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ON HERMITE-TRICOMI FUNCTIONS OF THE SINGLE

COMPLEX VARIABLE

M. S. METWALLY

Abstract. In this paper, we define a new kind of the hypergeometric func-

tion, say, Hermite-Tricomi functions. An explicit representation, recurrence
relations for the Hermite-Tricomi functions are given and differential equa-

tions satisfied them is presented. A new expansions of the exponential for a

wide class of functions, whose properties, including recurrences, addition the-
orems, generating functions etc. in terms of Hermite-Tricomi functions are

studied in detail.

1. Introduction

Theory and applications of scalar orthogonal polynomials are elegant, extensive,
and diverse, with fundamental results dating back to developmental work by Her-
mite, Jacobi, Laguerre, Legendre, Tchebicheff, and others [12, 13, 14]. In a number
of previous papers [3, 4, 5, 8, 9], it has been shown that, many properties of ordinary
and generalized special functions are easily derived and framed in a more general
context. The aim of this paper is to provide some answers to the problems arising
in the study of the development of Hermite-Tricomi functions. This approach will
permit the introduction of the Tricomi functions to establish the basis of Hermite-
Tricomi functions to third order differential equations. Furthermore, we prove that
the Hermite-Tricomi functions satisfy a differential equation and thier extension to
the two-variables Hermite-Tricomi functions is given.

In these introductory remarks, we discuss the properties of the Tricomi functions
and Hermite polynomials defined in [2, 10] and fix the notation in order to make the
paper self-consistent, we recall the following specialized version of the definitions.

1.1. definition. The Tricomi Functions have been defined in [1, 6] as follows

Cn(x) =

∞∑
k=0

(−1)kxk

k!(n + k)!
(1.1)

and

Cn(x) = x−
n
2 Jn(2

√
x) (1.2)

where Jn(x) is a cylindrical Bessel function of first kind.
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Most of the properties of (1.1) can be derived from the generating function

∞∑
n=−∞

tnCn(x) = et−
x
t (1.3)

and the following properties of the ntℎ-order Tricomi functions, which yield the
recurrences

dr

dxr
Cn(x) = (−1)rCn+r(x),

C−n(x) = (−x)nCn(x),

xCn+1(x)− nCn(x) + Cn−1(x) = 0

(1.4)

which, once combined, provide us with the differential equation[
x
d2

dx2
+ (n + 1)

d

dx
+ 1

]
Cn(x) = 0. (1.5)

By exploiting the addition formula [11] we have

Cn(x + y) =

∞∑
k=0

(−y)k

k!
Cn+k(x). (1.6)

The addition theorem is easily derived from (1.7) which yields

Cn(x± y) =

∞∑
k=0

(∓1)kyk

k!
Cn+k(x). (1.7)

To this aim, we remind the reader that, Hermite polynomials Hn(x, y) are also
defined through the operational identity. It is also easy to realize that, we can
define the Hn(x, y) through the operational rule

Hn(x, y) = exp

(
− y

4

∂2

∂x2

)(
2x
)n

. (1.8)

The use of the inverse of (1.8) allows to conclude that

(2x)n = exp

(
y

4

∂2

∂x2

)
Hn(x, y) (1.9)

which is a quite useful operational identity, which can be exploited to state further
relations. Special case: we can write Hn(x, 1) = Hn(x).

2. Hermite-Tricomi functions

We define the new generating function which represents a generalization of the
Hermite-Tricomi functions in the form

∞∑
n=−∞

tn HCn(x) = exp

(
t− 2x

t
− 1

t2

)
(2.1)

and by the series expansion

HCn(x) =

∞∑
k=0

(−1)kHk(x)

k!(n + k)!
. (2.2)
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It is clear that

HC−1(x) = 0, HC0(x) =

∞∑
k=0

(−1)kHk(x)

(k!)2
, HC1(x) =

∞∑
k=0

(−1)kHk(x)

k!(k + 1)!
.

In the following theorem, we obtain another representation for the Hermite-Tricomi
functions [8, 9].

