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ON THE ROBUST STABILITY OF POSITIVE DELAY SYSTEMS

UNDER TIME-VARYING PERTURBATIONS IN BANACH

LATTICES

ASSMA DERDOUKH, MAISSA KADA

Abstract. A generalisation of an explicit robust stability bound from finite

to infinite dimensional case is proved. The studied systems are positive linear

time delay differential systems (PLTDDS (s)) which are subject to time varying
structured perturbations in Banach lattices. The semigroup method, Perron-

Frobenius Theorem and the principle of comparison are used. In addition, the

coincidence of complex, real and positive stability radii for a number of special
cases is proved, and an explicit formula for the radius is derived.

1. Introduction

In modeling many biological and physical phenomena, a more realistic model
would contain some past information of the system. This characteristic is called
a time delay, which is one of the most important causes of instability that leads
to poor control over system performance, and a system with a time delay is called
a Time-Delay Differential System (TDDS). Basic theories describing such systems
were established in the 1950s and 1960s; it was concerned with the existence and
uniqueness of solutions, stability of trivial solutions, etc. These works formed the
basic building block for the analysis and design of time-delay systems [19, 22]. Due
to its importance and wide spreadness, (TDDS (s)) have attracted the attention of
many researchers, which makes it a rapidly growing and valuable field of research.
Bellman and Danskin are some of the first researchers who pointed out the diverse
applications of systems that depend on past states to other areas such as biology
and economics [12]. And with the ability to intervene to make changes on the
design and control of real-world systems, new applications also continue to arise,
not to mention, in biology, the growth of population, the metabolism of cells, the
spread of diseases; in chemistry, the reaction rates of chemical compounds and the
transport of fluids; in economics, the dynamics of financial markets and growth of
economies; in engineering, the control of robots, the operation of power systems
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and the design of communication networks. The reader can view more applications
and obtain more details by browsing one of the following references [17, 29].
The robust control of (TDDS (s)) has been a very active field for the last 50 years
and has spawned many branches, for example, stability analysis, stabilization de-
sign, H∞ control, and stochastic control. Regardless of the branch, stability is
the foundation. Therefore, important developments in studying (TDDS (s)) have
generally been taken stability as a starting point [19].

Concerning the stability analysis, it is believed by many researchers that pertur-
bations in delay systems involve small changes that impact their behaviour, stability
and lead to degradation of performance, this shows the extreme importance of study
of robustness in stability, that is, the ability of the system to maintain its stability
properties despite the presence of external disturbances. A measure for the stability
robustness of a stable system is the stability radius which was introduced in 1986
by Hinrichsen and Pritchard for linear systems, it is defined as the smallest real or
complex disturbance, in norm, that destabilizes the system [13, 14]. Depending on
the type of disturbance, whether complex, real or positive, there are complex, real
or positive stability radii respectively, which are in general different. Over the years,
this field has witnessed a great development, as it has expanded to include a large
number of types of systems disturbances [2, 8, 9, 10, 15, 16, 20, 21, 22, 24, 25, 26].
Some researchers proposed utilising the concept of Banach lattices which is a math-
ematical framework that enables an analysis of different types of functions and
spaces. Accordingly, in the context of stability analysis, the use of Banach lattices
allows one to study the behaviour of a system under different types of perturba-
tions which is particularly important in applications where certainties or external
disturbances play a significant role. Therefore, this paper aims to investigate the
robust stability of positive linear time delay systems under time varying perturba-
tions using the stability radius approach as a tool of analysis.
It is crucial to mention that the generalization to infinite dimensions is extremely
complicated, thus, considerable amount of knowledge about the subject was ex-
ploited in order to achieve two goals. The first is to obtain a generalization of a
result which has been found by P. H. A. Ngoc and C.T. Tinh in [25] concerning the
robust stability of positive delay differential systems under time varying perturba-
tions, from the finite dimension space to the infinite dimension, using semigroup
method, the Perron-Frobenius theorem and the principle of comparison. The sec-
ond is to determinate an upper bound of the complex stability radius. Moreover,
we obtain coincidence in the radius of stability, complex, real or positive, in some
special cases. It should be noted that the work of S. Murakami and P. H. A. Ngoc
in infinite dimension space in [20] was the motivation of the the current research.
The organization of this paper is as follows, in section two, and in order to make
this work more specific, we give the most important concepts and theories related
to the Banach lattice framework, as well as some results about positive operators,
Metzler operators and their properties. Then, we present the system under study
and some results about the asymptotic behavior of the solutions. In section three,
we apply time varying structured perturbations to this system and we study the
robustness on stability. An upper bound of the complex stability radius is found
and we get also the coincidence of complex, real and positive stability radii in some
special cases.
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2. Preliminaries

To make this work self-contained, we divide this section of preliminaries into
three subsections in order to summarize concepts and results about Banach lattices,
positive operators and delay systems. All these results are necessary in latter use.
First, we give basic facts on Banach lattices, the reader can refer to [10, 18, 28, 31]
for more details.

BANACH LATTICES. Let X 6= {0} be a real vector space endowed with an
order relation ≤ such that the following properties are satisfied{

x ≤ y ⇒ x+ z ≤ y + z for all x, y, z ∈ X;

x ≤ y ⇒ αx ≤ αy for all x, y ∈ X,α ∈ R, α ≥ 0.
(2.1)

Then X is called an ordered vector space. Denote the positive elements of X
by X+ := {x ∈ X/x ≥ 0} where x ≥ 0 means 0 ≤ x. If furthermore the lattice
property holds, that is, if

x
∨
y := sup{x, y} ∈ X for all x, y ∈ X,

then X is called a vector lattice. The set X+ fulfills the following geometric prop-
erties

X+ +X+ ⊆ X+;R+X
+ ⊆ X+;X+ ∩X+ = {0}. (2.2)

In particular, X+ is a convex cone in X. Conversely, every subset C of X satisfying
(2.2) determines an order relation on X by

x ≤ y :⇔ y − x ∈ C such that (2.1) holds.

Moreover, if X is a vector lattice, the set X+ is generating, that is, it satisfies

X = X+ −X+.

If X is a vector lattice, the modulus of x ∈ X is defined by

|x| := x
∨

(−x) := sup{x,−x}.
If ‖.‖ is a norm on the vector lattice X satisfying the lattice norm property, that
is,

|x| ≤ |y| ⇒ ‖x‖ ≤ ‖y‖, for every x, y ∈ X, (2.3)

then X is called a normed vector lattice. The lattice norm property implies ‖ |x| ‖ =
‖x‖ for every x ∈ X. If, in addition, X is norm complete with respect to ‖.‖, then
X is called a real Banach lattice, or only Banach lattice.
Since it is often necessary to consider complex vector spaces, we extend the notion of
Banach lattice to the complex case. For this extension, all underlying vector lattice
X are assumed to be relatively uniformly complete, that is, for every sequence
(λn)n∈N inR satisfying

∞∑
n=1

|λn| < +∞

and for every x ∈ X and for every sequence (xn)n∈N ∈ X it holds that

0 ≤ xn ≤ λnx⇒ supn∈N

(
n∑
i=1

xi

)
∈ X.
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Now, let X be a relatively uniformly complete vector lattice. The complexification
of X is defined by XC := X ×X with the canonical addition and scalar multiplica-
tion. It is frequently written as XC := X + iX. The modulus of z = x + iy ∈ XC
is defined by

|z| = sup
0≤ϕ≤2π

| (cosϕ)x+ (sinϕ) y| ∈ X. (2.4)

Moreover, the modulus mapping z → |z| of XC into X is homogeneous, that is, it
satisfies the following relations

|z| = 0 if and only if z = 0,

|αz| = |α| |z| for all z ∈ XC, α ∈ C,
|z1 + z2| ≤ |z1|+ |z2| for all z1, z2 ∈ XC.

