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HAMILTONIAN VECTOR FIELDS ON LOCALLY

CONFORMALLY SYMPLECTIC A-MANIFOLDS

OLIVIER MABIALA MIKANOU1, ANGE MALOKO MAVAMBOU2 AND SERVAIS CYR

GATSE3

Abstract. In this paper, we consider M to be a paracompact smooth mani-

fold, A a local algebra and, MA the Weil bundle. We construct the Hamilton-

ian vector fields on the symplectic A-manifold MA. Additionally, we investi-
gate and establish the properties of both locally and globally defined Hamil-

tonian vector fields when MA is a locally conformally symplectic A-manifold.

1. Introduction

In 1953, André Weil [11] introduced the theory of bundles on near points,
which has since gained a lot of attention in differential geometry. In the following,
a commutative associative unitary real algebra is represented by A. A Weil algebra
is a finite-dimensional local algebra of the following form:

A = R⊕m (1.1)

where m is its unique maximal ideal (see [7]). As an example, we define the algebra
D = R[x]/〈x2〉 of dual numbers whose the maximal ideal is m = xR.
Let M be a paracompact smooth manifold, C∞(M) the algebra of smooth functions
on M . Given a Weil algebra A with maximal ideal m and basis a1, · · · , aα with
a1 = 1 ∈ R. We recall that an A-point of near to x ∈M is a morphism of algebras

ξ : C∞(M) −→ A

such that
ξ(f) = f(x) · a1 + λ = f(x) + λ (1.2)

for all x ∈M , where λ ∈ m. We denote by

MA =
⋃
x∈M

MA
x

the manifold of infinitely near points of kind A where MA
x ⊂ HomR(C∞(M), A) is

the set of all A-points of M near to x and π : MA −→M is the projection such that
π
(
MA
x

)
= x. The triple

(
MA, π,M

)
defined is a bundle called bundle of infinitely
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near points or simply Weil bundle [6].
If (U,ϕ) is a local chart of M with coordinate system (x1, · · · , xn), the map

ϕA : UA −→ An, ξ 7−→ (ξ(x1), · · · , ξ(xn))

is a bijection from UA onto an open set of An. In addition, if (Ui, ϕi)i∈I is an atlas
of M , then (UAi , ϕ

A
i )i∈I is also an A-atlas of MA. Accordingly, MA is considered

an A-manifold, with dimMA = dimM = n (for further information, see [1]).
If M and N are smooth manifolds and g : M −→ N is a differentiable map of class
C∞, then the map

gA : MA −→ NA, ξ 7−→ gA(ξ)

such that [
gA(ξ)

]
(h) = ξ(h ◦ g) (1.3)

for all h ∈ C∞(N), is differentiable. Thus, for f ∈ C∞(M), the map

fA : MA −→ RA = A, ξ 7−→
[
fA(ξ)

]
(idR) = ξ(idR ◦ f) = ξ(f) (1.4)

is differentiable of class C∞.
The set C∞(MA, A) of smooth functions on MA with values in A is a commutative
algebra with unit over A and the mapping

C∞(M) −→ C∞(MA, A), f 7−→ fA

is an injective homomorphism of algebras. Then, we have the following properties:

(f + g)A = fA + gA;

(λ · f)A = λ · fA;

(f · g)A = fA · gA,

here f, g ∈ C∞(M) and λ ∈ R.
We define X(MA) as the set of all smooth sections of TMA.

According to [2], the set X(MA) is a module of vector fields on MA over C∞(MA)
and C∞(MA, A).
The theory of prolongation of some geometric structures on Weil bundles has been
in the last decades developed in different directions by many researchers (see [1], [2],
[3] and [10]). In [2], the author defines and studies the notions of Jacobi structures
on MA regarded as A-manifold. In [9], the authors give a characterization of
Hamiltonian vector fields on MA in the case of Poisson manifolds and symplectic
manifolds. The author of [4] characterizes in terms of Lie-Rinehart-Jacobi algebras
on the C∞(M)-module of vector fields X(M) the locally and globally Hamiltonian
vector fields and gives their properties.
In this paper, we consider MA as an A-manifold, we discuss the construction of
Hamiltonian vector fields on the symplectic A-manifold MA. We also study and
establish the properties of locally and globally Hamiltonian vector fields when MA

is a locally conformally symplectic manifold on Weil bundles.

