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EXISTENCE OF POSITIVE PERIODIC SOLUTION OF AN

IMPULSIVE DELAY FISHING MODEL

(COMMUNICATED BY AGACIK ZAFER)

DENGGUO XU, YING HUANG AND LIN LIANG

Abstract. In this paper, the impulsive delay fishing model is considered. By
using the continuation theory for k-set contractions, the sufficient conditions
of the existence of positive ω−periodic solutions of the impulsive delay fishing
model are obtained.

1. Introduction

Many real-world evolution processes which depend on their prehistory and are
subject to short time disturbances can be modeled by impulsive delay differential
equations. Such processes occur in the theory of optimal control,population dy-
namics, biology, economics, etc. For details, see [1,2] and references therein. In
the last few years, the existence problems of positive periodic solutions of differ-
ential equations with impulsive effects and/or delay have been studied by many
researchers [3-9].

In [4], the author considered the impulsive Logistic model. The sufficient condi-
tions of the existence and asymptotic stability of T-periodic solution were obtained.
In [5], the author studied an impulsive delay differential equation and sufficient con-
ditions are obtained for the existence and global attractivity of periodic positive
solutions. It is shown that under appropriate linear periodic impulsive perturba-
tions, the impulsive delay differential equation preserves the original periodicity
and global attractive properties of the non-impulsive delay differential equation.In
[6], impulsive delay Logistic model was investigated. And the existence results of
positive periodic solution were obtained.

The main purpose of this paper is to study the impulsive delay fishing model.
By using the continuation theory for k-set contractions [10,12], the existence of
positive periodic solution of this model is considered and sufficient conditions are
obtained for the existence of periodic positive solutions. This paper is organized
in three sections including the introduction. Section 2 formulates the problem
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and presents the preliminary results. The sufficient conditions for the existence of
positive ω−periodic solution of the model are established in section 3.

2. Preliminaries

Consider the following impulsive delay fishing model{
x′(t) = r(t)x(t)

(
1− x(t−τ)

xm(t)

)
− E(t)x(t), t ̸= tk,

x(t+k )− x(tk) = bkx(tk), k = 1, 2, . . .
(2.1)

where x(t) is the density of population at time t. The intrinsic growth rate of pop-
ulation and the carrying capacity are denoted by r(t), xm(t) respectively. E(t) is
fishing intensity and r(t) ≥ E(t). τ is the gestation period and bk is impulsive per-
turbation at the moments of time tk, k = 1, 2,. . . , x(t+k ) = limh→0+ x(t+h), x(tk) =
limh→0+ x(t− h).

The following assumption will be needed throughout the paper.
(A1) 0 < t1 < t2 < . . . are fixed impulsive points with limk→∞ tk = ∞.
(A2) r(t), xm(t) and E(t) are locally integrable functions on (0,∞).
(A3) {bk} is a real sequence and 1 + bk > 0, k = 1, 2, . . ..
(A4) r(t), xm(t), E(t),

∏
0<tk<t(1 + bk) are positive continuous ω-periodic func-

tions and in the sequence the product equals to unity if the number of factors is
zero.

We shall consider (1) with the initial condition

x(t) = ϕ(t), −τ ≤ t ≤ 0, ϕ(t) ∈ L([−τ, 0], (0,∞)), (2.2)

where L([−τ, 0], (0,∞)) denotes the set of Lebesguemeasurable functions on [−τ, 0].
By a solution x(t) of (1) satisfying initial condition (2) we mean an absolutely

continuous function x(t) on [−τ,∞), and satisfies conditions: x(t+k ) and x(tk) exist
for any tk, k = 1, 2, . . ., and x(t) satisfies (1) for almost everywhere in [0,∞) and at
impulsive points tk may have discontinuity of the first kind.

Under assumption (A1)− (A4), obviously, all solution of (1) and (2) are positive
[0,∞]. In (1), let x(t) = ey(t), then x′(t) = ey(t)y′(t) and by substituting them into
(1) and (2) we can obtain{

y′(t) = (r(t)− E(t))
(
1− r(t)

(r(t)−E(t))xm(t)e
y(t−τ)

)
, t ̸= tk,

y(t+k )− y(tk) = ln(1 + bk), k = 1, 2, . . . ,
(2.3)

and the initial condition

y(t) = lnϕ(t), −τ ≤ t ≤ 0, ϕ(t) ∈ L([−τ, 0], (0,∞)). (2.4)

For investigating Eq. (3) and (4), we introduce following non-impulsive delay dif-
ferential equation

z′(t) = r(t)− E(t)− r(t)

N(t)
exp

z(t− τ) +
∑

0<tj<t−τ

ln(1 + bj)

 (2.5)

with the initial condition

z(t) = lnϕ(t), −τ ≤ t ≤ 0, ϕ(t) ∈ L([−τ, 0], (0,∞)). (2.6)

