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OSCILLATION RESULTS FOR THIRD ORDER HALF-LINEAR

NEUTRAL DIFFERENCE EQUATIONS

(COMMUNICATED BY I.P. STAVROULAKIS)

E.THANDAPANI AND S.SELVARANGAM

Abstract. In this paper some new sufficient conditions for the oscillation of
solutions of the third order half-linear difference equations

∆
(

an(∆
2(xn + bnh(xn−δ)))

α
)

+ qnf(xn+1−τ ) = 0

and
∆

(

an(∆
2(xn − bnh(xn−δ)))

α
)

+ qnf(xn+1−τ ) = 0

are established. Some examples are presented to illustrate the main results.

1. Introduction

In this paper we consider the following neutral type difference equations of the
form

∆
(

an(∆
2(xn + bnh(xn−δ)))

α
)

+ qnf(xn+1−τ ) = 0 (1.1)

and

∆
(

an(∆
2(xn − bnh(xn−δ)))

α
)

+ qnf(xn+1−τ ) = 0 (1.2)

where n ∈ N(n0) = {n0, n0 + 1 . . . }, n0 is a nonnegative integer, subject to

i) f and h are real-valued continuous functions with uh(u) > 0, and uf(u) > 0
for all u 6= 0;

ii) there exist M1 > 0 and M2 > 0 such that
h(u)

u
≤ M1 and

f(u)

uα
≥ M2,

where α is ratio of odd positive integers.
iii) {an} is a positive nonincreasing real sequence with

A(n) =

n−1
∑

s=n0

1

a
1
α
s

→ ∞ as n → ∞; (1.3)

iv) {bn} is a real sequence with 0 ≤ bn ≤ M1b < 1 for all n ∈ N(n0) and {qn}
is a positive real sequence.
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Let θ = max{δ, τ}. By a solution of equation (1.1)((1.2)), we mean a real se-
quence {xn} defined for all n ≥ n0 − θ and satisfies (1.1) ((1.2)) for all n ≥ n0.

A nontrivial solution {xn} is said to be a nonoscillatory if it is either eventually
positive or eventually negative and it is oscillatory otherwise.

The oscillation theory of difference equations and their applications have been
receiving intensive attention in the last few decades, see for example [1, 2, 4], and
the references cited therein. Especially the study of oscillatory behavior of second
order equations of various types occupied a great deal of interest. However the study
of third order difference equations have received considerably less attention even
though such equations have wide applications. In [3, 8, 9, 10, 12, 13] the authors
investigated the oscillatory properties of solutions of third order delay difference
equations and in [4, 11, 14, 15, 16], the authors studied similar properties for neutral
delay difference equations. Motivated by the above observations in this paper we
investigate oscillatory behavior of solutions of equation (1.1) and (1.2).

The equations (1.1) and (1.2) can be considered as the discrete analogue of the
equations

(

a(t)
(

(x(t) + b(t)x(t− δ))
′
)α
)

′

+ q(t)xα(t− τ) = 0

and
(

a(t)
(

(x(t) − b(t)x(t− δ))
′
)α
)

′

+ q(t)xα(t− τ) = 0

when h(u) = u and f(u) = uα respectively, whose oscillatory properties are dis-
cussed in [5, 6, 7].

In Section 2, we present sufficient conditions which ensure that all solutions of
equation (1.1) are either oscillatory or converges to zero, and we present similar
results for equation (1.2) in Section 3. Examples are provided to illustrate the
main results.

2. Oscillation of Equation (1.1)

First, we state and prove some useful lemmas. For each solution {xn} of equation
(1.1), we define the corresponding {zn} by

zn = xn + bnh(xn−δ). (2.1)

Lemma 2.1. Let {xn} be a positive solution of equation (1.1). Then there are only
the following two cases for {zn} defined in (2.1);

i) zn > 0, ∆zn > 0, ∆2zn > 0, ∆(an∆
2zn) ≤ 0;

ii) zn > 0, ∆zn < 0, ∆2zn > 0, ∆(an∆
2zn) ≤ 0

for n ≥ n1 ∈ N(n0), where n1 is sufficiently large.

Lemma 2.2. Let {xn} be a positive solution of equation (1.1), and the correspond-
ing {zn} satisfies case(ii) of Lemma 2.1. If

∞
∑

n=n0

∞
∑

s=n

[

1

as

∞
∑

t=s

qt

]
1
α

= ∞, (2.2)

then lim
n→∞

xn = lim
n→∞

zn = 0.

Proof. The proofs for the Lemmas 2.1 and 2.2 can be proved as in [15]. �
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Lemma 2.3. Assume that un > 0, ∆un ≥ 0, ∆(an(∆un)
α) ≤ 0 for all n ≥ n0.