2. Generalities and basic notions

In this section, we recall some constructions of A-structures.



HAMILTONIAN VECTOR FIELDS ON LOCALLY CONFORMALLY SYMPLECTIC A-MANIFOLDS67

2.1. Vector fields on Weil bundles.

Theorem 2.1. [10] The following assertions are equivalent:

1) A vector field on MA is a differentiable section of the tangent bundle
(TMA, πMA ,MA).

2) A vector field on MA is a derivation of C∞(MA).
3) A vector field on MA is a derivation of C∞(MA, A) which is A-linear.
4) A vector field on MA is a linear map

Y : C∞(M) −→ C∞(MA, A)

such that

Y (f · g) = Y (f) · gA + fA · Y (g), (2.1)

for all f, g ∈ C∞(M).

We note byDerA[C∞(MA, A)] the C∞(MA, A)-module of derivations of C∞(MA, A)
which are A-linear.

2.2. Differential forms and dA-cohomology on Weil bundles. An
A-covector field at ξ ∈MA is a linear form on the A-module TξM

A. The set, T ∗ξM
A,

of A-covectors at ξ ∈MA is an A-free module of dimension n and

T ∗MA =
⋃

ξ∈MA

T ∗ξM
A

is an A-manifold of dimension 2n. The set, Λ1(MA, A), of differential sections of
T ∗MA is a C∞(MA, A)-module and we say that Λ1(MA, A) is the C∞(MA, A)-
module of differential A-forms of degree +1.
For p ∈ {0} ∪ N and for ξ ∈ MA, we note Lpsks(TξMA, A) the A-module of
skew-symmetric multilinear forms of degree p on the A-module TξM

A. We have,
L0
sks(TξM

A, A) = A. For two integers p and q, we define the wedge product

∧ : Lpsks(TξM
A, A)× Lqsks(TξM

A, A) −→ Lp+qsks (TξM
A, A), (α, β) 7−→ α ∧ β.

The set,

Ap(T ∗ξM
A, A) =

⋃
ξ∈MA

Lpsks(TξM
A, A),

is an A-manifold of dimension n + Cpn. The set, Λp(MA, A), of differential sec-
tions of Ap(T ∗MA, A) is a C∞(MA, A)-module. We say that Λp(MA, A) is the
C∞(MA, A)-module of A-differential forms of degree p on MA and

Λ•(MA, A) =

n⊕
p=0

Λp(MA, A),

is the algebra of differential A-forms on MA. The algebra Λ•(MA, A) of dif-
ferential A-forms on MA is canonically isomorphic to A ⊗ Λ•(MA). We have
Λ0(MA, A) = C∞(MA, A).

Theorem 2.2. If η is a differential form of degree p on M (according to [2]), then
there exists a unique differential A-form of degree p,

ηA : X(MA)× X(MA)× · · · × X(MA) −→ C∞(MA, A)
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such that
ηA(fA1 θ

A
1 , · · · , fAp θAp ) = fA1 · · · fAp [η(θ1, · · · , θp)]A, (2.2)

for all θ1, · · · , θp ∈ X(M) and f1, · · · , fp ∈ C∞(M).

The mapping Λ•(M) −→ Λ•(MA, A), ω 7−→ ωA, is a morphism of graded R-
algebras, and if

d : Λ•(M) −→ Λ•(M)

is an exterior differential operator, following [2], we note

dA : Λ•(MA, A) −→ Λ•(MA, A)

the cohomology operator associated with the representation

X(MA) −→ DerA[C∞(MA, A)], X 7−→ X.

The mapping dA is A-linear and verifies

dA(ωA) = (dω)A, ∀ω ∈ Λ•(M).

2.3. Lie-Rinehart-Jacobi algebra structure on Weil bundles.

2.3.1. Differential operators of order ≤ 1 on Weil bundles.

Definition 2.3. We have the following definitions.

1) An application δ is called differential operator of order ≤ 1 on MA if

δ : C∞(MA) −→ C∞(MA)

is R-linear such that

δ(ϕ · ψ) = δ(ϕ) · ψ + ϕ · δ(ψ)− ϕ · ψ · δ(1C∞(MA)), (2.3)

for all ϕ,ψ ∈ C∞(MA).