(2.5)

A complex vector lattice is defined as the complixification of a relatively uniformly
complete vector lattice endowed with the modulus (2.4). If X is normed by ‖.‖,
then

‖z‖ := ‖ |z| ‖, for every z ∈ XC. (2.6)

Define a norm on XC satisfying the lattice norm property (2.3). If X is a Banach
lattice, then XC endowed with the modulus (2.4) and the norm (2.6) is called a
complex Banach lattice.
Next, we summarize some concepts and theorems about positive operators, Metzler
operators, spectrum, resolvent and stability. We obtained this information from the
following references [1, 4, 5, 6, 10, 18, 27, 28].

POSITIVE OPERATORS. Let X and Y be real Banach lattices and T ∈
L (X,Y ). If TX+ ⊆ Y +, then T is called positive (T � 0). By S � T we mean
that T − S � 0 for S ∈ L (X,Y ).
Every R -linear map T ∈ L (X,Y ) has a unique C -linear extension TC ∈ L (XC, YC)
given by

TCz := Tx+ iTy, for every z = x+ iy ∈ XC.

An operator T ∈ L (XC, YC) is called real if TX ⊂ Y , and we introduce the deno-
tation

LR (XC, YC) = {T ∈ L (XC, YC) /T is real} .
An operator T ∈ L (XC, YC) is called positive (T � 0) if T is real and TX+ ⊂ Y +,
and we introduce the notation

L+ (XC, YC) =
{
T ∈ LR (XC, YC) /T � 0

}
.

Any positive linear operator T on XC is a real operator, that is, T : X → X. The
cone L+ (XC, YC) is closed in L (XC, YC), however, it is not generating in general.
For T ∈ L+ (XC, YC), we note that

|Tx| ≤ T |x| for every x ∈ C,
and we emphasize the simple but important fact

‖T‖ = sup
x∈X+,‖x‖=1

‖Tx‖. (2.7)
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As a consequence, we note that the operator norm is monotone increasing on the
positive cone L+ (XC, YC), that is

0 � S � T ⇒ ‖S‖ ≤ ‖T‖.
An operator T ∈ L (X,Y ) possesses a modulus if |T | := sup{T,−T} ∈ L (X,Y ) in
the canonical order relation of L (X,Y ). It can be shown that, if sup|z|≤x |Tz| ∈ Y
for every x ∈ X+, then T possesses a modulus |T | and

|T |x = sup|z|≤x |Tz|, for every x ∈ X+.

Since X+ is generating, we have that |T | ∈ L+ (X,Y ).
Let T ∈ L (XC, YC). If sup|z|≤x |Tz| ∈ Y for every x ∈ X+, then it holds by linear

extension that |T | ∈ L+ (XC, YC) and we introduce the denotation

L|.| (XC, YC) = {T ∈ L (XC, YC) / |T | ∈ L (XC, YC)}.
We have |Tx| ≤ |T ||x| for every T ∈ L|.| (XC, YC) and every x ∈ XC as well as
|Tx| ≤ T |x| for every T ∈ L+ (XC, YC) and every x ∈ XC. The lattice norm prop-
erty (2.3) implies that

‖T‖ ≤ ‖ |T | ‖ for every T ∈ L|.| (XC, YC).

Definition 1. Let XC a complex Banach lattice. For a closed linear operator T on
XC, the resolvent set of T is defined by

ρ (T ) = {λ ∈ C;λI − T : XC → XC is invertible}.
We call (λI − T )

−1
the resolvent of T and denoted by

R (λ, T ) := (λI − T )
−1
for λ ∈ ρ (T ).

The complement of ρ (T ) in XC is called the spectrum of T and denoted by σ (T ).
In general, it may be possible that either ρ (T ) or σ (T ) is empty. In what follows,
we always assume that the resolvent set is non-empty.

For the C0-semigroup (S (t))t≥0 generated by the operator (T,D (T )) on the Banach

space X, we associate the following quantities ( see [30] ):
The spectral radius

r (T ) := sup {|λ|, λ ∈ σ (T )}.
The spectral bound

s (T ) := sup {<eλ, λ ∈ σ (T )}.
The abscissa of uniform boundedness of the resolvent of T

s0 (T ) := inf
{
ω ∈ R : {<λ > ω} ⊂ ρ (T ) and sup<eλ>ω ‖R (λ, T ) ‖L(XC) <∞

}
.

The growth bound

ω1 (T ) :=
inf
{
ω ∈ R : ∃M > 0 : ‖S (t)x‖L(XC) < Meωt‖x‖D(T ), for all t ≥ 0, x ∈ D (T )

}
.

The uniform growth bound

ω0 (T ) := inf
{
ω ∈ R : ∃M > 0 : ‖S (t) ‖L(XC) < Meωt, for all t ≥ 0

}
.

It is well-known, see for example in [30], that
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−∞ ≤ s (T ) ≤ ω1 (T ) ≤ s0 (T ) ≤ ω0 (T ) < +∞.

The semigroup (S (t))t≥0, or the operator T is called

(1) Hurwitz stable if σ (T ) ⊂ C− := {λ ∈ C : <eλ < 0},
(2) Strictly Hurwitz stable if s (T ) < 0,
(3) Exponentially stable if ω1 (T ) < 0,
(4) Uniformly exponentially stable if ω0 (T ) < 0.

Remark. The inequality s (T ) ≤ ω1 (T ) ≤ s0 (T ) ≤ ω0 (T ) might be strict, that
is, the exponential stability of a C0-semigroup, in general, is not controlled by the
location of the spectrum of its generator.

Theorem 2.1. [4] If the operator T generates a positive C0-semigroup, that is,
S (t) � 0, for all t ≥ 0, then

s (T ) = ω1 (T ) = s0 (T ) .

Corollary 2.2. Let A be the generator of a positive C0-semigroup (T (t))t≥0 on a

Banach lattice XC and assume that B ∈ L+ (X), then the following holds

(1) A+B generates a positive semigroup (S (t))t≥0 satisfying 0 � T (t) � S (t)
for all t ≥ 0,

(2) s (A) ≤ s (A+B) and R (λ,A) � R (λ,A+B) for all λ > s (A).

