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HAMILTONIAN VECTOR FIELDS ON LOCALLY
CONFORMALLY SYMPLECTIC A-MANIFOLDS

OLIVIER MABIALA MIKANOU!, ANGE MALOKO MAVAMBOU? AND SERVAIS CYR
GATSE?

ABSTRACT. In this paper, we consider M to be a paracompact smooth mani-
fold, A a local algebra and, M# the Weil bundle. We construct the Hamilton-
ian vector fields on the symplectic A-manifold M4. Additionally, we investi-
gate and establish the properties of both locally and globally defined Hamil-
tonian vector fields when M4 is a locally conformally symplectic A-manifold.

1. INTRODUCTION

In 1953, André Weil [I1I] introduced the theory of bundles on near points,
which has since gained a lot of attention in differential geometry. In the following,
a commutative associative unitary real algebra is represented by A. A Weil algebra
is a finite-dimensional local algebra of the following form:

A=Rdm (1.1)
where m is its unique maximal ideal (see [7]). As an example, we define the algebra
D = R[z]/(z?) of dual numbers whose the maximal ideal is m = zR.

Let M be a paracompact smooth manifold, C*°(M) the algebra of smooth functions

on M. Given a Weil algebra A with maximal ideal m and basis aq,- - ,a, with
a; =1 € R. We recall that an A-point of near to x € M is a morphism of algebras

£:C*°(M) — A

such that
§(f)=f@) a1+ A= flz)+A (1.2)
for all x € M, where A € m. We denote by
M=
zeM

the manifold of infinitely near points of kind A where M2 C Homg(C>®(M), A) is
the set of all A-points of M near to x and 7 : M4 — M is the projection such that
T (Mf) = x. The triple (M A M ) defined is a bundle called bundle of infinitely
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near points or simply Weil bundle [6].
If (U, ) is a local chart of M with coordinate system (z1, - -+, x,), the map

P U — AT (€)oo E(an))

is a bijection from U4 onto an open set of A™. In addition, if (Ui, @i)ier is an atlas
of M, then (U, p)ics is also an A-atlas of M“. Accordingly, M* is considered
an A-manifold, with dim M# = dim M = n (for further information, see []).

If M and N are smooth manifolds and g : M — N is a differentiable map of class

C*, then the map
g s MY — N4 € g ()
such that
[97(6)] (h) = &(hog) (1.3)
for all h € C*°(N), is differentiable. Thus, for f € C*°(M), the map

fAMA — R = A 6 [fA9)] (idr) = E(idr o f) = £(f) (1.4)

is differentiable of class C*°.
The set C(M#, A) of smooth functions on M4 with values in A is a commutative
algebra with unit over A and the mapping

C®(M) — C® (M, A), f — f4
is an injective homomorphism of algebras. Then, we have the following properties:

(f+9* = +9%
(APt =A
(f-9)* =f"g%,

here f,g € C*°(M) and X € R.

We define X(M#) as the set of all smooth sections of TMA.
According to [2], the set X(M#) is a module of vector fields on M4 over C>(M*4)
and C° (M4, A).
The theory of prolongation of some geometric structures on Weil bundles has been
in the last decades developed in different directions by many researchers (see [1J, [2],
[3] and [10]). In [2], the author defines and studies the notions of Jacobi structures
on M4 regarded as A-manifold. In [9], the authors give a characterization of
Hamiltonian vector fields on M# in the case of Poisson manifolds and symplectic
manifolds. The author of [4] characterizes in terms of Lie-Rinehart-Jacobi algebras
on the C*°(M)-module of vector fields X(M) the locally and globally Hamiltonian
vector fields and gives their properties.
In this paper, we consider M4 as an A-manifold, we discuss the construction of
Hamiltonian vector fields on the symplectic A-manifold M4. We also study and
establish the properties of locally and globally Hamiltonian vector fields when M4
is a locally conformally symplectic manifold on Weil bundles.

2. GENERALITIES AND BASIC NOTIONS

In this section, we recall some constructions of A-structures.
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2.1. Vector fields on Weil bundles.