We note by D[1]
R (MA) the C∞(MA)-module of differential operators of

order ≤ 1 on MA.
2) An application ∂ : C∞(MA, A) −→ C∞(MA, A) is called A-differential

operator of order ≤ 1 if ∂ is A-linear such that

∂(ϕ1 · ϕ2) = ∂(ϕ1) · ϕ2 + ϕ1 · ∂(ϕ2)− ϕ1 · ϕ2 · ∂(1C∞(MA,A)) (2.4)

for any ϕ1, ϕ2 ∈ C∞(MA, A).

We note D[1]
A (MA) the set of differential operators of order ≤ 1 on

C∞(MA, A). When ∂(1C∞(MA,A)) = 0, we say that ∂ is an A-derivation

on C∞(MA, A).

Theorem 2.4. [8] The following statements are equivalent:

1) A differential operator of order ≤ 1 on MA is a R-linear map

δ : C∞(MA) −→ C∞(MA)

such that

δ(ϕ · ψ) = δ(ϕ) · ψ + ϕ · δ(ψ)− ϕ · ψ · δ(1C∞(MA)),∀ϕ,ψ ∈ C∞(MA). (2.5)

2) A differential operator of order ≤ 1 on MA is an A-linear map

∂ : C∞(MA, A) −→ C∞(MA, A)

such that

∂(ϕ ·ψ) = ∂(ϕ) · ψ+ϕ · ∂(ψ) −ϕ ·ψ · ∂(1C∞(MA,A)),∀ϕ,ψ ∈ C∞(MA, A). (2.6)
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3) A differential operator of order ≤ 1 on MA is a R-linear map from C∞(M)
into C∞(MA, A)

σ : C∞(M) −→ C∞(MA, A)

such that

σ(f · g) = σ(f) · gA + fA · σ(g) − fA · gA · σ(1C∞(M)),∀ f ,g ∈ C∞(M). (2.7)

Theorem 2.5. [8] The application

[·, ·] : D[1]
A (MA)×D[1]

A (MA) −→ D[1]
A (MA), (∂1,∂2) 7−→ ∂1 ◦ ∂2 − ∂2 ◦ ∂1 (2.8)

is skew-symmetric A-bilinear and defines a structure of Lie A-algebra on the A-

module D[1]
A (MA).

Moreover, we have, for all ∂1,∂2 ∈ D[1]
A (MA), for all ϕ ∈ C∞(MA, A),

[∂1, ϕ · ∂2] =
(
∂1(ϕ)− ϕ · ∂1(1C∞(MA,A))

)
· ∂2 + ϕ · [∂1,∂2]. (2.9)

2.3.2. Lie-Rinehart algebra structure on Weil bundles.

Definition 2.6. A Lie-Rinehart algebra structure on MA is the anchor of mor-
phism

ρ : X(MA)→ D[1]
A (MA)

both of Lie A-algebras and C∞(MA, A)-modules such that

[X,ϕ · Y ] =
(
ρ(X)(ϕ)− ϕ · ρ(X)(1C∞(MA,A))

)
· Y + ϕ · [X,Y ] (2.10)

for all vector fields X, Y on MA and ϕ ∈ C∞(MA, A).
Then, we say that the pair (X(MA), ρ) is a Lie-Rinehart algebra.

We put

Lsks(X(MA), C∞(MA, A)) =
⊕
p∈N
Lpsks(X(MA), C∞(MA, A)),

where Lpsks(X(MA), C∞(MA, A)) is the module of skew-symmetric A-multilinear
maps of degree p from X(MA) to C∞(MA, A). Finally

dAρ : Lsks(X(MA), C∞(MA, A)) −→ Lsks(X(MA), C∞(MA, A))

is the cohomology operator associated with the representation ρ. In differential
geometry, dAρ is the generalization of the differential operator of Lichnerowicz with
1-form

dAρ (1C∞(MA,A)) : X(MA) −→ C∞(MA, A),

and the pair
(
Lsks(X(MA), C∞(MA, A)), dAρ

)
is a differential algebra.