Definition 2. [10] A closed operator T is said to be Metzler operator if there exists
ω ∈ R such that (ω,+∞) ⊂ ρ (T ) and R (t, T ) is positive for all t ∈ (ω,+∞).
Metzler operators are also called resolvent positive operators in the literature. If
T ∈ L+ (XC, YC), then T is a Metzler operator.

For positive operators, we have the well-known Perron-Frobenius Theorem of
bounded operators.

Theorem 2.3. [18] Suppose T ∈ L+ (XC), then

(1) r (T ) ∈ σ (T ),
(2) R (λ, T ) � 0 if and only if λ ∈ R and λ > r (T ),
(3) If λ > r (T ), then |R (λ, T )x| ≤ R (|λ|, T ) |x|, for any x ∈ X.

Theorem 2.4. [10] Let T a Metzler operator on XC, then

(1) s (T ) ∈ σ (T ) and s (T ) = t− [r (R (t, T ))]
−1
, t > s (T ),

(2) The function R (., T ) is positive and decreasing for t > s (T ), that is,

s (T ) < t1 ≤ t2 ⇒ R (t2, T ) � R (t1, T ),

(3) If T generates a positive C0-semigroup, then we have R (t, T ) is positive if
and only if t > s (T ) .

Lemma 2.5. [10] Let T be a Metzler operator on X and E ∈ L+ (X,Y ), then

|ER (λ, T )x| ≤ ER (<eλ, T ) |x|, <eλ > s (T ) , x ∈ X.

Last, we give a description of the delay differential system and some results about
positivity and exponential stability.
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DELAY DIFFERENTIAL SYSTEMS. We consider a time-invariant delay
differential system of the form

ẋ(t) = A0x(t) +

m∑
k=1

Akx (t− hk) , t ≥ 0,

x(0) = x0,

x(t) = f(t), t ∈ [−h, 0).

(2.8)

Where A0 is the generator of a C0-semigroup on a complex Banach lattice XC with
the norm |.|C, A1, A2, ..., Am are bounded linear operators on XC, i.e. Ak ∈ L(XC),
with the operator norm ‖.‖ and hi for every i = 1, ...,m are non-negative real
numbers such that 0 ≤ h1 < h2 < ... ≤ hm := h.

Here x0 ∈ XC is the initial value and f ∈ Lp ([−h, 0] ;XC), p ∈ [1;∞) is
the history function. A mild solution of the delay system (2.8) is the function
x (.;x0, f) ∈ Lploc ([−h,∞) ;XC) satisfying

x (t;x0, f) =

T (t)x0 +

∫ t

0

T (t− s)
m∑
k=1

Akx (s− hk;x0, f) ds, t ≥ 0,

f(t), t ∈ [−h, 0).

It follows from [21, Theorem 2.1] that for all x0 ∈ XC and f ∈ Lp ([−h, 0] ;XC) a
unique mild solution x (.;x0, f) exists. This solution is continuous on [0,∞) and
exponentially bounded.

Definition 3. The delay system (2.8) is a positive system if for any history func-
tion f ∈ Lp

(
[−h, 0] ;X+

C
)
, and initial value x0 ∈ X+

C , the corresponding solution
satisfies

x (t;x0, f) ∈ X+
C for all t ≥ 0.

Definition 4. The delay system (2.8) is called exponentially stable if there exist
M > 0 and ω > 0 such that for any f ∈ Lp

(
[−h, 0] ;X+

C
)

and any x0 ∈ X+
C , the

unique solution of the delay system (2.8) satisfies

|x (t;x0, f) |XC < Me−ωt‖ (x0, f) ‖XC×Lp([−h,0];XC), for all t ≥ 0,

where

‖ (x0, f) ‖XC×Lp([−h,0];XC) =
(
|x0|pXC

+ ‖f‖pLp([−h,0];XC)

)1

p .

Lemma 2.6. Assume that the delay system (2.8) is positive and let
x1, x2 ∈ X+

C , f1, f2 ∈ Lp
(
[−h, 0] ;X+

C
)
, xa (t, x1, f1) ; xb (t, x2, f2) are solutions

of the delay system (2.8) under initial conditions x (0) = x1, x (t) = f1 (t) and
x (0) = x2, x (t) = f2 (t) for all t ∈ [−h, 0) respectively, then

If x1 ≤ x2 and f1 (t) ≤ f2 (t) , for all t ∈ [−h, 0) then
xa (t, x1, f1) ≤ xb (t, x2, f2) , for all t ≥ 0.
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Abstract formulation. In order to study of the solution’s asymptotic behaviour
of the delay system (2.8) by semigroup method, we introduce the product space
X := XC × Lp ([−h, 0] ;XC) and define bounded linear operators (T (t))t≥0 on X
as follows: Given a function x ∈ Lploc ([−h,∞) ;XC), for each t ≥ 0, we define
xt ∈ Lp ([−h, 0] ;XC) by xt (s) := x (t+ s) , s ∈ [−h, 0]. Denoting the unique mild
solution of the delay system (2.8) by x (.;x0, f), we now define

T (t) (x0, f) := (x (t;x0, f) , xt (.;x0, f)) , t ≥ 0.

Proposition 2.7. [11] The family (T (t))t≥0 defines a C0-semigroup of linear op-
erators on X . Its generator A is given by

A (x0, f) :=

(
A0x0 +

m∑
k=1

Akf (.− hk) , f ′

)
,

with the domain

D (A) :=
{

(x0, f) ∈ X : f ∈W 1,p
loc ([−h, 0] ;XC) , f (0) = x0 ∈ D (A0)

}
.

Here W 1,p
loc ([−h, 0] ;XC) denotes the space of absolutely continuous XC-valued func-

tions f on [−h, 0] which are strongly differentiable, i.e. with f ′ ∈ Lp ([−h, 0] ;XC).

Moreover, the delay system (2.8) is exponentially stable if and only if the C0-
semigroup (T (t))t≥0 is exponentially stable, i.e. ω1 (A) < 0.

Definition 5. [2] The quasi-polynomial operator associated with the delay system
(2.8) is defined by

P (λ) := A0 +

m∑
k=1

e−λhkAk. (2.9)

In case where X is a finite dimensional space, the delay system (2.8) is exponen-
tially stable if and only if characteristic roots of equation det (P (λ)) = 0 lie in the
open left half of complex plane, i.e. the exponential stability of the delay system
(2.8) is controlled by the location of the spectrum of its quasi-polynomial matrix.
In general, this is not the case if the finite dimension assumption is dropped. The
spectrum and the resolvent of A are described by

Proposition 2.8. [11] We have λ ∈ ρ (A) if and only if λ ∈ ρ (P (λ)). In this case,
the resolvent of A is given by

R (λ;A) = EλR (λ;P (λ))HλF + Tλ,

where Eλ ∈ L (X,X ) , Hλ ∈ L (X , X) , F ∈ L (X ,X ) , Tλ ∈ L (X ,X ) are defined by

Eλx :=
(
x, eλ.x

)
,

Hλ (x, f) := x+
∫ 0

−h e
λsf (s) ds,

F (x, f) :=

(
x,

m∑
k=1

X[−hk,0](.)Akf (−hk − .)