Theorem 2.1. [10] The following assertions are equivalent:

1) A wector field on M# is a differentiable section of the tangent bundle
(TMA, 7ppa, MA).

2) A wvector field on M* is a derivation of C>(M*4).

3) A wvector field on M is a derivation of C>(M#, A) which is A-linear.

4) A wector field on M is a linear map

Y : C®(M) — C°(M*, A)
such that
Y(f-9)=Y(f)-g*+ " Y(9), (2.1)
for all f,g € C(M).

We note by Der4[C° (M4, A)] the C*°(M#, A)-module of derivations of C*°(M*, A)
which are A-linear.

2.2. Differential forms and d*-cohomology on Weil bundles. An
A-covector field at & € M is a linear form on the A-module TgMA. The set, T¢ MA,

of A-covectors at &€ € M4 is an A-free module of dimension n and
* A A
T*M U M

geMA
is an A-manifold of dimension 2n. The set, A'(M#, A), of differential sections of
T*MA is a C(M*, A)-module and we say that A'(M4, A) is the O (M4, A)-
module of differential A-forms of degree +1.
For p € {0} UN and for ¢ € M#, we note £?, (TzM#, A) the A-module of

skew-symmetric multilinear forms of degree p on the A-module TeM#. We have,
Lo, (TSMA, A) = A. For two integers p and ¢, we define the wedge product

A LP (TeMAA) x L9, (TeMA, A) — LEF YT M4, A), (a, B) — a A B.
The set,
AT MA Ay = | L8 (Te M, A),
ceMA

is an A-manifold of dimension n + C2Z. The set, AP(M#, A), of differential sec-
tions of AP(T*M#, A) is a C°(M*, A)-module. We say that AP(M4, A) is the
C>(M*4, A)-module of A-differential forms of degree p on M# and

AA) = éAP(MA,A)
p=0

is the algebra of differential A-forms on M#. The algebra A®(M%,A) of dif-
ferential A-forms on M# is canonically isomorphic to A ® A®(M4). We have
AO(MA A) = C=(M4, A).

Theorem 2.2. Ifn is a differential form of degree p on M (according to [2]), then
there exists a unique differential A-form of degree p,