Definition 2.7. We call canonic form α ∈ Λ1(MA) associated with the structure
of Lie-Rinehart algebra (X(MA), ρ) on MA, the 1-form

α : X(MA) −→ C∞(MA, A), X 7−→ ρ(X)(1C∞(MA,A)). (2.11)

Theorem 2.8. [8] Let (X(MA), ρ) be a Lie-Rinehart algebra on MA. There exists
a differential A-form of degree +1 on MA,

α : X(MA) −→ C∞(MA, A)

such that
ρ (X) (ϕ) = X(ϕ) + ϕ ·α(X). (2.12)
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Proposition 2.9. [8] If dA denotes the differential operator of degree +1 and of
square 0 associated with the representation

X(MA) −→ DerA[C∞(MA, A)], X 7−→ X,

then the 1-form α is dA-closed, that is, dAα = 0.

We end this subsection to give the following consequence.

Corollary 2.10. Let α be a differential A-form of degree +1 on MA and let a
representation

ρα : X
(
MA

)
−→ D[1]

A

(
MA

)
such that

ρα (X) (ϕ) = ϕ · α (X) +X (ϕ) (2.13)

for any ϕ ∈ C∞
(
MA, A

)
. The pair

(
X
(
MA

)
, ρα

)
is an A-Lie-Rinehart algebra if

and only if dAα = 0.

2.3.3. Lie-Rinehart-Jacobi algebra structure on Weil bundles.

Definition 2.11. A Lie-Rinehart-Jacobi algebra structure on Lie-Rinehart algebra
(X
(
MA

)
, ρα) is defined by a skew-symmetric A-bilinear form

µ : X
(
MA

)
× X

(
MA

)
−→ C∞

(
MA, A

)
such that

dAραµ = 0. (2.14)

We say that (X
(
MA

)
, ρα, µ) is a Lie-Rinehart-Jacobi algebra on Weil bundles.

3. Hamiltonian vector fields on the symplectic A-manifold MA

Theorem 3.1. [2], [5] If

ω : X (M)× X (M) −→ C∞ (M)

is the nondegenerate 2-form, then so is

ωA : X
(
MA

)
× X

(
MA

)
−→ C∞

(
MA, A

)
.

Corollary 3.2. When (M,ω) is the symplectic manifold, then
(
MA, ωA

)
is also a

symplectic A-manifold.

Definition 3.3. Assume that X belongs to X
(
MA

)
.

1) A vector field X is said to be locally Hamiltonian if LXωA = 0, where LX
is the Lie derivative in the direction of a vector field X.

2) X is globally Hamiltonian if iXω
A is exact.

3) The Hamiltonian of ψ ∈ C∞
(
MA, A

)
is the unique vector field Xψ such

that
iXψω

A = −dAψ. (3.1)

Proposition 3.4. Let X be a vector field on MA. The following assertions are
equivalent:

1) X is a locally Hamiltonian vector field.
2) dA

(
iXω

A
)

= 0.

Proof. The proof derives from the definition 3.3. �

According to [5], we have the following theorem.
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Theorem 3.5. (Theorem of Darboux version bundles on near points).
Let (MA, ωA) be a symplectic A-manifold of dimension 2n; for all point ξ of MA,
there exists a system of coordinates

(
xA1 , · · · , xAn , yA1 , · · · , yAn

)
on an open UA con-

taining ξ such that

ωA =

n∑
i=1

dAxAi ∧ dAyAi .

A such coordinate system is called a canonic coordinate system.

3.1. Local expressions in canonical coordinates. quad
Let

(
xA1 , · · · , xAn , yA1 , · · · , yAn

)
be the canonical coordinate system with

ωA =

n∑
i=1

dAxAi ∧ dAyAi .