)
,

Tλ (x, f) :=
(

0,
∫ 0

.
eλ(.−s)f (s) ds

)
.



ROBUST STABILITY OF (PLTDS(S)) UNDER (TVP(S)) IN BANACH LATICES 85

Definition 6. [11] The spectral set, the resolvent set, and the spectral bound of
quasi-polynomial operator P (.) are respectively defined by

σ (P (.)) := {λ : λ ∈ σ (P (λ))},
ρ (P (.)) := C�σ (P (λ)),

s (P (.)) := sup {<e (λ) : λ ∈ σ (P (.))}.

Remark. From the above proposition, we have ρ (A) = ρ (P (.)), hence s (A) =
s (P (.)). So, if A generates a positive C0-semigroup, then the delay system (2.8) is
exponentially stable if and only if s (P (.)) < 0.

Next, we present some results on an extension of Perron-Frobenius Theorem to
quasi-polynomial operator (2.9).

Definition 7. [3] The quasi-polynomial operator (2.9) is called positive if A0 gen-
erates a positive C0-semigroup and Ak ∈ L+ (X) for all k ∈ {1, 2, ...,m}. And if the
quasi-polynomial operator (2.9) is positive, then the delay system (2.8) is a positive
system.

By [11, Thoerem 3.3’], if A0 generates a positive C0-semigroup on a Banach
lattice XC and the operators Ak ∈ L+ (XC) for all k ∈ {1, 2, ...,m}, then the semi-
group (T (t))t≥0 is a positive C0-semigroup.
Using Proposition 2.8, we obtain the following result:

Proposition 2.9. [3] Let the quasi-polynomial operator (2.9) be positive, then for
λ1, λ2 ∈ R. The following statements are equivalent

(1) R (λ1, P (λ1)) � R (λ2, P (λ2)) � 0,
(2) R (λ1,A) � R (λ2,A) � 0.

The next theorem is a generalisation of results in [23] to Perron-Frobenius the-
orem for positive quasi polynomial operator in Banach spaces.

Theorem 2.10. [3] Let the quasi-polynomial operator (2.9) be positive, then

(1) s (P (.)) ∈ σ (P (.)),
(2) For λ ∈ R we have R (λ, P (λ)) ∈ L+ (X) if and only if λ > s (P (.)),
(3) R (λ1, P (λ1)) � R (λ2, P (λ2)) for λ2 ≥ λ1 > s (P (.)).

Theorem 2.11. [3] Let the delay system (2.8) be positive, then the following state-
ments are equivalent

(1) The delay system (2.8) is exponentially stable,
(2) s (A0 +A1 + ...+Am) < 0,
(3) s (A0) < 0 and r

(
−A−10 (A1 + ...+Am)

)
< 1,

(4) (−A0 −A1 − ...−Am)
−1 � 0.

Remark. Suppose that A is the generator of a positive C0-semi-group (T (t))t≥0 on

a Banach lattice XC, that is, T (t) ∈ L+ (XC), for all t ∈ R+. Then, {λ ∈ C : <eλ > s (A)} ⊂
ρ (A) and R (t, A) is positive if and only if t > s (A). Therefore, A is a Metzler
operator on XC. Conversely, if A is a Metzler operator and IntX+

C 6= φ, then A is
the generator of a positive C0-semigroup on XC and s (A) = ω0 (A).

Lemma 2.12. [20] Assume that A is the generator of a positive compact C0-
semigroup (T (t))t≥0 on a Banach lattice XC , and P ∈ L (XC) , Q ∈ L+ (XC).

If |Px| � Q|x| for all x ∈ XC, then
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ω (A+ P ) = s (A+ P ) ≤ s (A+Q) = ω (A+Q).

Theorem 2.13. [7] Let (A,D (A)) be the generator of a C0-semigroup (T (t))t≥0
on a Banach space X, satisfying ‖S (t) ‖L(X) < Meωt, for all t ≥ 0 and some
ω ∈ R,M > 1. If B ∈ L (X), then C := A + B with D (C) = D (A) generates a
C0-semigroup (S (t))t≥0 satisfying

‖S (t) ‖L(X) < Me(ω+M‖B‖)t, for all t ≥ 0 .

3. Robust stability

3.1. Perturbed Delay System. Assume that the delay system (2.8) is subjected
to time varying structured perturbations as follows

A0  A0 +D0∆0E0,

Ak  Ak +Dk (t) ∆k (t)Ek (t) , k ∈ {1, 2, ...,m}.
Hence, the perturbed delay system takes the form

ẋ(t) = (A0 +D0∆0E0)x(t) +

m∑
k=1

(Ak +Dk (t) ∆k (t)Ek (t))x (t− hk) , t ≥ σ,

(3.1)
whereA0 is the infinitesimal generator of an exponentially stable semigroup (S (t))t≥0.

D0 ∈ L+ (U0,C, XC) , E0 ∈ L+ (XC, Y0,C). For any k ∈ {1, 2, ...,m} , Dk (.) ∈
PCb

(
R,L|.| (Uk,C, XC)

)
and Ek (.) ∈ PCb

(
R,L|.| (XC, Yk,C)

)
are given. ∆0 ∈

L+ (Y0,C, U0,C) is unknown bounded time-invariant perturbation operator, ∆k (.) ∈
PCb

(
R,L|.| (Yk,C, Uk,C)

)
are unknown bounded time-varying perturbation opera-

tors, XC, Yk,C and Uk,C are complex Banach lattices.
The size of the perturbation operator ∆k (.) is measured by

‖∆k (.) ‖∞ = ess sup
t≥0
‖∆k (t) ‖L(Yk,C,Uk,C).

Theorem 3.1. Under the above assumptions, for a fixed σ ≥ 0 and a given
f ∈ Lp ([−h, 0] ;XC), the perturbed delay system (3.1) under the above assump-
tions has a unique mild solution x (.;σ, f) ∈ Lploc ([ −h,∞) ;XC) with the initial
value condition

x (s+ σ) = f (s) , s ∈ [−h, 0] . (3.2)

Proof. In order to apply [21, Theorem 2.1], we need only to verify that u ∈

LpLoc ([σ,∞) ;XC), where u is given by u (t) =

m∑
k=1

(Dk (t) ∆k (t)Ek (t))x (t− hk).