AL X(MA) x X(MA) x - x X(MA) — C°(M*A, A)
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such that
0T S0 = i f (0L 0p)] Y, (2.2)
for all 01,---,0, € X(M) and f1,---, fp € C°(M).
The mapping A®*(M) — A*(M4,A),w — w4, is a morphism of graded R-
algebras, and if
d: AN (M) — A*(M)
is an exterior differential operator, following [2], we note
d? A (M2 A) — A°(MA, A)
the cohomology operator associated with the representation
X(M?) — Dera[C° (M4, A)], X — X.
The mapping d* is A-linear and verifies
d(w?) = (dw)?, Yw € A®(M).
2.3. Lie-Rinehart-Jacobi algebra structure on Weil bundles.
2.3.1. Differential operators of order < 1 on Weil bundles.
Definition 2.3. We have the following definitions.
1) An application § is called differential operator of order <1 on M* if
§: C®(MA) — C= (M)
is R-linear such that
5(p-v) =6(p) v +¢-0(¥) —¢-¥-6(lowa)), (2.3)
for all o, € C(M™?).
We note by D]%l] (MA) the C>(M*)-module of differential operators of
order < 1 on MA.
2) An application 0 : C®°(MA,A) — C®(MA,A) is called A-differential
operator of order < 1 if d is A-linear such that
A1 p2) = 0(p1) - 02+ p1-0(p2) — 1 P2+ Lo (m4,a)) (2.4)
for any o1, p2 € C®(MA, A).
We note Di] (M#) the set of differential operators of order < 1 on
C>°(M#, A). When 0(1cw(aa,a)) = 0, we say that 9 is an A-derivation
on O (M4, A).
Theorem 2.4. [8] The following statements are equivalent:
1) A differential operator of order <1 on M* is a R-linear map
§: C¥(M™) — C®(M™)
such that
3(p ) =08(p) -+ 6(¢) =¥ 8(Lose(aa)) Vo, € CF(MA).  (2.5)
2) A differential operator of order <1 on M4 is an A-linear map
d: C®(MA, A) — C°(M*, A)
such that
ANp-v) =0(p) Y+ 9 0W) —p- - Ilo=(ma a)), Vo, 9 € CF(MA, A). (2.6)
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3) A differential operator of order <1 on M is a R-linear map from C>(M)
into C (M4, A)
0:C®(M) — C®(M*, A)
such that
_ A A A A oo
o(f-9)=0(f) g+ f"-0lg) —f" 97 ole=()),V f.g € CT(M). (2.7)
Theorem 2.5. [8] The application
[ D () x DY () — DR (MA), (81,82) — 81085 — 82081 (2.8)
is skew-symmetric A-bilinear and defines a structure of Lie A-algebra on the A-
module D,[i] (M4).
Moreover, we have, for all 81,82 € DE] (MA), for all o € C® (M4, A),
[01,¢ O2] = (31(90) —p- 81(1c<>c(1\4A,A))) - 02+ ¢ [01,0]. (2.9)
2.3.2. Lie-Rinehart algebra structure on Weil bundles.
Definition 2.6. A Lie-Rinehart algebra structure on M# is the anchor of mor-
phism
p: X(M*) — DY (M)
both of Lie A-algebras and C™ (M4, A)-modules such that
(X0 Y] = (p(X)(9) = ¢ p(X)(Low(ara,n)) - Y + ¢ [X,Y] (2.10)
for all vector fields X, Y on M* and ¢ € C® (M4, A).
Then, we say that the pair (X(M*),p) is a Lie-Rinehart algebra.
We put
ﬁsks(x( ) COO MA @[’sks COO(MA A))
peEN
where £F, (X(M*),C>°(M*, A)) is the module of skew-symmetric A-multilinear
maps of degree p from X(M%) to C>°(M4, A). Finally
A Los(X(M?),C®(MA, A)) — Las(X(M™A),C(MA, 4))
is the cohomology operator associated with the representation p. In differential
geometry, d’;‘ is the generalization of the differential operator of Lichnerowicz with
1-form
A (Looe(ara a)) 1 X(MA) — C= (M4, A),
and the pair (ﬁsks(%(MA), C>(M*4, A)), d‘;‘) is a differential algebra.
Definition 2.7. We call canonic form a € AY(M*) associated with the structure
of Lie-Rinehart algebra (X(M#), p) on M?, the 1-form
a: X(MA) — C®(M*,A), X — p(X)(Low (a4, a))- (2.11)
Theorem 2.8. [§] Let (X(M*#), p) be a Lie-Rinehart algebra on MA. There exists
a differential A-form of degree +1 on M*,
o X(MA) — C®(M4, A)
such that
p(X) (p) = X(p) +¢-a(X). (2.12)
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Proposition 2.9. [8] If d* denotes the differential operator of degree +1 and of
square 0 associated with the representation

X(M?A) — Dera[C° (M4, A)], X — X,
then the 1-form o is d*-closed, that is, d* o = 0.
We end this subsection to give the following consequence.

Corollary 2.10. Let o be a differential A-form of degree +1 on M4 and let a
representation
pa: X (M) — DY (M)

such that

Pa (X) (p) =9 a(X) + X (¢) (2.13)
for any p € C (MA, A). The pair ( (MA) ,pa) is an A-Lie-Rinehart algebra if
and only if da = 0.
2.3.3. Lie-Rinehart-Jacobi algebra structure on Weil bundles.

Definition 2.11. A Lie-Rinehart-Jacobi algebra structure on Lie-Rinehart algebra
(X (M?), pa) is defined by a skew-symmetric A-bilinear form
prX (M) x X (M*) — 0> (M4, A)
such that
A
dpo it =0. (2.14)
We say that (X (MA) , P, 1) 18 a Lie-Rinehart-Jacobi algebra on Weil bundles.

3. HAMILTONIAN VECTOR FIELDS ON THE SYMPLECTIC A-MANIFOLD M4

Theorem 3.1. [2], [5] If
w:X(M)xX(M) — C (M)
is the nondegenerate 2-form, then so is
wh X (M?) x X (M*) — 0> (M*,A).
Corollary 3.2. When (M,w) is the symplectic manifold, then (MA,wA) is also a
symplectic A-manifold.
Definition 3.3. Assume that X belongs to X (MA).