Then, for each l ∈ (0, 1), there exists an integer N ≥ n0 such that
un−τ

A(n− τ)
≥

l
un

A(n)
for n ≥ N.

Proof. Since an(∆un)
α is nonincreasing so is a

1
α
n ∆un. Then by the definition of

A(n), we have

un − un−τ =
n−1
∑

s=n−τ

∆us ≤ a
1
α

n−τ∆un−τ (A(n)−A(n− τ)). (2.3)

Also

un−τ ≥ un−τ − un0
≥ a

1
α

n−τ∆un−τ (A(n− τ) −A(n0)).

Since lim
n→∞

A(n− τ) −A(n0)

A(n− τ)
= 1, for each l ∈ (0, 1) there exists an integer

N ≥ n0 such that A(n− τ)−A(n0) > lA(n− τ) for n ≥ N.

From the above inequality
un−τ

∆un−τ

≥ la
1
α

n−τA(n− τ), n ≥ N. (2.4)

Combining (2.3) and (2.4), we obtain

un

un−τ

≤ 1 +
A(n)−A(n− τ)

lA(n− τ)
≤

A(n)

lA(n− τ)
,

and the proof is complete. �

Lemma 2.4. Assume that zn > 0, ∆zn > 0, ∆2zn > 0, and
∆
(

an(∆
2zn)

α
)

≤ 0 for all n ≥ N. Then

zn+1

∆zn
≥

a
1
α
n A(n)

2
for all n ≥ N.

Proof. Since an(∆
2zn)

α is positive and nonincreasing so is a
1
α
n ∆2zn. From ∆zn >

0, an > 0, we have

∆zn ≥ ∆zn −∆zN =

n−1
∑

s=N

a
1
α
s ∆2zs

a
1
α
s

≥ a
1
α
n A(n)∆2zn.

Since ∆A(n) = a
−1

α
n , we have

(∆A(n))(∆zn) ≥ A(n)∆2zn for n ≥ N. (2.5)

Summing the inequality (2.5) from N to n− 1, we have

n−1
∑

s=N

(∆A(s))(∆zs) ≥ A(n)∆zn −

n−1
∑

s=N

∆zs+1∆A(s)

or
n−1
∑

s=N

(∆zs+1)(∆A(s)) ≥
A(n)

2
∆zn, n ≥ N. (2.6)

Since {an} is nonincreasing, we have A(n) > 0, ∆A(n) > 0, ∆2A(n) ≥ 0, and
therefore,

∆(zn+1∆A(n)) = (∆zn+1)(∆A(n)) + zn+2∆
2A(n). (2.7)
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From (2.6) and (2.7), we obtain

zn+1 ≥
a

1
α
n A(n)

2
∆zn, n ≥ N.

This completes the proof. �

Lemma 2.5. Assume that ∆zn > 0, ∆2zn > 0, and ∆(an(∆
2zn)

α) ≤ 0 for all

n ≥ N. Then a
1
α
n A(n)

∆2zn

∆zn
≤ 1 for all n ≥ N.

Proof. The result follows from the inequality

∆zn ≥ ∆zn −∆zN ≥

n−1
∑

s=N

a
1
α
s ∆2zs

a
1
α
s

≥
(

a
1
α
n ∆2zn

)

A(n).

�

Lemma 2.6. If lim
n→∞

a
−1

α
n

A(n)
= 0, then

lim
n→∞

1

A(n+ 1)

n
∑

s=N

(

1 +
a

−1

α
s

A(s)

)α(α+1)

1

a
1
α

s+1

= 1.

Proof. By discrete L’Hospital rule [1], we have

lim
n→∞

1

A(n+ 1)

n
∑

s=N

(

1 +
a

−1

α
s

A(s)

)α(α+1)

1

a
1
α

s+1

= lim
n→∞



1 +
a

−1

α

n+1

A(n+ 1)



 = 1.