For T ≥ σ, we define the operator

KTx : Lp ([σ − h, T ] ;XC)→ Lp ([σ, T ] ;XC),

by

KTx (s) =

m∑
k=1

(Dk (s) ∆k (s)Ek (s))x (s− hk), a.e., s ∈ [σ, T ].
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Thus,

‖KTx‖Lp([σ,T ];XC) = ‖
m∑
k=1

(Dk (s) ∆k (s)Ek (s))x (s− hk) ‖Lp([σ,T ];XC),

≤
m∑
k=1

‖Dk (.) ‖L(Uk,C,XC)‖∆k (.) ‖L(Yk,C,Uk,C)‖Ek (.) ‖L(XC,Yk,C)‖x (s− hk) ‖Lp([σ,T ];XC),

≤
m∑
k=1

‖Dk (.) ‖L(Uk,C,XC)‖∆k (.) ‖L(Yk,C,Uk,C)‖Ek (.) ‖L(XC,Yk,C)

(∫ T

σ

|x (s− hk) |pds

)1/p

,

≤
m∑
k=1

‖Dk (.) ‖L(Uk,C,XC)‖∆k (.) ‖L(YC,Uk,C)‖Ek (.) ‖L(XC,Yk,C)

(∫ T

σ−h
|x (τ) |pdτ

)1/p

,

≤
m∑
k=1

‖Dk (.) ‖L(Uk,C,XC)‖∆k (.) ‖L(Yk,C,Uk,C)‖Ek (.) ‖L(XC,Yk,C)‖x (.) ‖Lp([σ−h,T ];XC),

for 1 ≤ p <∞, and the inequality is also true for p =∞, then the operator KT is
bounded.

Thus, u : s →
m∑
k=1

(Dk (s) ∆k (s)Ek (s))x (s− hk) is in Lp ([σ, T ] ;XC) for any

T ≥ σ, then u ∈ Lploc ([σ,∞) ;XC) .
Then, for a fixed σ ≥ 0, given f ∈ Lp ([−h, 0] ;XC) and u ∈ Lploc ([σ,∞) ;XC), the
perturbed delay system (3.1) has a unique mild solution x (.;σ, f) ∈ Lploc ([−h,∞) ;XC).
Recall that x (.;σ, f) is continuous on [σ,∞) and exponentially bounded and satis-
fies (3.1) for any t ∈ [σ,∞). �

Definition 8. The perturbed delay system (3.1) is said to be exponentially stable
if there exist M > 0 and β > 0 such that for any f ∈ Lp ([ −h, 0] ;XC) and for any
t ≥ σ ≥ 0,

|x (t;σ, f) |XC < Me−β(t−σ)‖ (x0, f) ‖XC×Lp([h,0];XC).

The first main result of this paper is presented in the following Theorem.

Theorem 3.2. Let the delay system (2.8) be exponentially stable, where A0 is a
Metzler operator on XC which generates a compact C0-semigroup with IntXC 6= φ.
For k ∈ {1, 2, ...,m}, assume that

(1) Ak ∈ L+ (XC),
(2) There exist Dk ∈ L+ (Uk,C, XC), Ek ∈ L+ (XC, Yk,C) and ∆k ∈ L+ (Yk,C, Uk,C)

such that

|Dk (t) | ≤ Dk , |Ek (t) | ≤ Ek and |∆k (t) | ≤ ∆k for any t ∈ R+.

Then, the perturbed system (3.1) remains exponentially stable provided

m∑
k=0

‖∆k‖ <
1

maxi,j∈{0,1,2,...,m} ‖Ei

(
−

m∑
k=0

Ak

)−1
Dj‖

. (3.3)
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Proof. The proof is in two steps.
Step 1. Since A0 is a Metzler operator and IntXC 6= φ, then it generates a pos-
itive C0-semigroup on XC and while Ak ∈ L+ (XC) for all k ∈ {1, 2, ...,m}, then
the delay system (2.8) is positive. Since the delay system (2.8) is exponentially
stable by Theorem 2.11 this is equivalent to s (A0 +A1 + ...+Am) < 0. Since A0

generates a positive compact C0-semigroup on XC and since Ak ∈ L+ (XC) for all

k ∈ {1, 2, ...,m}, it follows by Theorem 2.13 that the operator

m∑
k=0

Ak generates a

positive compact C0-semigroup on XC.
Let t ≥ 0, for any k ∈ {1, 2, ...,m}, Dk (t) ∈ L|.| (Uk,C, XC) , Ek (t) ∈ L|.| (XC, Yk,C) ,∆k (t) ∈
L|.| (Yk,C, Uk,C), and Dk ∈ L+ (Uk,C, XC) , Ek ∈ L+ (XC, YC) ,∆k ∈ L+ (Yk,C, Uk,C)
such that

|Dk (t) | ≤ Dk, |Ek (t) | ≤ Ek, | and ∆k (t) | ≤ ∆k.

We have

|

(
D0∆0E0 +

m∑
k=1

Dk (t) ∆k (t)Ek (t)

)
x| ≤

m∑
k=0

Dk∆kEk|x| for all x ∈ XC.

By Lemma 2.12, it follows that

s

(
A0 +D0∆0E0 +

m∑
k=1

Ak +Dk (t) ∆k (t)Ek (t)

)
< s

(
m∑
k=0

Ak +Dk∆kEk

)
.

Step 2. We prove that s

(
m∑
k=0

Ak +Dk∆kEk

)
< 0.

By Theorem 2.13 and Corollary 2.2, the operator

m∑
k=0

Ak generates a positive C0-

semigroup on XC. By Remark 2, the operator

m∑
k=0

Ak is a Metzler operator, and

since the operators Dk,∆k and Ek, for any k ∈ {1, 2, ...,m}, are positives, then the

operator

m∑
k=0

Ak + Dk∆kEk generates a positive C0-semigroup on XC. Again by

Remark 2, the operator

m∑
k=0

Ak+Dk∆kEk is a Metzler operator. Now, by Theorem

2.4 assertion (1), we have

s

(
m∑
k=0

Ak +Dk∆kEk

)
∈ σ

(
m∑
k=0

Ak +Dk∆kEk

)
.

Set µ0 = s

(
m∑
k=0

Ak +Dk∆kEk

)
. We prove that µ0 < 0. Assume the contrary,

since µ0 ∈ σ

(
m∑
k=0

Ak +Dk∆kEk

)
, there exist U0 ∈ XC and U0 6= 0 such that
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(
m∑
k=0

Ak +Dk∆kEk

)
U0 = µ0U0. (3.4)

Let Q (t) = tI−
m∑
k=0

Ak, t ∈ R. Since the delay system (2.8) is exponentially stable,

we have s

(
m∑
k=0

Ak

)
< 0. Using the fact that

s

(
m∑
k=0

Ak

)
= sup

{
<eλ : λ ∈ σ

(
m∑
k=0

Ak

)}
< 0 ≤ µ0,

it follows that µ0 ∈ ρ

(
m∑
k=0

Ak

)
thus, Q (µ0)

−1
exists. Equation (3.4) implies

Q (µ0)
−1

(
m∑
k=0

Dk∆kEk

)
U0 = U0. (3.5)

Let i0 such that ‖Ei0U0‖ = max
i∈{0,1,...,m}

‖EiU0‖. It follows from equation (3.5) that

‖Ei0U0‖ > 0. Multiply both sides of equation (3.5) from the left by Ei0 to get

Ei0Q (µ0)
−1

(
m∑
k=0

Dk∆kEk

)
U0 = Ei0U0,

which implies that

‖Ei0U0‖ ≤
m∑
k=0

‖Ei0Q (µ0)
−1
Dk‖‖∆k‖‖EkU0‖,

≤

(
m∑
k=0

‖Ei0Q (µ0)
−1
Dk‖‖∆k‖

)
‖Ei0U0‖,

≤

(
max

0≤i,j≤m
‖EiQ (µ0)

−1
Dj‖

m∑
k=0

‖∆k‖

)
‖Ei0U0‖,

≤ max
0≤i,j≤m

‖EiQ (µ0)
−1
Dj‖

(
m∑
k=1

‖∆k‖

)
‖Ei0U0‖.