1) A vector field X is said to be locally Hamiltonian if Lxw? = 0, where Lx
is the Lie derivative in the direction of a vector field X .
2) X is globally Hamiltonian if ixw™ is exact.
3) The Hamiltonian of ¢» € C* (MA,A) is the unique vector field Xy such
that
ix,w?t = —d*. (3.1)

Proposition 3.4. Let X be a vector field on M*. The following assertions are
equivalent:

1) X is a locally Hamiltonian vector field.
2) d* (ixw?) =0.

Proof. The proof derives from the definition |3.3 (]

According to [5], we have the following theorem.
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Theorem 3.5. (Theorem of Darboux version bundles on near points).

Let (MA,w4) be a symplectic A-manifold of dimension 2n; for all point & of M4,
there exists a system of coordinates (:rf, s xd gy ,y;?) on an open U4 con-
taining & such that

n
wh = Z dAzt A dAyP
i=1
A such coordinate system is called a canonic coordinate system.

3.1. Local expressions in canonical coordinates.
Let (xf, e ,xf}, yf‘, e ,y;;‘) be the canonical coordinate system with

n
A A, A
w” = g Azt A dAy
i=1

For all function ¢ € C*°(M#4, A), we have

n

ix,wt = ) (et (Xp)dty - dhyt(Xp)d ) (32)
i=1
= —dtp (3.3)
S dp 4 A 0P 4 a
- _ A L 2 g 3.4
;(8@4 i +6yZA ! (3.4)
We deduce that
e
A A
Az (X,) Y (3.5)
and
dAyA(X O¢ 3.6
yi ( go) @ (3.6)
Then, it comes that
"/ dp O dp 0
X = Ak 3.7
v ; (5‘:5{‘ oyt oy 8:6{‘) (8.7)
and
{o,}oa = Xo(9) (3-8)

~ (Do Op Do O
-2 dxl oyl Oyl 0wt ) (39

i=1

Proposition 3.6. Let (M4, w?) be a symplectic A-manifold.

1) The set of locally Hamiltonian vector fields equipped with the Lie bracket is
a Lie algebra £(M*,w?) which an ideal is the set of Hamiltonian vector
fields H(M#A,w?). In addition, the Lie bracket of two locally Hamiltonian
vector fields is a globally Hamiltonian vector field.

2) &(MA,wA) = H(MA, w?) if and only if H:p(MA) = {0}, where H},(M*)
is the first cohomology group of de Rham.

quad
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Proof. 1) Firstly, the application
L(MA W) — A2(M?), X — Lx
is linear and £(M*4,w4) is a vector espace over R. We have
Lixyw? = Lx (Lyw?)—Ly (Lxw?)
= 0

for all X,V € £(M4,w?), then [X,Y] € £(M4,wA). So, £(MA,w?) is
then a Lie sub-algebra of X(M4).
On the other hand, the application

H(MA, w?) — AN (MA), X — ixw?

is linear, involves that H(M%,w?) is a vectorial R-sub-space of £(M4,w4).
We have

z'[X,y]wA = ﬁX (iywA) — iy (L'XwA)
= EX (iyOJA)
= d'WA(X,Y).

forall X,Y € £(M#, w?). Therefore, [S(MA,w?), &(M4, w?)] C H(MA, w
Particularly, [X,Y] € H(MA,w?), forall X, Y € H(M4,w4). So, H(M4,w

is then a Lie sub-algebra of £(M#,w#). From inclusion [£(M4, A) (M2, w)] C

H(MA,wA), we conclude that [S(MA,w?), H(MA, wA)] € H(MA, wA).
Thus H(M4,wA) is an ideal of £(M4,wA).