Theorem 2.1. The Hermite-Tricomi function of ntℎ order has the following rep-
resentation

HCn(x) = exp

(
− 1

4

d2

dx2

)
Cn(2x). (2.3)

Proof: By using (1.1), (1.8) and (2.2), we consider the series in the form

HCn(x) =

∞∑
k=0

(−1)kHk(x)

k!(n + k)!
=

∞∑
k=0

(−1)k

k!(n + k)!
exp

(
− 1

4

d2

dx2

)(
2x
)k

= exp

(
− 1

4

d2

dx2

) ∞∑
k=0

(−1)k

k!(n + k)!

(
2x
)k

= exp

(
− 1

4

d2

dx2

)
Cn(2x).

Proof of Theorem 2.1 is completed.
Furthermore, in view of (2.3), we can write

Cn(2x) = exp

(
1

4

d2

dx2

)
HCn(x). (2.4)

It is worth noting that, for x
2 instead of x, the expression (2.3) gives another rep-

resentation for the Hermite-Tricomi functions in the form

HCn(
x

2
) = exp

(
− d2

dx2

)
Cn(x),

Cn(x) = exp

(
d2

dx2

)
HCn(

x

2
).

The new properties of the the Hermite-Tricomi functions generated by (2.1) yields
as given in the following theorem.

Theorem 2.2. The Hermite-Tricomi functions satisfy the following relations

HCn(x + y) =

∞∑
k=0

(−2y)k

k!
HCn+k(x). (2.5)

Proof: By using (2.1), the series can be given in the form

∞∑
n=−∞

HCn(x + y)tn = exp

(
t− 2

x + y

t
− 1

t2

)
= exp

(
− 2y

t

)
exp

(
t− 2x

t
− 1

t2

)

=

∞∑
n=−∞

HCn(x)tn
∞∑
k=0

(−2y)kt−k

k!
=

∞∑
n=−∞

∞∑
k=0

(−2y)k

k!
HCn(x)tn−k.

By comparing the coefficients of tn, we get (2.5) and the proof is established. In
the following corollary, we obtain the properties of Hermite-Tricomi functions as
follows
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Corollary 2.3. The addition property of the Hermite-Tricomi functions given in
the following relation

HCn(x± y) =

∞∑
k=0

(∓2y)k

k!
HCn+k(x). (2.6)

Proof. By exploiting the addition formula (1.7) we have

HCn(x− y) =

∞∑
k=0

(2y)k

k!
HCn+k(x).

Hence, the proof of Corollary 2.3 is established.

2.1. Recurrence relations. Some recurrence relations as carried out on the Hermite-
Tricomi functions. We obtain the following

Theorem 2.4. The Hermite-Tricomi functions satisfy the following relations

dk

dxk HCn(x) = (−2)k HCn+k(x); 0 ≤ k ≤ n. (2.7)

Proof. Differentiating the identity (2.1) with respect to x yields
∞∑

n=−∞
HC ′n(x)tn =

−2

t
exp

(
t− 2x

t
− 1

t2

)
. (2.8)

From (2.1) and (2.8), we have
∞∑

n=−∞
HC ′n(x)tn = −2

∞∑
n=−∞

HCn(x)tn−1. (2.9)

Hence, identifying coefficients of tn, it follows that

HC ′n(x) = −2 HCn+1(x). (2.10)

The iteration of (2.10), for 0 ≤ k ≤ n, implies (2.7).
Hence for particular values of k and n, (2.7) yields

HCn(x) =
1

(−2)n−k
dn−k

dxn−k HCk(x). (2.11)

Therefore, the expression (2.7) is established and the proof of Theorem 2.4 is
completed.

Differentiating the identity (2.1) with respect to t yields
∞∑

n=−∞
n HCn(x)tn−1 =

(
t3 + 2xt + 2

) ∞∑
n=−∞

HCn(x)tn−3

from which by comparing the coefficients of tn on sides of the identity, we obtain
the pure recurrence relation

(n + 1) HCn+1(x) = HCn(x) + 2x HCn+2(x) + 2 HCn+3(x). (2.12)

The above recurrence relation will be used in the following theorem.