Therefore,

max
0≤i,j≤m

‖EiQ (µ0)
−1
Dj‖

(
m∑
k=0

‖∆k‖

)
≥ 1. (3.6)

The resolvent identity

Rλ −Rµ = (µ− λ)RλRµ = (λ− µ)RµRλ,

gives

Q (0)
−1 −Q (µ0)

−1
= µ0Q (0)

−1
Q (µ0)

−1
.
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Since the operator

m∑
k=0

Ak is a Metzler operator with s

(
m∑
k=0

Ak

)
< 0 , µ0 > 0, it

follows from Theorem 2.4, assertion (3), that

Q (0)
−1 � 0, Q (µ0)

−1 � 0 if and only if t > s

(
m∑
k=0

Ak

)
.

Therefore, by Theorem 2.4 assertion (2)

Q (0)
−1 � Q (µ0)

−1 � 0,

which yields to

EiQ (0)
−1
Dj � EiQ (µ0)

−1
Dj � 0, for any 0 ≤ i, j ≤ m,

by lattice norm property (2.3), we get

‖EiQ (0)
−1
Dj‖ ≥ ‖EiQ (µ0)

−1
Dj‖, for any 0 ≤ i, j ≤ m,

and since

‖EiQ (µ0)
−1
Dj‖ ≤ max0≤i,j≤m ‖EiQ (0)

−1
Dj‖,

then

‖EiQ (µ0)
−1
Dj‖

(
m∑
k=0

‖∆k‖

)
≤ max0≤i,j≤m ‖EiQ (0)

−1
Dj‖

(
m∑
k=0

‖∆k‖

)
,

from (3.6), we get

1 ≤ max0≤i,j≤m ‖EiQ (µ0)
−1
Dj‖

(
m∑
k=0

‖∆k‖

)
≤

max0≤i,j≤m ‖EiQ (0)
−1
Dj‖

(
m∑
k=0

‖∆k‖

)
.

Thus,
m∑
k=0

‖∆k‖ ≥
1

maxi,j∈{0,1,2,...,m} ‖Ei

(
−

m∑
k=0

Ak

)−1
Dj‖

.

However, this conflicts with (3.3), which conclude the proof. �

Corollary 3.3. Let the linear delay differential system

ẋ(t) = (A+A0)x(t) +

m∑
k=1

Ak (t)x (t− hk) , t ≥ 0,

where A is the generator of a C0-semigroup, Hurwitz stable and for all k ∈ {1, 2, ...,m},
Ak (.) ∈ PC (R+,L (XC)). Suppose that there exist Ak ∈ L+(XC) such that |Ak (t) | �
Ak for any t ∈ R+, then the system is exponentially stable provided

m∑
k=1

‖Ak‖ <
1

‖A−1‖
.
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3.2. Stability radii. For fixed σ ≥ 0 and given f ∈ Lp ([−h, 0] , XC), let x (t) :=
x (t;σ, f) , t ∈ [σ − h,∞) be the solution of the delay system (3.1) with the initial
value condition (3.2). Denote y (.) = y (., |f |) the solution of

ẏ (t) = (A0 +D0∆0E0) y (t) +

m∑
k=1

(Ak +Dk∆kEk) y (t− hk) , t ≥ σ,

y (t) = |f | (t) , t ∈ [−h, 0] ,

(3.7)

where Ak, Dk, Ek and ∆k for any k ∈ {1, 2, ...,m} are defined as in Theorem 3.2
and |f | (t) := |f (t) |, for all t ∈ [−h, 0] with y (σ) = yσ.
For the positive perturbed delay system (3.7), we introduce definitions of complex,
real and positive stability radii.

Definition 9. For the perturbed delay system (3.1), we define complex, real and
positive stability radii as follows

rC = inf{‖∆0‖+

m∑
k=1

‖∆k (.) ‖∞ : ∆0 ∈ L (Y0,C, U0,C) ,∆k (.) ∈

PC
(
R+;L (Yk,C, Uk,C)

)
, k = 0, ...,m and (3.1) is not exponentially stable }.

rR = inf{‖∆0‖+

m∑
k=1

‖∆k (.) ‖∞ : ∆0 ∈ LR (Y0,C, U0,C) ,∆k (.) ∈

PC
(
R+;LR (Yk,C, Uk,C)

)
, k = 0, ...,m and (3.1) is not exponentially stable}.

r+ = inf{‖∆0‖+

m∑
k=1

‖∆k (.) ‖∞ : ∆0 ∈ L+ (Y0,C, U0,C) ,∆k (.) ∈

PC
(
R+;L+ (Yk,C, Uk,C)

)
, k = 0, ...,m and (3.1) is not exponentially stable }.

respectively.

Definition 10. For the perturbed delay system (3.7), we define complex, real and
positive stability radii as follows

r̃C = inf{
m∑
k=0

‖∆k‖ : ∆k ∈ L (Yk,C, Uk,C) , k = 0, ...,m and (3.7) is not

exponentially stable }.

r̃R = inf{
m∑
k=0

‖∆k‖ : ∆k ∈ LR (Yk,C, Uk,C) , k = 0, ...,m and (3.7) is not

exponentially stable }.

r̃+ = inf{
m∑
k=0

‖∆k‖ : ∆k ∈ L+ (Yk,C, Uk,C) , k = 0, ...,m and (3.7) is not

exponentially stable }.

By convention, inf φ =∞.
Now, we establish an upper bound for the complex stability radius.

Proposition 3.4. The complex stability radius of the perturbed delay system (3.1)
has the upper bound
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rC ≤ 1

maxi,j∈{0,1,2,...,m} ‖Ei

−
m∑
k=0

Ak


−1

Dj‖

.

Proof. By the stability radii definitions, we have

rC ≤ rR ≤ r+.

