

Lemma 5.2. ([4]) For any ζ and µ in [t0, T ], then ‖p(ζ, ·)− p(µ, ·)‖2X = |ζ − µ|.

Theorem 5.3. Let n be a positive integer and let ζi ∈ [t0, T ] where ζi = ζ0 + i∆ζ
(i = 0, 1, 2, . . . , n) and the mesh size

(
∆ζ = T−t0

n

)
. Let u be a unique solution in

X [t0, T ] to Bu = u, and let un be an approximate solution of u given by (4.1).
Then

|u(ζ)− un(ζ)| ≤ 2
‖Bu‖X
n

,

for all ζ ∈ [t0, T ].

Proof. To each ζ ∈ [t0, T ] there exists ζi ∈ [t0, T ] with ζi ≤ ζ such that |ζ − ζi| < 1
n .

Using Bu (ζi) = Bun (ζi) for (0 ≤ i ≤ n). We conclude that,

|u(ζ)− un(ζ)| = |u(ζ)−Bu (ζi) +Bun (ζi)− un(ζ)|
= |u(ζ)− u (ζi) + un (ζi)− un(ζ)|
≤ |u(ζ)− u (ζi)|+ |uN (ζi)− un(ζ)| .

Note that,

|u(ζ)− u (ζi)| = |〈u(·), p(·, ζ)〉X − 〈u(·), p (·, ζi)〉X |
≤ |〈u(·), p(·, ζ)− p (·, ζi)〉|X [t0,T ]

≤ ‖Bu‖X [t0,T ] ‖p(·, ζ)− p (·, ζi)‖X [t0,T ] .

It follows from Lemma 5.2 that,

|u(ζ)− u (ζi)| = ‖Bu‖X [t0,T ]

√
|ζ − ζi|

≤ ‖Bu‖X [t0,T ]
1√
n
.

Similar arguments can be used to obtain the following inequality

|un(ζ)− un (ζi)| ≤ ‖Bu‖X [t0,T ]
1√
n
.

Hence,

|u(ζ)− un(ζ)| ≤
2‖Bu‖X [t0,T ]√

n
,

for all ζ ∈ [t0, T ]. �
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6. Numerical Results

In this section, we use the reproducing kernel method for solving the nonlinear
integral equation (2.1) numerically. The accuracy of the results reflect the efficiency
of the method.

Example 6.1. We consider the following problem on [0, 1]

u(ζ) = f(ζ) +

∫ ζ

0

ζ3/2
(
µ+ u2(µ)

)
dµ,

where f(ζ) = ζ
3
4 − 1

2ζ
7
2 − 2

5ζ
4. Clearly, f and Φ(ζ, µ, u) = ζ3/2

(
µ+ u2(µ)

)
satisfy

the hypotheses of Corollary 3.2. In this case, the exact solution of this problem
u(ζ) = ζ

3
4 belongs to X [0, 1], and we approximate the solution numerically in this

space. In the following table, the results of applying the method with the reproduc-
ing kernel function (2.2) in X [0, 1] with 11 uniformly distributed points in [0, 1] is
shown. We note from Theorem 5.3 that the upper bound for the uniform error in
[0, 1] when n = 10 is given by:

|u(ζ)− un(ζ)| ≤
2‖Bu‖X [0,1]√

n
≈ 0.001.

t Exact solution Numerical results Absolute error Relative error
0.0 0 0 0 0
0.1 0.1778279410 0.177829653 2.4× 10−6 1.3× 10−6

0.2 0.2990697562 0.2990695765 2.03× 10−6 6.7× 10−6

0.3 0.4053600464 0.4053601494 3.01× 10−7 7.4× 10−7

0.4 0.5029733719 0.5029732234 1.50× 10−7 2.9× 10−7

0.5 0.5946035575 0.5946032466 9.10× 10−7 1.51× 10−7

0.6 0.6817316199 0.6817316788 1.10× 10−8 1.60× 10−8

0.7 0.7652855798 0.7652853789 9.10× 10−7 1.17× 10−7

0.8 0.8458970108 0.8458974132 2.40× 10−7 2.83× 10−7

0.9 0.9240210865 0.9240230712 1.53× 10−6 1.65× 10−6

1.0 1 0.99982995 5.10× 10−4 5.10× 10−4

Table: The absolute and relative error for this example with 11 equally spaced
grid points in [0, 1] in the space X [0, 1].

7. Conclusion

We have demonstrated the existence and uniqueness of solutions to the general
class of nonlinear Volterra integral equation (2.1) in the reproducing kernel Hilbert
space X [t0, T ], where Φ satisfies the specified regularity conditions (see hypotheses
(H1)− (H3)), and the driver f belongs to X [t0, T ] (see Theorem 3.1 and the related
discussion). Additionally, we studied the local uniform stability of the solutions and
discussed the upper bound for the uniform error estimate on compact subintervals
of [t0, T ] for the solutions to the proposed problem.
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