For all function ϕ ∈ C∞(MA, A), we have

iXϕω
A =

n∑
i=1

(
dAxAi (Xϕ)dAyAi − dAyAi (Xϕ)dAxAi

)
(3.2)

= −dAϕ (3.3)

= −
n∑
i=1

(
∂ϕ

∂xAi
dAxAi +

∂ϕ

∂yAi
dAyAi

)
. (3.4)

We deduce that

dAxAi (Xϕ) = − ∂ϕ

∂yAi
(3.5)

and

dAyAi (Xϕ) =
∂ϕ

∂xAi
. (3.6)

Then, it comes that

Xϕ =

n∑
i=1

(
∂ϕ

∂xAi

∂

∂yAi
− ∂ϕ

∂yAi

∂

∂xAi

)
(3.7)

and

{ϕ,ψ}ωA = Xϕ(ψ) (3.8)

=

n∑
i=1

(
∂ϕ

∂xAi

∂ψ

∂yAi
− ∂ϕ

∂yAi

∂ψ

∂xAi

)
. (3.9)

Proposition 3.6. Let (MA, ωA) be a symplectic A-manifold.

1) The set of locally Hamiltonian vector fields equipped with the Lie bracket is
a Lie algebra L(MA, ωA) which an ideal is the set of Hamiltonian vector
fields H(MA, ωA). In addition, the Lie bracket of two locally Hamiltonian
vector fields is a globally Hamiltonian vector field.

2) L(MA, ωA) = H(MA, ωA) if and only if H1
dR(MA) = {0}, where H1

dR(MA)
is the first cohomology group of de Rham.
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Proof. 1) Firstly, the application

L(MA, ωA) −→ Λ2(MA), X 7−→ LX
is linear and L(MA, ωA) is a vector espace over R. We have

L[X,Y ]ω
A = LX

(
LY ωA

)
− LY

(
LXωA

)
= 0

for all X,Y ∈ L(MA, ωA), then [X,Y ] ∈ L(MA, ωA). So, L(MA, ωA) is
then a Lie sub-algebra of X(MA).
On the other hand, the application

H(MA, ωA) −→ Λ1(MA), X 7−→ iXω
A

is linear, involves that H(MA, ωA) is a vectorial R-sub-space of L(MA, ωA).
We have

i[X,Y ]ω
A = LX

(
iY ω

A
)
− iY

(
LXωA

)
= LX

(
iY ω

A
)

= dAωA(X,Y ).

for allX,Y ∈ L(MA, ωA). Therefore, [L(MA, ωA),L(MA, ωA)] ⊂ H(MA, ωA).
Particularly, [X,Y ] ∈ H(MA, ωA), for allX,Y ∈ H(MA, ωA). So,H(MA, ωA)
is then a Lie sub-algebra of L(MA, ωA). From inclusion [L(MA, ωA),L(MA, ωA)] ⊂
H(MA, ωA), we conclude that [L(MA, ωA),H(MA, ωA)] ⊂ H(MA, ωA).
Thus H(MA, ωA) is an ideal of L(MA, ωA).

2) Let us put Ω1(MA) = {α ∈ Λ1(MA)/dAα = 0}.
We define an equivalence relation on Ω1(MA) by: α, β ∈ Ω1(MA), α ∼ β if
and only if there exists ϕ ∈ C∞(MA, A) such that α− β = dAϕ. The first
group of cohomology of de Rham is

H1
dR(MA) = Ω1(MA)/ ∼ .

Then, we have L(MA, ωA) = H(MA, ωA) if and only if iXω
A is exact for

all X ∈ L(MA, ωA) if and only if all closed form is exact, that is, if and
only if H1

dR(MA) = {0}.
This completes the proof. �

Remark. Generally, L(MA, ωA) 6= H(MA, ωA).

Proposition 3.7. (MA, ωA) being a symplectic A-manifold, the application

θ : C∞(MA, A) −→ H(MA, ωA), ϕ 7−→ Xϕ

is a homomorphism of Lie algebras whose the kernel is the set of functions, locally
constant.
Moreover if MA is related then, ker θ = A.

Proof. Since X{ϕ,ψ} = [Xϕ, Xψ] either θ ([ϕ,ψ]) = [θ(ϕ), θ(ψ)], ker θ = {ϕ ∈
C∞(MA, A)/Xϕ = 0}. In a system of canonic coordinates

(
xA1 , · · · , xAn , yA1 , · · · , yAn

)
Xϕ = 0⇐⇒ ∂ϕ

∂xAi
= 0 and

∂ϕ

∂yAi
= 0

for all i = 1, ..., n. We deduce that ϕ is constant on UA ⇐⇒ ϕ is locally constant.
If MA is related, all locally constant function is constant, then ker θ = A. �
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4. Locally conformally symplectic structure on Weil bundles

Definition 4.1. .[4] A smooth manifold M is said to be a locally conformally
symplectic manifold if there exist a nondegenerate 2-form

ω : X(M)× X(M) −→ X(M)

and a closed 1-form α such that

dω = −α ∧ ω,

where d is the operator of exterior differentiation.