Next, we present oscillation results for the equation (1.1). For simplicity, we
introduce the following notations;

P = lim
n→∞

inf Aα(n+ 1)

∞
∑

s=n+1

pl(s),

Q = lim
n→∞

sup
1

A(n+ 1)

n
∑

s=n0

Aα+1(s)pl(s) (2.8)

where pl(n) = lα(1−M1b)
αM2qnA

2α(n− τ)

(

a
1
α

n−τ

2A(n)

)α

with l ∈ (0, 1). Moreover,

for {zn} satisfying the case (i) of Lemma 2.1, we define

wn = an

(

∆2zn

∆zn

)α

, n ≥ N, (2.9)

r = lim
n→∞

inf Aα(n+ 1)wn+1, and R = lim
n→∞

supAα(n+ 1)wn+1. (2.10)

�
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Lemma 2.7. Assume that {an} is nonincreasing. Let {zn} be a positive solution
of equation (1.1).
(I) Let P < ∞ and suppose that the corresponding {zn} satisfies case

(i) of Lemma 2.1. Then

P ≤ r − r1+
1
α . (2.11)

(II) If Q < ∞ and lim
n→∞

a
−1

α
n

A(n)
= 0 and {zn} satisfies case (i) of

Lemma 2.1, then

P +Q ≤ 1. (2.12)

(III) If P = ∞ or Q = ∞ and lim
n→∞

a
−1

α
n

A(n)
= 0, then {zn} does not

have the case (i) of Lemma 2.1.

Proof. Part (I). Assume that {xn} is a positive solution of equation (1.1), and the
corresponding {zn} satisfies case (i) of Lemma 2.1. First, note that

xn = zn − bnh(xn−δ) ≥ zn − bM1zn−δ ≥ (1 − bM1)zn.

Using the last inequality in equation (1.1), we obtain

∆
(

an(∆
2zn)

α
)

≤ −(1−M1b)
αM2qnz

α
n+1−τ ≤ 0. (2.13)

From the definition of wn and (2.13), we see that wn > 0 and satisfies

∆wn ≤ −M2qn(1−M1b)
α

(

zn+1−τ

∆zn

)α

−
α

a
1
α

n+1

w
1+ 1

α

n+1 . (2.14)

From Lemma 2.3 with un = ∆zn, we have for l, the same as in pl(n)

1

∆zn
≥ l

A(n− τ)

A(n)

1

∆zn−τ

, n ≥ N

which with (2.14)gives

∆wn ≤ −lαM2qn

(

A(n− τ)

A(n)

)α(
zn+1−τ

∆zn−τ

)α

(1 −M1b)
α −

α

a
1
α

n+1

w
1+ 1

α

n+1 .

Using the fact from Lemma 2.4 that zn+1 ≥
a

1
α
n A(n)

2
∆zn, we have

∆wn + pl(n) +
α

a
1
α

n+1

w
1+ 1

α

n+1 ≤ 0, for n ≥ N. (2.15)

Since pl(n) > 0 and wn > 0 for n ≥ N, we have from (2.15) that ∆wn ≤ 0 and

−
∆wn

αw
1+ 1

α

n+1

≥
1

a
1
α

n+1

for n ≥ N.

Summing the last inequality from N to n− 1, and using the decreasing property
of wn, we obtain

−wn + wN

αw
α+1

α
n

≥

n−1
∑

s=N

1

a
1
α

s+1
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or

wn ≤













wN

α
n−1
∑

s=N

1

a
1
α

s+1













α

α+ 1

which inview of (1.3) implies that lim
n→∞

wn = 0. On the other hand from the defi-

nition of wn and Lemma 2.5, we see that

0 ≤ r ≤ R ≤ 1. (2.16)

Let ǫ > 0. Then from the definition of P and r, we can choose an integer n2 ≥ N

sufficiently large that

Aα(n+ 1)

∞
∑

s=n+1

pl(s) ≥ P − ǫ and Aα(n+ 1)wn+1 ≥ r − ǫ

for all n ≥ n2. Summing (2.15) from n+ 1 to ∞ and using lim
n→∞

wn = 0, we have

wn+1 ≥
∞
∑

s=n+1

pl(s) + α

∞
∑

s=n+1

w
α+1

α

s+1

a
1
α

s+1

, n ≥ n2. (2.17)

Multiplying the last inequality by Aα(n+ 1), we have

Aα(n+ 1)wn+1 ≥ Aα(n+ 1)

∞
∑

s=n+1

pl(s)

+αAα(n+ 1)
∞
∑

s=n+1

w
α+1

α

s+1

a
1
α

s+1

≥ (P − ǫ)

+(r − ǫ)
α+1

α Aα(n+ 1)

∞
∑

s=n+1

α∆(A(s + 1))

Aα(s+ 1)
.

(2.18)

From (2.18) and
∞
∑

s=n+1

α∆A(s + 1)

Aα(s+ 1)
≥ α

∞
∫

A(n+1)

ds

sα
, we have,

Aα(n+ 1)wn+1 ≥ (P − ǫ) + (r − ǫ)
α+1

α .

Taking lim inf on both sides, we obtain that

r ≥ (P − ǫ) + (r − ǫ)
α+1

α .