By [10, Appendix A.3], for ∆k (.) ∈ PC
(
R,L|.| (Yk,C, Uk,C)

)
, we have 0 � ∆k (.) �

|∆k|, then for any t ≥ 0 and k = 0, ...,m

0 � ∆k (t) � |∆k (t) | � ∆k,

by lattice norm property (2.3), we get

‖∆k (t) ‖L(Yk,C,Uk,C) ≤ ‖|∆k (t) |‖L(Yk,C,Uk,C) ≤ ‖∆k‖,

with

‖∆k (.) ‖∞ = ess sup
t≥0
‖∆k (t) ‖L(Yk,C,Uk,C),

thus,

‖∆k (.) ‖∞ ≤ ‖|∆k (.) |‖∞ ≤ ‖∆k‖L(Yk,C,Uk,C),

then

‖∆0‖+

m∑
k=1

‖∆k (.) ‖∞ ≤ ‖∆0‖+

m∑
k=1

‖|∆k (.) |‖∞ ≤
m∑
k=0

‖∆k‖L(Yk,C,Uk,C),

and with (3.3), we obtain

‖∆0‖+

m∑
k=1

‖∆k (.) ‖∞ ≤
1

maxi,j∈{0,1,2,...,m} ‖Ei

(
−

m∑
k=0

Ak

)−1
Dj‖

,

then

rC ≤ 1

maxi,j∈{0,1,2,...,m} ‖Ei

−
m∑
k=0

Ak


−1

Dj‖

.

�

Now, we present the second main result of this paper, we compute the stability
radii of the perturbed delay system (3.1) in some special cases of perturbations.
We are interested in perturbed systems of the form

ẋ(t) = (A0 +D0∆0E)x(t) +

m∑
k=1

(Ak +Dk (t) ∆kE)x (t− hk) , t ≥ σ, (3.8)

with the assumptions

(1) For all k ∈ {0, 1, ...,m}, Yk,C = Y ,

(2) For all k ∈ {1, ...,m}, Dk (.) ∈ PCb
(
R+,L|.| (Uk,C, XC)

)
∩PCb (R+,L+ (Uk,C, XC)).

The second main result of this work is given in the following two Theorems.
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Theorem 3.5. Let A0 a positive operator on XC which generates a compact C0-
semigroup with IntXC 6= φ, we assume that

(1) Ak ∈ L+ (XC), for all k ∈ {1, 2, ...,m},
(2) There exist Dk ∈ L+ (Uk,C, XC) , E ∈ L+ (XC, Yk,C) and ∆k ∈ L+ (Yk,C, Uk,C)

such that

|Dk (t) | ≤ Dk, for all t ∈ R+ and k ∈ {0, 1, 2, ...,m}.
If the delay system (2.8) with the initial value condition (3.2) is exponentially stable,
then we have

rC = rR = r+ =
1

maxj∈{0,1,2,...,m} ‖E

(
−

m∑
k=0

Ak

)−1
Dj‖

. (3.9)

Proof. From definitions of complex, real and positive stability radii rC ≤ rR ≤ r+,
and by Theorem 3.2, we have

rC ≥ 1

maxi,j∈{0,1,2,...,m} ‖E

−
m∑
k=0

Ak


−1

Dj‖

,

we get the inequality

r+ ≥ 1

maxi,j∈{0,1,2,...,m} ‖E

−
m∑
k=0

Ak


−1

Dj‖

,

we have to prove

r+ ≤ 1

maxi,j∈{0,1,2,...,m} ‖E

−
m∑
k=0

Ak


−1

Dj‖

.

Assume that there exists j0 ∈ {0, 1, ...,m} such that

maxj∈{0,1,2,...,m} ‖E

(
−

m∑
k=0

Ak

)−1
Dj‖ = ‖E

(
−

m∑
k=0

Ak

)−1
Dj0‖.

If ‖E

(
−

m∑
k=0

Ak

)−1
Dj0‖ = 0, then rC = rR = r+ = +∞ and equality (3.9) holds.

Now, assume ‖E

(
−

m∑
k=0

Ak

)−1
Dj0‖ > 0. By Theorem 2.11, the delay system

(2.8) be positive and exponentially stable equivalent to s (A0 +A1 + ...+Am) < 0,
this implies that

R

(
0,

m∑
k=0

Ak

)
=

(
−

m∑
k=0

Ak

)−1
� 0,

therefore,
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E

(
−

m∑
k=0

Ak

)−1
Dj0 ∈ L+ (Uj0,C, Yj0,C).

Let 0 < ε < ‖E

(
−

m∑
k=0

Ak

)−1
Dj0‖ and by (2.7), we can choose uj0 ∈ U+

j0,C, ‖uj0‖ =

1 such that

‖E

(
−

m∑
k=0

Ak

)−1
Dj0uj0‖ > ‖E

(
−

m∑
k=0

Ak

)−1
Dj0‖ − ε.

We look for the disturbance that destabilise the perturbed delay system (3.8).
The case of j0 = 0.

Set y0 = E

(
−

m∑
k=0

Ak

)−1
Dj0u ∈ Y +

j0,C.

By [31, Theorem 39.3 page 249] there exists a positive g0 ∈ Y ∗0,C, ‖g0‖ = 1 satisfying

g0 (y0) = ‖y0‖ = ‖E

(
−

m∑
k=0

Ak

)−1
D0u0‖,

we consider the operator ∆0 : Y0,C → U0,C defined by

y 7→ ∆0y =
g0 (y)

‖E

(
−

m∑
k=0

Ak

)−1
D0u0‖

u0,

we have ∆0 ∈ L+ (Y0,C, U0,C) and

‖∆0‖ =
1

‖E

(
−

m∑
k=0

Ak

)−1
D0u0‖

,

set x0 =

(
−

m∑
k=0

Ak

)−1
D0u0, then Ex0 = E

(
−

m∑
k=0

Ak

)−1
D0u0 = y0, and hence

∆0Ex0 =
g0 (Ex0)

‖E

(
−

m∑
k=0

Ak

)−1
D0u0‖

u0 =
g0 (y0)

‖E

(
−

m∑
k=0

Ak

)−1
D0u0‖

u0 = u0,

then x0 6= 0. Moreover we have x0 =

(
−

m∑
k=0

Ak

)−1
D0 (∆0Ex0), or equivalently

(
m∑
k=0

Ak +D0∆0E

)
x0 = 0.

i.e. ∆0 ∈ L+ (Y0,C, U0,C) and

(
A0 +D0∆0E +

m∑
k=1

Ak

)
x0 = 0 and x0 6= 0 implies
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0 ∈ σ

(
A0 +D0∆0E +

m∑
k=1

Ak

)
,

then the perturbed system (3.8) with ∆k (t) ≡ 0 for all k ∈ {1, 2, ...,m} is not
exponentially stable, hence by definition of r+ we get

r+ ≤ ‖∆0‖+

m∑
k=1

‖∆k (.) ‖ ≤
m∑
k=0

‖∆k‖ = ‖∆0‖,

then

r+ ≤ ‖∆0‖ =
1

‖E

(
−

m∑
k=0

Ak

)−1
D0u0‖

<
1

‖E

(
−

m∑
k=1

Ak

)−1
D0‖ − ε

.

The case of j0 = {1, 2, ...,m}.
We construct one rank positive destabilising perturbation.

Let us consider the Banach spaces U =

m∏
k=1

Uk and Y =

m∏
k=1

Yk endowed with the

norms

‖U‖ =

m∑
k=1

‖uk‖,U = (u1, u2, ..., um) ∈ U such that uk ∈ Uk with k = 1, 2, ...,m.