Theorem 2.5. For Hermite-Tricomi functions, have

2 HCn+1(x) + 2x HCn(x)− (n− 1) HCn−1(x) + HCn−2(x) = 0. (2.13)
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Proof. The new generating function which represents the Hermite-Tricomi func-
tions given by the following relation

F (x, t) =

∞∑
n=−∞

HCn(x)tn = exp

(
t− 2x

t
− 1

t2

)
. (2.14)

Differentiating (2.14) with respect to x and t, we find respectively

∂F

∂x
=

∞∑
n=−∞

HC ′n(x)tn = −2

∞∑
n=−∞

HCn(x)tn−1

and

∂F

∂t
=

∞∑
n=−∞

n HCn(x)tn−1 =

(
t3 + 2xt + 2

) ∞∑
n=−∞

HCn(x)tn−3.

Therefore, F (x, t) satisfies the partial differential equation

(t3 + 2xt + 2)
∂F

∂x
+ 2t2

∂F

∂t
= 0

which, by using (2.1), becomes

(t3 + 2xt + 2)

∞∑
n=−∞

HC ′n(x)tn + 2t2
∞∑

n=−∞
n HCn(x)tn−1 = 0.

It follows that

HC ′n−3(x) + 2x HC ′n−1(x) + 2 HC ′n(x) + 2(n− 1) HCn−1(x) = 0. (2.15)

Using (2.10) and (2.15), we get (2.13) and the proof of Theorem 2.5 is completed.
The following result shows that the Hermite-Tricomi functions appear as finite
series solutions of the third order differential equation.

Corollary 2.6. The Hermite-Tricomi functions are solution of the differential
equation of the third order in the form[

d3

dx3
− 2x

d2

dx2
− 2(n + 1)

d

dx
− 4

]
HCn(x) = 0. (2.16)

Proof. Replacing n by n− 1 in (2.10) gives

d

dx
HCn−1(x) = −2 HCn(x),

d2

dx2 HCn−1(x) = −2
d

dx
HCn(x),

(2.17)

d2

dx2 HCn−2(x) = (−2)2 HCn(x) (2.18)

and

d2

dx2 HCn(x) = −2
d

dx
HCn+1(x) = (−2)2 HCn+2(x)

d3

dx3 HCn(x) =
d2

dx2

(
− 2 HCn+1(x)

)
= (−2)2

d

dx
HCn+2(x)

= (−2)3 HCn+3(x).

(2.19)
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Differentiating the identity (2.13) with respect to x yields

2
d2

dx2 HCn+1(x) + 2x
d2

dx2 HCn(x) + 4
d

dx
HCn(x)

− (n− 1)
d2

dx2 HCn−1(x) +
d2

dx2 HCn−2(x) = 0.

(2.20)

Substituting (2.17), (2.18), (2.19) into (2.20) we obtain (2.16). Thus the proof of
Corollary 2.6 is completed.

In the following, we will apply the above results to operator, whose importance
has been recognized within the framework of ntℎ-order Hermite-Tricomi functions,
and we will see that the results, summarized in this section, so that Hermite-
Tricomi functions can be considered as a generalization of the ordinary exponential
function, can be exploited to state quite general results. Further speculations will
be discussed in the forthcoming section.

3. Hermite-Tricomi functions of the Two variables

The functions represent the Hermite-Tricomi functions HCn(x, y) of two variables
and the generating function is given as

∞∑
n=−∞

tn HCn(x, y) = exp

(
t− 2x

t
− y

t2

)
(3.1)

and by the series expansion

HCn(x, y) =

∞∑
k=0

(−1)kHk(x, y)

k!(n + k)!
. (3.2)

Theorem 3.1. The Hermite-Tricomi functions of two variables of ntℎ order has
the following representation

HCn(x, y) = exp

(
− y

4

∂2

∂x2

)
Cn(2x). (3.3)

Proof: Instead of (1.1), (1.8) and (3.2),(3.3).
Furthermore, in view of (3.3), we can write

Cn(2x) = exp

(
y

4

∂2

∂x2

)
HCn(x, y). (3.4)

In the following theorems, we obtain the addition formula for Hermite-Tricomi
functions of two variables.

Theorem 3.2. The Hermite-Tricomi functions of two variables satisfy the follow-
ing relations

HCn(x± z, y) =

∞∑
k=0

(∓2z)k

k!
HCn+k(x, y). (3.5)

Proof: By using (3.1), the series can be given in the form
∞∑

n=−∞
HCn(x± z, y)tn = exp

(
t− 2

x± z

t
− y

t2

)

=

∞∑
n=−∞

∞∑
k=0

(∓2z)k

k!
HCn(x, y)tn−k.