2) Let us put Q'(M4) = {a € AY(M*A)/d*a = 0}.
We define an equivalence relation on Q'(M*) by: o, 3 € QY(M*A), a ~ B if
and only if there exists ¢ € C°°(M#, A) such that a — 8 = d¢. The first
group of cohomology of de Rham is

Hip(M%) = QY M%)/ ~.
Then, we have £(M4,wA) = H(MA,w?) if and only if ixw4 is exact for
all X € £(M4,w4) if and only if all closed form is exact, that is, if and
only if Hip(M4) = {0}.
This completes the proof. O

Remark. Generally, £(M*,w?) # H(MA,w?).
Proposition 3.7. (MA,oJA) being a symplectic A-manifold, the application
6:C®(MA,A) — H(MA,wh), p — X,

is a homomorphism of Lie algebras whose the kernel is the set of functions, locally
constant.
Moreover if M4 is related then, kerf = A.

Proof. Since Xy, 4y = [Xy, Xy] either 0 ([p,9]) = [0(¢),0(¢)], kerf = {¢ €
C*°(M*#,A)/X, = 0}. Inasystem of canonic coordinates (z',- - ,z2, yi', -+ ,yi)
Iy Iy
X¢=0<:>@=Oand@20

for all i = 1,...,n. We deduce that ¢ is constant on U4 <= ¢ is locally constant.
If M# is related, all locally constant function is constant, then ker = A. O
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4. LOCALLY CONFORMALLY SYMPLECTIC STRUCTURE ON WEIL BUNDLES

Definition 4.1. .[4] A smooth manifold M is said to be a locally conformally
symplectic manifold if there exist a nondegenerate 2-form

w:X(M)x X(M) — X(M)
and a closed 1-form a such that
dw = —a Aw,
where d is the operator of exterior differentiation.
Remark. If a =0, then M is a symplectic manifold.

Proposition 4.2. When (M,w,«) is a locally conformally symplectic manifold,
there exists the 1-form

o X(MA) — C®(MA, A),
such that
dAw = (dw)A = —aAw

Then the triple (MA,wA,a) 18 said to be a locally conformally symplectic A-
manifold.

If d;‘a is a differential operator of cohomology associated with the representation

Po : X(MA) — DE](MA) and if d is an operator of cohomology associated with
the representation

X(MA) — Ders[C®(MA, A)], X — X,
then
dfan:dAn—i-a/\n
for all n € Lops(X(MA), 0 (M4, A)). Thus, we conclude that
i =dj.

Proposition 4.3. Let f4: M4 — M4 be a diffeomorphism and

(1) C=(MA, A) — C(M*, A), 0 — (F4) (9) = po f4,
its pull-back. We have the following assertions:

1) The 1-form a is d4-closed if and only if o is d*-closed.
2) If « is closed, then (fA)*a is closed. Moreover, (fA)* odA = d(‘}A)*a o

()"
Proof. Consider a diffeomorphism f# on M# with pull-back ( fA)*. It is obvious
that dia = d*a + a A a = d%a, then d2 = 0 if and only if d*a = 0. Also
if a is d*-closed, we have d*4 [(fA)*a} = ((fA)* odA) (@) = (f4)" (d4a) =
0. Moreover for any 7 € Lqs(X(MA),C>®(MA, A)), we have {(fA)* odé] (n) =
(fA)* (dn+ann) = (dé‘A)*a o (fA)*) (n). As n is arbitrary, we have (fA)* o
dd = dffA)*a o (fA)*. This completes the proof of the assertion. O



74 0.M. MIKANOU, A.M. MAVAMBOU, S.C. GATSE

Proposition 4.4. If (M4, w*, a) designates a locally conformally symplectic A-
manifold, then the triple (X(M?A), pa,w?) is a sympletic Lie-Rinehart-Jacobi A-
algebra.

Being given (M#,w”, ) a locally conformally symplectic A-manifold. For ¢ €
C>=(M*, A), there exists a unique vector X, such that ixwwA =dip=d%+p-a.

Proposition 4.5. The map
{3 oa 1 C°(MAA) x C°(MA,A) — C(MA, A), (p,9) — —w?(Xp, Xy)
defines a structure of a Jacobi A-algebra on C™(M*4, A).