Since ǫ > 0 is arbitrary, we obtain the desired result

P ≤ r − r1+
1
α . (2.19)
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Part(II). Multiplying (2.15) by Aα+1(n) and summing from N to n, and then
using summation by parts formula, we obtain

Aα+1(n+ 1)wn+1 ≤ Aα+1(N + 1)wN −
n
∑

s=N

Aα+1(s)pl(s)

+
n
∑

s=N

ws+1∆Aα+1(s)

−
n
∑

s=N

α
Aα+1(s)w

α+1

α

s+1

a
1
α

s+1

≤ Aα+1(N + 1)wN −
n
∑

s=N

Aα+1(s)

+
n
∑

s=N

(α+ 1)Aα(s+ 1)∆A(s)ws+1

−
n
∑

s=N

αAα+1(s)∆A(s)w
α+1

α

s+1 .

Using the inequality Bu−Au
α+1

α ≤
αα

(α+ 1)α+1

Bα+1

Aα
with u = wn+1,

A = αAα+1(s)∆A(s), B = (α+ 1)Aα(s+ 1)∆A(s),

we obtain

Aα+1(n+ 1)wn+1 ≤ Aα+1(N + 1)wN −
n
∑

s=N

Aα+1(s)pl(s)

+
n
∑

s=N

(

(A(s+ 1))

A(s)

)α(α+1)
1

a
1
α
s

.

It follows that

Aα(n+ 1)wn+1 ≤
Aα+1(N + 1)wN

A(n+ 1)

−
1

A(n+ 1)

n
∑

s=N

Aα+1(s)pl(s)

+
1

A(n+ 1)

n
∑

s=N

(

1 +
a

−1

α
s

A(s)

)α(α+1)

1

a
1
α
s

.

(2.20)

Taking lim sup on both sides and using Lemma 2.6, we obtain

R ≤ −Q+ 1.

Combining this with the inequalities in (2.19) and (2.16) we obtain

P ≤ r − r
α+1

α ≤ r ≤ R ≤ −Q+ 1

which proves the inequality (2.12).
Part(III). Assume that {xn} is a positive solution of equation (1.1). We shall
show that {zn} does not have case (i) of Lemma 2.1. Assume the contrary. First,
we assume P = ∞. Then exactly as in the proof of Part (I), we obtain (2.17). Then

Aα(n+ 1)wn+1 ≥ Aα(n+ 1)

∞
∑

s=n+1

pl(s).
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Taking lim inf on both sides, we obtain in view of (2.16) that

1 ≥ r ≥ ∞.

This is a contradiction. Next, we assume that Q = ∞ and lim
n→∞

a
−1

α
n

A(n)
= 0. Then

taking lim inf and lim sup on the left and right hand side of (2.20) respectively, we
obtain

0 ≤ R ≤ −∞.

This contradiction completes the proof.
Now we are ready to present the following oscillation criteria for the equation

(1.1). �

Theorem 2.8. Assume that condition (2.2) holds and {an} is non-increasing. If

P >
αα

(α+ 1)α+1
, (2.21)

then every solution {xn} of equation (1.1) is either oscillatory or tends to zero as
n → ∞.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of
generality, we may assume that {xn} is a positive solution (since the proof for the
opposite case is similar) of equation (1.1). If P = ∞, then by Lemma 2.7, {zn}
does not have case (i) of Lemma 2.1. That is, {zn} has to satisfy case (ii) of Lemma
2.1 and from Lemma 2.2, we see that lim

n→∞

xn = 0.

Next, we assume that P < ∞. We shall discuss two possibilities. If for {zn},
case (ii) of Lemma 2.1 holds, then exactly as above we are led by Lemma 2.2 to
lim
n→∞

xn = 0.

Now, we assume that for {zn}, case (i) of Lemma 2.1 holds. Let wn and r be
defined by (2.9) and (2.10), respectively. Then from Lemma 2.7 we see that r

satisfies the inequality

P ≤ r − r
α+1

α .

Using the inequality Bu− Au
α+1

α ≤
αα

(α+ 1)α+1

Bα+1

Aα
with A = B = 1 and u = r,

we obtain that

P ≤
αα

(α+ 1)α+1

which contradicts (2.21). This completes the proof. �

Theorem 2.9. Assume that condition (2.4) holds and {an} is nonincreasing with

lim
n→∞

a
−1

α
n

A(n)
= 0. If

P +Q > 1, (2.22)

then every solution {xn} of equation (1.1) is either oscillatory or tends to zero as
n → ∞.