80 M. S. METWALLY

By comparing the coefficients of tn, we get (3.5). The proof of Theorem 3.2 is
established.

Theorem 3.3. The Hermite-Tricomi functions satisfy the following relations

HCn(x, y ± w) =

∞∑
k=0

(∓w)k

k!
HCn+2k(x, y). (3.6)

Proof: By using (3.1), we consider the series in the form

∞∑
n=−∞

HCn(x, y ± w)tn = exp

(
t− 2

x

t
− y ± w

t2

)
=

∞∑
n=−∞

∞∑
k=0

(∓w)k

k!
HCn(x, y)tn−2k.

By comparing the coefficients of tn, we get (3.6) and the proof is completed.
In the following corollary, we obtain the properties Hermite-Tricomi functions of

two variables as follows

Corollary 3.4. The Hermite-Tricomi functions satisfy the following addition for-
mula, yields

2n HCn(x + z, y + w) =

∞∑
m=−∞

HCn−m(
x

2
,
y

4
) HCm(

z

2
,
w

4
). (3.7)

Proof: By using (3.1), the series can be given in the form

∞∑
n=−∞

HCn(x + z, y + w)tn = exp

(
t− 2

x + z

t
− y + w

t2

)

=

∞∑
n=−∞

∞∑
m=−∞

2−(n+m)
HCn(

x

2
,
y

4
) HCm(

z

2
,
w

4
)tn+m.

By comparing the coefficients of tn, we get (3.7). The proof of Corollary 3.4 is
completed.

The following corollary, we obtain another recurrence formula Hermite-Tricomi
functions of two variables as follows.

Corollary 3.5. The Hermite-Tricomi functions holds the following

HCn(x, y + w) = exp

(
− w

4

∂2

∂x2

)
HCn(x, y). (3.8)

Proof. By using the Theorem 3.1, we get directly the equation (3.8).

3.1. Recurrence relations for Hermite-Tricomi functions of two variables.

Theorem 3.6. The Hermite-Tricomi functions satisfy the following relations

∂k

∂xk HCn(x, y) = (−2)k HCn+k(x, y); 0 ≤ k ≤ n (3.9)

and

∂k

∂yk
HCn(x, y) = (−1)k HCn+2k(x, y); 0 ≤ k ≤ [

n

2
]. (3.10)
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Proof. Differentiating the identity (3.1) with respect to x yields
∞∑

n=−∞

∂

∂x
HCn(x, y)tn =

−2

t
exp

(
t− 2x

t
− y

t2

)
. (3.11)

From (3.1) and (3.11), we have
∞∑

n=−∞

∂

∂x
HCn(x, y)tn = −2

∞∑
n=−∞

HCn(x, y)tn−1

from identifying coefficients in tn, it follows that

∂

∂x
HCn(x, y) = −2 HCn+1(x, y). (3.12)

The iteration of (3.12), for 0 ≤ k ≤ n, implies (3.9). Differentiating the identity
(3.1) with respect to y and identifying coefficients of tn, we get

∂

∂y
HCn(x, y) = − HCn+2(x, y) (3.13)

and, in general,

∂k

∂yk
HCn(x, y) = (−1)k HCn+2k(x, y).

Hence for particular values of k and n, (3.9) and (3.10), yield

HCn(x, y) =
1

(−2)n−k
∂n−k

∂xn−k HCk(x, y) =
1

(−2)k
∂k

∂xk HCn−k(x, y)

= (−1)k
∂k

∂xk HCn−2k(x, y).

(3.14)

Differentiating the identity (3.1) with respect to t yields
∞∑

n=−∞
n HCn(x, y)tn−1 =

(
t3 + 2xt + 2y

) ∞∑
n=−∞

HCn(x, y)tn−3

from which by comparing the coefficients of tn on both sides of the identity, we
obtain the pure recurrence relation

(n + 1) HCn+1(x, y) = HCn(x, y) + 2x HCn+2(x, y) + 2y HCn+3(x, y). (3.15)

Therefore, the expressions (3.9) and (3.10) are established and the proof of Theorem
3.6 is completed.

The following corollary is a consequence of Theorem 3.6.