We remark that when (w4, @) is a locally conformally symplectic A-structure,

since w? is nondegenerate, then there exists a unique vector field X Lo (ar A a) such
that
. A
ZXICOQ(MA,A)W =%
i.e., for any vector field X € X¥(M*), we have
A = a(X).

w choo(]uA,A)?X)

Proposition 4.6. For all p,v» € C°(M*4, A), we get
1) Lx,w®=0.
2) [Xw Xw] = X{sa,w}wA .
3) ix, o0 = {p, 1o (ara,a) fwa-
4) [:X@a = dé{g@, 1Coo(MA,A)}wA.
Proof. For all p,¢ € C®(M*A, A), we find
1) Lx,w? =ix,,da)w? = (dﬁf (¢) =0.

2) z'[XWXw]wA = [£X¢,ixw]wA = dﬁwA (Xy, Xy) = dﬁ{gw}uﬂ = iX{‘PvW}wA wA.

A

Since w” is nondegenerate, then [Xo, Xy] = X py ,-

3) inOé = a(XtP) = w4 (choo(]\/jAwA)’ti> = {90’ ]‘COO(MA,A)}MA‘
4) EXwa = [iXW,dé}a :déixva:dé{cp, 1Coo(MA7A)}wA.
This is precisely the assertion of the proposition. [l

Remark. Lx o« is the differential of ix o

4.1. Locally and globally Hamiltonian vector fields on locally conformally
symplectic A-manifold M*.

Definition 4.7. We have the following definitions.

1) A wector field X on a locally conformally symplectic A-manifold M is said
to be locally Hamiltonian if Lxw? = 0.

2) A wvector field X on a locally conformally symplectic A-manifold M* is said
to be globally Hamiltonian if ixw™ is exact, i.e., there exists a differentiable
application ® € C°(M4, A) such that ixw? = dAd.

The function ® is said to be a Hamiltonian of X.

Proposition 4.8. Let (M4, w?, &) be a locally conformally symplectic A-manifold
and X a vector field on MA. The following conditions are equivalent:

1) X is a locally Hamiltonian vector field,
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2) di (ixw?) = 0.

Remark. A globally Hamiltonian vector field is locally Hamiltonian. Indeed, i xw? =

dA®, then dlixw? = dA (dA®) = (d4)* (@) = 0.

Proposition 4.9. The bracket of two locally Hamiltonian vector fields is a globally
Hamiltonian vector field.

Proof. Let X and Y be two locally Hamiltonian vector fields, i.e., d2(ixw?) = 0
and dé(iywA) = 0. Since [ﬁx,iy] = Z'[X7y], then [ﬁx,iy]wA = dé [ix(iywA)} =
dAwA(X,Y). We conclude that [X,Y] is a globally Hamiltonian vector field. O

Remark. The map C®(M4,A) — Z{(MA) o — X, is a morphism of Lie
A-algebras and a differential operator of order < 1.

Theorem 4.10. For all smooth function ¢ on a locally conformally symplectic A-
manifold M4, the Lie derivation of Hamiltonian vector field X, preserves ¢ if and

only if Xyo(p) = X ().
Proof. Let p € C>=(M*, A) and let X, be the Hamiltonian vector field on M.
We obtain Lx_ (¢) :~[ixw,d2] (¢) = ix, (d*¢+pa) = X¢£<p) — pa(X,) so
Lx,(p) = Xp (0) = 9X(p). Thus Lx, (p) =0 = X, (¢) = ¢X (). O
Proposition 4.11. Any Hamiltonian vector field on a locally conformally symplec-
tic A-manifold M* has the following properties:

1) X, = eX,e € A;

2) X_, =—X,, for any p € C°(MA4, A);

3) Xo(p") = ne™ - X(), for any p € C°(MA, A).
Proof. Let ¢ € A; p € C°(M#A, A). Since w? is nondegenerate, we have

1) ix.w? = da(e) = edi(low(ma ay) = eigw? = i_gw?. We conclude that

X, =¢eX.
2) X_pw? = di(—p) = —dalp) = —ix, w? = i(_X¢)wA, that is, X_, =
—-X,.
3) Making use of the theorem together with the fact that X, is a deriva-
tion.
This is the desired conclusion. O
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