Remark. If α = 0, then M is a symplectic manifold.

Proposition 4.2. When (M,ω, α) is a locally conformally symplectic manifold,
there exists the 1-form

α : X(MA) −→ C∞(MA, A),

such that

dAωA = (dω)
A

= −α ∧ ωA.
Then the triple

(
MA, ωA,α

)
is said to be a locally conformally symplectic A-

manifold.

If dAρα is a differential operator of cohomology associated with the representation

ρα : X(MA) −→ D[1]
A (MA) and if dA is an operator of cohomology associated with

the representation

X(MA) −→ DerA[C∞(MA, A)], X 7−→ X,

then

dAραη = dAη +α ∧ η

for all η ∈ Lsks(X(MA), C∞(MA, A)). Thus, we conclude that

dAρα = dAα.

Proposition 4.3. Let fA : MA −→MA be a diffeomorphism and(
fA
)∗

: C∞(MA, A) −→ C∞(MA, A), ϕ 7−→
(
fA
)∗

(ϕ) = ϕ ◦ fA,
its pull-back. We have the following assertions:

1) The 1-form α is dAα-closed if and only if α is dA-closed.

2) If α is closed, then
(
fA
)∗
α is closed. Moreover,

(
fA
)∗ ◦ dAα = dA(fA)∗α ◦(

fA
)∗
.

Proof. Consider a diffeomorphism fA on MA with pull-back
(
fA
)∗

. It is obvious

that dAαα = dAα + α ∧ α = dAα, then dAα = 0 if and only if dAα = 0. Also

if α is dA-closed, we have dA
[(
fA
)∗
α
]

=
((
fA
)∗ ◦ dA) (α) =

(
fA
)∗ (

dAα
)

=

0. Moreover for any η ∈ Lsks(X(MA), C∞(MA, A)), we have
[(
fA
)∗ ◦ dAα] (η) =(

fA
)∗ (

dAη +α ∧ η
)

=
(
dA(fA)∗α ◦

(
fA
)∗)

(η). As η is arbitrary, we have
(
fA
)∗ ◦

dAα = dA(fA)∗α ◦
(
fA
)∗

. This completes the proof of the assertion. �
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Proposition 4.4. If (MA, ωA,α) designates a locally conformally symplectic A-
manifold, then the triple (X(MA), ρα, ω

A) is a sympletic Lie-Rinehart-Jacobi A-
algebra.

Being given (MA, ωA,α) a locally conformally symplectic A-manifold. For ϕ ∈
C∞(MA, A), there exists a unique vector Xϕ such that iXϕω

A = dAαϕ = dAϕ+ϕ·α.

Proposition 4.5. The map

{·, ·}ωA : C∞(MA, A)× C∞(MA, A) −→ C∞(MA, A), (ϕ,ψ) 7−→ −ωA(Xϕ, Xψ)

defines a structure of a Jacobi A-algebra on C∞(MA, A).

We remark that when (ωA,α) is a locally conformally symplectic A-structure,
since ωA is nondegenerate, then there exists a unique vector field X1C∞(MA,A)

such

that
iX1

C∞(MA,A)
ωA = α,

i.e., for any vector field X ∈ X(MA), we have

ωA(X1C∞(MA,A)
, X) = α(X).

Proposition 4.6. For all ϕ,ψ ∈ C∞(MA, A), we get

1) LXϕωA = 0.
2) [Xϕ, Xψ] = X{ϕ,ψ}ωA .

3) iXϕα = {ϕ, 1C∞(MA,A)}ωA .

4) LXϕα = dAα{ϕ, 1C∞(MA,A)}ωA .

Proof. For all ϕ,ψ ∈ C∞(MA, A), we find

1) LXϕωA = [iXϕ , d
A
α]ωA =

(
dAα
)2

(ϕ) = 0.