Corollary 3.7. The Hermite-Tricomi functions satisfy the following relation

∂2

∂x2 HCn(x, y) + 4
∂

∂y
HCn(x, y) = 0. (3.16)

Proof. By (3.9) and (3.10) the equation (3.16) follows directly.
According to (3.16), it is clear that the HCn(x, y) are the natural solutions of

the heat partial differential equation. The above recurrence relation will be used in
the following theorem.

Theorem 3.8. The Hermite-Tricomi functions of two variables, have the following

2y HCn+1(x, y) + 2x HCn(x, y)− (n− 1) HCn−1(x, y) + HCn−2(x, y) = 0.(3.17)
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Proof. The generating function gives

F (x, y, t) =

∞∑
n=−∞

HCn(x, y)tn = exp

(
t− 2x

t
− y

t2

)
. (3.18)

Differentiating (3.18) with respect to x and t, we find respectively

∂F

∂x
=

∞∑
n=−∞

∂

∂x
HCn(x, y)tn = −2

∞∑
n=−∞

HCn(x, y)tn−1

and

∂F

∂t
=

∞∑
n=−∞

n HCn(x, y)tn−1 =

(
t3 + 2xt + 2y

) ∞∑
n=−∞

HCn(x, y)tn−3.

Therefore, F (x, y, t) satisfies the partial differential equation

(t3 + 2xt + 2y)
∂F

∂x
+ 2t2

∂F

∂t
= 0

which, by using (3.1), becomes

∞∑
n=−∞

∂

∂x
HCn(x, y)tn+3 + 2x

∞∑
n=−∞

∂

∂x
HCn(x, y)tn+1

+ 2y

∞∑
n=−∞

∂

∂x
HCn(x, y)tn + 2

∞∑
n=−∞

n HCn(x, y)tn+1 = 0.

It follows

∂

∂x
HCn−3(x, y) + 2x

∂

∂x
HCn−1(x, y) + 2y

∂

∂x
HCn(x) + 2(n− 1) HCn−1(x, y) = 0.(3.19)

Using (3.10) and (3.19), we get (3.17). Finally, the Hermite-Tricomi functions
appear as finite series solutions of the differential equation in the following corollary
that is a consequence of Theorem 3.8 .

Corollary 3.9. The Hermite-Tricomi functions are solution of the differential
equation of the third order in the form[

y
∂3

∂x3
− 2x

∂2

∂x2
− 2(n + 1)

∂

∂x
− 4

]
HCn(x, y) = 0. (3.20)

Proof. Replacing n by n− 1 in (3.9) gives

∂

∂x
HCn−1(x, y) = −2 HCn(x, y),

∂2

∂x2 HCn−1(x, y) =
∂

∂x

(
− 2 HCn(x, y)

)
= −2

∂

∂x
HCn(x, y),

(3.21)

∂2

∂x2 HCn−2(x, y) =
∂

∂x

(
− 2 HCn−1(x, y)

)
= (−2)2 HCn(x, y) (3.22)
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and

∂2

∂x2 HCn(x, y) = −2
∂

∂x
HCn+1(x, y) = (−2)2 HCn+2(x, y)

∂3

∂x3 HCn(x, y) = (−2)2
∂

∂x
HCn+2(x, y)

= −2
∂2

∂x2 HCn+1(x, y) = (−2)3 HCn+3(x, y).

(3.23)

Differentiating the identity (3.18) with respect to x yields

2y
∂2

∂x2 HCn+1(x, y) + 2x
∂2

∂x2 HCn(x, y) + 4
∂

∂x
HCn(x)

−(n− 1)
∂2

∂x2 HCn−1(x, y) +
∂2

∂x2 HCn−2(x, y) = 0.

(3.24)

Substituting (3.21), (3.22), (3.24) into (3.24) we obtain (2.16). Thus the proof of
Corollary 3.9 is completed.

Special case: By exploiting the same argument of the previous section, it is
evident that HCn(x, y) satisfies the properties [7]

HCn(x, y)∣y=0 = Cn(2x),

HCn(x, y)∣y=1 = HCn(x).
(3.25)

Further examples proving the usefulness of the present methods can be easily
worked out, but are not reported here for conciseness. These last identities in-
dicate that the method described in this paper can go beyond the specific problem
addressed here and can be exploited in a wider context.
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