Theorem 2.1. If z(t) is a solution of (5) and (6) on [−τ,∞), then y(t) = z(t) +∑
0<tj<t ln(1+ bj) is a solution of (3) and (4). And if y(t) is a solution of (3) and

(4) on [−τ,∞), then z(t) = y(t)−
∑

0<tj<t ln(1 + bj) is a solution of (5) and (6).
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The proof of the Theorem 2.1 is similar to that of [Theorem 1, 11] and is omitted.
We give a brief explanation of the abstract continuation theory for k-set con-

tractions that will be used in proof of the main results of the paper.
Let Z be a Banach space. For a bounded subset A ⊂ Z, let ΓZ(A) denote the

(Kuratovski) measure of non-compactness defined by

ΓZ(A) = inf{δ > 0 : ∃ a finite number of subsetsAi ⊂ A,A = ∪iAi, diam(Ai) ≤ δ}.

Here, diam(Ai) denotes the maximum distance between the points in the set Ai.
Let X and Y be Banach spaces and Ω a bounded open subset of X. A continuous
and bounded map N : Ω̄ → Y is called k-set-contractive if for any bounded A ⊂ Ω̄
we have ΓY (N(A)) ≤ kΓX(A). Also, for a continuous and bounded map T : X → Y
we define

l(T ) = sup{r ≥ 0 : ∀ bounded subsetA ⊂ X, rΓX(A) ≤ ΓY T ((A))}.

Theorem 2.2. [12] Let L : X → Y be a Fredholm operator of index zero, and
q(t) ∈ Y be a fixed point. Suppose that N : Ω̄ → Y is k-set contractive with
k < l(L), where Ω ⊂ X is bounded, open, and symmetric about 0 ∈ Ω. Suppose
further that:

(i)Lx ̸= λNx+ λq(t) for x ∈ ∂Ω, λ ∈ (0, 1) and
(ii)[QN(x) +Qq(t), x] · [QN(−x) +Qq(t), x] < 0, for x ∈ Ker(L) ∩ ∂Ω.

where [·, ·] is a bilinear form on Y ×X and Q is the projection of Y onto coker(L).
Then there exists x ∈ Ω̄ such that Lx−Nx = q(t)

3. Main results

For the convenience of investigation, we still denote z(t) by x(t) in Eqs. (5) and
(6), then the new form is obtained

x′(t) = q(t)− p(t)ex(t−τ) (3.1)

with the initial condition

x(t) = lnϕ(t), −τ ≤ t ≤ 0, ϕ(t) ∈ L([−τ, 0], (0,∞)), (3.2)

where q(t) = r(t)−E(t) and p(t) = r(t)
xm(t)

∏
0<tj<t−τ (1+bj) are positive continuous

ω-periodic functions.
Denote Y = C0

ω is a linear Banach space of real-valued ω− periodic functions
on R. In C0

ω, for x ∈ C0
ω, the norm is defined by |x|0 = supt∈R |x(t)|. Let X = C1

ω

denote the linear space of ω−periodic functions with the first-order continuous
derivative. C1

ω is a Banach space with norm |x|1 = max{|x|0, |x′|0}. let L : X → Y
be given by Lx = dx

dt = x′.
Since |Lx|0 = |x′|0 ≤ |x|1, we see that L is a bounded linear map. Next define a

nonlinear map N : X → Y by Nx(t) = −p(t)ex(t−τ). Now, Eq. (7) has a solution
x(t) if and only if Lx = Nx+ q(t) for some x ∈ X.

Theorem 3.1. Let

M = max

{∣∣∣∣ln q̄

p̄

∣∣∣∣ , R1,M1,M2

}
, R1 = ln

q̄

pm
+ 2ωq̄, M1 = |q|0 + |p|0eR1 ,

M2 = M1ω +max

{∣∣∣∣ln q̄

|p|0

∣∣∣∣ , ∣∣∣∣ln q̄

pm

∣∣∣∣} .
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Where

q̄ =
1

ω

∫ ω

0

q(t)dt, p̄ =
1

ω

∫ ω

0

p(t)dt, pm = min
t∈[0,ω]

p(t), |q|0 = max
t∈[0,ω]

q(t), |p|0 = max
t∈[0,ω]

p(t).

Suppose that the condition |p|0eM < 1 holds, then Eq. (7) has at least one ω-
periodic solution. Therefore, the system (1) has at least one positive ω-periodic
solution.