2) i[Xϕ,Xψ ]ω
A = [LXϕ , iXψ ]ωA = dAαω

A (Xψ, Xϕ) = dAα{ϕ,ψ}ωA = iX{ϕ,ψ}
ωA
ωA.

Since ωA is nondegenerate, then [Xϕ, Xψ] = X{ϕ,ψ}ωA .

3) iXϕα = α(Xϕ) = ωA
(
X1C∞(MA,A)

, Xϕ

)
=
{
ϕ, 1C∞(MA,A)

}
ωA

.

4) LXϕα = [iXϕ , d
A
α]α = dAαiXϕα = dAα{ϕ, 1C∞(MA,A)}ωA .

This is precisely the assertion of the proposition. �

Remark. LXϕα is the differential of iXϕα.

4.1. Locally and globally Hamiltonian vector fields on locally conformally
symplectic A-manifold MA.

Definition 4.7. We have the following definitions.

1) A vector field X on a locally conformally symplectic A-manifold MA is said
to be locally Hamiltonian if LXωA = 0.

2) A vector field X on a locally conformally symplectic A-manifold MA is said
to be globally Hamiltonian if iXω

A is exact, i.e., there exists a differentiable
application Φ ∈ C∞(MA, A) such that iXω

A = dAαΦ.

The function Φ is said to be a Hamiltonian of X.

Proposition 4.8. Let (MA, ωA,α) be a locally conformally symplectic A-manifold
and X a vector field on MA. The following conditions are equivalent:

1) X is a locally Hamiltonian vector field,
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2) dAα
(
iXω

A
)

= 0.

Remark. A globally Hamiltonian vector field is locally Hamiltonian. Indeed, iXω
A =

dAαΦ, then dAαiXω
A = dAα

(
dAαΦ

)
=
(
dAα
)2

(Φ) = 0.

Proposition 4.9. The bracket of two locally Hamiltonian vector fields is a globally
Hamiltonian vector field.

Proof. Let X and Y be two locally Hamiltonian vector fields, i.e., dAα(iXω
A) = 0

and dAα(iY ω
A) = 0. Since [LX , iY ] = i[X,Y ], then [LX , iY ]ωA = dAα

[
iX(iY ω

A)
]

=

dAαω
A(X,Y ). We conclude that [X,Y ] is a globally Hamiltonian vector field. �

Remark. The map C∞(MA, A) −→ X
(
MA

)
, ϕ 7−→ Xϕ is a morphism of Lie

A-algebras and a differential operator of order ≤ 1.

Theorem 4.10. For all smooth function ϕ on a locally conformally symplectic A-
manifold MA, the Lie derivation of Hamiltonian vector field Xϕ preserves ϕ if and

only if Xϕ(ϕ) = X̃(ϕ).

Proof. Let ϕ ∈ C∞(MA, A) and let Xϕ be the Hamiltonian vector field on MA.
We obtain LXϕ(ϕ) =

[
iXϕ , d

A
α

]
(ϕ) = iXϕ

(
dAϕ+ ϕα

)
= Xϕ (ϕ) − ϕα (Xϕ) so

LXϕ(ϕ) = Xϕ (ϕ)− ϕX̃(ϕ). Thus LXϕ(ϕ) = 0⇐⇒ Xϕ (ϕ) = ϕX̃(ϕ). �

Proposition 4.11. Any Hamiltonian vector field on a locally conformally symplec-
tic A-manifold MA has the following properties:

1) Xε = εX̃, ε ∈ A;
2) X−ϕ = −Xϕ, for any ϕ ∈ C∞(MA, A);

3) Xϕ(ϕn) = nϕn · X̃(ϕ), for any ϕ ∈ C∞(MA, A).

Proof. Let ε ∈ A; ϕ ∈ C∞(MA, A). Since ωA is nondegenerate, we have

1) iXεω
A = dAα(ε) = εdAα(1C∞(MA,A)) = εiX̃ω

A = iεX̃ω
A. We conclude that

Xε = εX̃.
2) X−ϕω

A = dAα(−ϕ) = −dAα(ϕ) = −iXϕωA = i(−Xϕ)ω
A, that is, X−ϕ =

−Xϕ.
3) Making use of the theorem 4.10 together with the fact that Xϕ is a deriva-

tion.

This is the desired conclusion. �
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