‖Y‖ =

m∑
k=1

‖yk‖,Y = (y1, y2, ..., ym) ∈ Y such that yk ∈ Yk with k = 1, 2, ...,m.

And let us, for all t ≥ 0, x ∈ XC and U = (u1, u2, ..., um) ∈ U , define the linear
operators D (.) and E by

Ex =


E1x
E2x

...
Emx

, D (.) U = (D1 (t) , D2 (t) , ..., Dm (t))


u1
u2
...
um

 =

m∑
k=1

Dk (t)uk,

such thatD (.) ∈ PCb

(
R+,

m∏
k=1

L (Uk, XC)

)
and E (.) ∈ PCb

(
R+,

m∏
k=1

L (XC, Yk)

)
,

and the block diagonal matrix operator

∆ = diag (∆1,∆2, ...,∆m) ,

for all ∆k ∈ L (Yk, Uk) and Y = (y1, y2, ..., ym), by

∆ : Y → U

∆Y =


∆1 0 . . . 0
0 ∆2 . . . 0
...

. . .
. . .

...
0 . . . 0 ∆m




y1
y2
...
ym

 =


∆1y1
∆2y2

...
∆mym

,

endowed with the norm

‖∆‖ = maxk=1,...,m ‖∆k‖.
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For j0 = {1, 2, ...,m}, we can choose uj0 ∈ U+
j0,C, ‖uj0‖ = 1 such that

‖E

(
−

m∑
k=0

Ak

)−1
Dj0uj0‖ > ‖E

(
−

m∑
k=0

Ak

)−1
Dj0‖ − ε,

Set yj0 = E

(
−

m∑
k=0

Ak

)−1
Dj0uj0 ∈ Y +

j0,C,

by [31, Theorem 39.3 page 249], there exists a positive gj0 ∈ Y ∗1,C, ‖gj0‖ = 1 satis-
fying

gj0 (yj0) = ‖yj0‖ = ‖E

(
−

m∑
k=0

Ak

)−1
Dj0uj0‖,

we consider the operator ∆j0 : Yj0,C → Uj0,C defined by

y 7→ ∆j0y =
gj0 (y)

‖E

(
−

m∑
k=0

Ak

)−1
D1uj0‖

uj0 ,

we have ∆j0 ∈ L+ (Yj0,C, Uj0,C) and

‖∆j0‖ =
1

‖E

(
−

m∑
k=0

Ak

)−1
Dj0uj0‖

,

set xj0 =

(
−

m∑
k=0

Ak

)−1
Dj0uj0 , then Exj0 = E

(
−

m∑
k=0

Ak

)−1
Dj0uj0 = yj0 , and

hence

∆j0Exj0 =
gj0 (Exj0)

‖E

(
−

m∑
k=0

Ak

)−1
Dj0uj0‖

uj0 =
g1 (y1)

‖E

(
−

m∑
k=0

Ak

)−1
Dj0uj0‖

uj0 = uj0 ,

then xj0 6= 0 because of uj0 6= 0. Moreover, we have xj0 =

(
−

m∑
k=0

Ak

)−1
Dj0 (∆j0Exj0),

or equivalently (
−

m∑
k=0

Ak

)
xj0 = Dj0∆j0Exj0 , (3.10)

then (
m∑
k=0

Ak +Dj0∆j0E

)
xj0 = 0.

We have for any t ≥ 0

Dj0 (t) � |Dj0 (t) | � Dj0 and Dj0 (t) ∈ L+ (Uj0,C, XC),

then
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0 � Dj0 (t) ∆1Exj0 � Dj0∆j0Exj0 ,

by equation (3.10)

0 � Dj0 (t) ∆j0Exj0 �

(
−

m∑
k=1

Ak

)
xj0 ,

hence,

0 �

(
m∑
k=1

Ak

)
xj0 �

(
m∑
k=1

Ak

)
xj0 +Dj0 (t) ∆j0Exj0 � 0,

therefore, (
m∑
k=1

Ak +Dj0 (t) ∆j0E

)
xj0 = 0,

and xj0 6= 0, then 0 ∈ σ

(
m∑
k=1

Ak +Dj0 (t) ∆j0E

)
, it follows that, the perturbed

delay system (3.8) with ∆0 = 0 and ∆ = (0, ...,∆j0 , 0, ..., 0) is not exponentially
stable. �

Following similar steps, we obtain the same result for perturbed systems of the
form

ẋ(t) = (A0 +D∆0E)x(t) +

m∑
k=1

(Ak +D∆kEk (t))x (t− hk) , t ≥ σ, (3.11)

with the assumptions

(1) For all k ∈ {0, 1, ...,m}, Uk,C = U ,

(2) For all k ∈ {1, ...,m}, Ek (.) ∈ PCb
(
R+,L|.| (XC, Yk,C)

)
∩PCb (R+,L+ (XC, Yk,C)).

Theorem 3.6. Let A0 a positive operator on XC which generates a compact C0-
semigroup with IntXC 6= φ, we assume that

(1) Ak ∈ L+ (XC), for all k ∈ {1, 2, ...,m},
(2) There exist D ∈ L+ (U,XC) , Ek ∈ L+ (XC, Yk,C) and ∆k ∈ L+ (Yk,C, Uk,C)

such that

|Ek (t) | ≤ Ek, for all t ∈ R+ and k ∈ {0, 1, 2, ...,m}.
If the perturbed delay system (2.8) with the initial value condition (3.2) is exponen-
tially stable, then

rC = rR = r+ =
1

maxi,j∈{0,1,2,...,m} ‖Ej

(
−

m∑
k=0

Ak

)−1
D‖

. (3.12)
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4. Conclusion

Through this work, we tried to study, at some extent, robustness in stability
of positive delay systems under time-varying disturbances in the case of infinite
dimensions, with the possibility of finding the largest sharp disturbance amplitude
that keeps the system stable. In further research, the results that we have found
could be extended to a more general class of disturbances.
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References

[1] Aliprantis, C. D. and Burkinshaw, O, Positive Operators, Springer Dordrecht. (2006).

[2] Anh, B. T. and Son, N.K. and Thanh, D. D. X. , Robust Stability of Metzler Operators and

Delay Equation in Lp([−h, 0];X), Vietnam J. Math. 34 3 (2006) 357–368.
[3] Anh, B. T. and Khanh, D. C. and Thanh, D. D. X., A Remark on Stability of class of Positive

Linear Delay Systems in Banach Lattices. Commun. Math. Anal. 5 2(2008), 26–37.

[4] Arendt, W. and Grabosch, A. and Greiner, G.and Moustakas, U. and Nagel,R. and Schlotter-
beck, U. and Groh, U. and Lotz, H. and NeubranderLabahn, F, One-parameter semigroups

of positive operator, Springer-Verlag Berlin Heidelberg. (1986).

[5] Arendt, W., Resolvent Positive Operators, Proc. London Math. Soc. 3 (1987) 321–349.
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