Proof. Let Ω = {x(t) ∈ X : |x|1 < r}, where r > M such that k0 = |p|0er < 1,
A ⊂ Ω̄ be a bounded subset and let η = ΓX(A), then for any ε > 0, there is a finite
family of subset Ai with A = ∪iAi and diam1(Ai) ≤ η + ε. Now it follows from
the fact that g(t, x1) = p(t)ex1 is uniformly continuous on any compact subset of
R×R that, for any x, u ∈ Ai, may as well let x ≤ u, there exists a σ ∈ (x, u), such
that

|Nx−Nu|0 = sup
0≤t≤ω

|g(t, x(t− τ))− g(t, u(t− τ))| ≤ |p|0 sup
0≤t≤ω

|ex(t−τ) − eu(t−τ)|

= |p|0 sup
0≤t≤ω

|eσ(t−τ)||x(t− τ)− u(t− τ)|.

In this case, |σ|1 < r, therefore, |Nx−Nu|0 ≤ |p|0er|x− u|0 ≤ k0η + k0ε. i.e.

ΓY (N(A)) ≤ k0ΓX(A).

Therefore, the map N is k0−set contractive.
If Lx = λNx+ λq(t) for any x(t) ∈ X,λ ∈ (0, 1), i.e.

x′(t) = λ
(
q(t)− p(t)ex(t−τ)

)
. (3.3)

Since x(t) is a real-valued ω−periodic function, integrating (9) from 0 to ω, we have

∫ ω

0

p(t)ex(t−τ)dt =

∫ ω

0

q(t)dt. (3.4)

Therefore∫ ω

0

|x′(t)|dt ≤ λ

[∫ ω

0

q(t)dt+

∫ ω

0

p(t)ex(t−τ)dt

]
< 2

∫ ω

0

q(t)dt = 2ωq̄. (3.5)

Let s = t− τ , then∫ ω

0

p(t)ex(t−τ)dt =

∫ ω−τ

−τ

p(s+ τ)ex(s)ds ≥ pm
∫ ω−τ

−τ

ex(s)ds = pm
∫ ω

0

ex(s)ds.

It follows from (10) that∫ ω

0

q(t)dt ≥ pm
∫ ω

0

ex(s)ds = ωpmex(ξ1),

for some ξ1 ∈ [0, ω]. Therefore, we have

x(ξ1) ≤ ln
q̄

pm
. (3.6)

From (11) and (12), we can see that

x(t) ≤ x(ξ1) +

∫ ω

0

|x′(t)| ≤ ln
q̄

pm
+ 2ωq̄ = R1.
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From (9), we have

x′(t) ≤ λ[q(t) + p(t)ex(t−τ)] < |q|0 + |p|0eR1 .

So that

|x′|0 < |q|0 + |p|0eR1 ≡ M1. (3.7)

On the other hand, there exits a ξ2 ∈ [0, ω], such that∫ ω

0

p(t)ex(t−τ)dt =

∫ ω−τ

−τ

p(s+ τ)ex(s)ds = p(ξ2)

∫ ω−τ

−τ

ex(s)ds = p(ξ2)

∫ ω

0

ex(s)ds.

Hence, from (10), we have ∫ ω

0

ex(t)dt =

∫ ω

0
q(t)dt

p(ξ2)
.

So, there exits a ξ3 ∈ [0, ω], such that

ex(ξ3) =
q̄

p(ξ2)
,

i.e.

x(ξ3) = ln
q̄

p(ξ2)
.

It is clear that

ln
q̄

|p|0
≤ x(ξ3) ≤ ln

q̄

pm
.

Therefore,

|x(ξ3)| ≤ max

{
ln

q̄

|p|0
, ln

q̄

pm

}
≡ M0. (3.8)

We get

|x|0 ≤ |x(ξ3)|+
∫ ω

0

|x′|0dt < M0 +M1ω ≡ M2.

This implies that

|x|1 ≤ M ≡ max

{∣∣∣∣ln q̄

p̄

∣∣∣∣ , R1,M1,M2

}
.

Therefore, for x(t) ∈ ∂Ω, λ ∈ (0, 1),

Lx ̸= λNx+ λq(t).

This implies that the condition (i) of Theorem 2.2 holds.
In the following we define a bounded bilinear form [·, ·] on Y × X by [y, x] =∫ ω

0
y(t)x(t)dt. And defineQ : Y → coker(L) by y →

∫ ω

0
y(t)dt. For x ∈ ker(L)∩∂Ω,

we can get x = r or x = −r. So, we have

[QN(x) +Qq(t), x] · [QN(−x) +Qq(t), x] =

r2ω2

[∫ ω

0

q(t)dt− er
∫ ω

0

p(t)dt

] [∫ ω

0

q(t)dt− e−r

∫ ω

0

p(t)dt

]
= r2ω4(q̄ − erp̄)(q̄ − e−rp̄).

Since r > M ≥ |ln q̄
p̄ |, we have q̄ − erp̄ < 0, q̄ − e−rp̄ > 0 . This implies that the

condition (ii) of Theorem 2.2 holds.
Hence, it follows from Theorem 2.2 that there is a function x(t) ∈ Ω̄ ⊂ X such

that Lx−Nx = q(t). Thus, the proof of Theorem 3.1 is completed. �
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