Proof. Let {xn} be a nonoscillatory solution of equation (1.1). Without loss of
generality, we may assume that {xn} is a positive solution of equation (1.1). If
P = ∞ or Q = ∞, then by Lemma 2.7, {zn} does not have case (i) of Lemma 2.1.
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That is {zn} has to satisfy case (ii) of Lemma 2.1. From Lemma 2.2, we see that
lim
n→∞

xn = 0.

Next, we assume that P < ∞ and Q < ∞. We shall discuss two possibilities. If,
for {zn}, case (ii) of Lemma 2.1 holds, then exactly as above we led by Lemma 2.2,
to lim

n→∞

xn = 0. Now, we assume that for {zn}, case (i) of Lemma 2.1 holds. Let

wn and r be defined by (2.9) and (2.10) respectively. Then from Lemma 2.7, we
see that P and Q satisfy the inequality P +Q ≤ 1 which contradicts (2.22). This
completes the proof.

As a consequence of Theorem 2.9 we have the following result. �

Corollary 2.10. Assume that condition (2.4) holds and {an} is non-increasing

with lim
n→∞

a
−1

α
n

A(n)
= 0. If

Q = lim
x→∞

sup
1

A(n+ 1)

n
∑

s=n0

Aα+1(s)pl(s) > 1, (2.23)

then every solution {xn} of equation (1.1) is either oscillatory or tends to zero as
n → ∞.

We conclude this section with the following example.

Example 2.1. Consider the third order nonlinear difference equation

∆

(

1

n3
(∆2(xn +

1

3
xn−1(1− x2

n−1)))
3

)

+
λ

n6
x3
n−1(1 + x2

n−1) = 0, n ≥ 1. (2.24)

Here an = 1
q
, bn = 1

3 , h(u) = u(1 − u2), qn = λ
n6 , f(u) = u3(1 + u2) and α = 3.

Then we find M1 = 1 and M2 = 1 and it is easy to see that conditions (2.2) and
(2.21) are hold for λ > 0.. Hence by Theorem 2.8, we see that every solution of
equation (2.24) is either oscillatory or converges to zero as n → ∞.

3. Oscillation of Equation(1.2)

In this section, we present oscillatory criteria for equation (1.2). We define

zn = xn − bnh(xn−δ). (3.1)

Lemma 3.1. Let {xn} be a positive solution of equation (1.2). Then the corre-
sponding function {zn} defined in (3.1) satisfies the following cases.

(iii) zn > 0, ∆zn > 0, ∆2zn > 0, ∆(an∆
2zn) ≤ 0;

(iv) zn > 0, ∆zn < 0, ∆2zn > 0, ∆(an∆
2zn) ≤ 0;

(v) zn < 0, ∆zn < 0 ∆2zn > 0, ∆(an∆
2zn) ≤ 0;

(vi) zn < 0, ∆zn < 0 ∆2zn < 0, ∆(an∆
2zn) ≤ 0

for n ≥ n1, where n1 is sufficiently large.

Lemma 3.2. Let {xn} be a positive solution of equation (1.2), and the corre-
sponding zn satisfies the case of Lemma 3.1 (iv). If (2.4) holds, then lim

n→∞

xn =

lim
n→∞

zn = 0.

The proofs of Lemma 3.1 and Lemma 3.2 can be proved as in [15]. For simplicity,
we introduce the following notations;

pl(n) = lαM2qnA
2α(n− τ)

(

a
1
α

n−τ

2A(n)

)α

with l ∈ (0, 1).
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P = lim
n→∞

inf Aα(n+ 1)

∞
∑

s=n+1

pl(s)

and Q = lim
n→∞

sup
1

A(n+ 1)

n
∑

s=n0

Aα(s,N)pl(s) (3.2)

where wn, r and R are as defined in Section 2.

Lemma 3.3. Assume that {an} is nonincreasing. Let {xn} be a positive solution
of equation (1.2).
(I) Let P < ∞ and suppose that the corresponding {zn} satisfied case

(iii) of Lemma 3.1. Then

P ≤ r − r1+
1
α . (3.3)

(II) If Q < ∞ and lim
n→∞

a
−1

α
n

A(n)
= 0 and {zn} satisfies case (iii) of

Lemma 3.1, then
P +Q ≤ 1. (3.4)

(III) If P = ∞ or Q = ∞ and lim
n→∞

a
−1

α
n

A(n)
= 0 and {zn} does not

satisfy case (iii) of Lemma 3.1.

Proof. Let {xn} be a positive solution of equation (1.2) and {zn} satisfies case (iii)
of Lemma 3.1. Since 0 < zn < xn, equation (1.2) can be written in the form

∆(an(∆
2zn)

α) +M2qnz
α
n+1−τ ≤ 0.

The rest of the proof for the parts (I), (II) and (III) are similar to that of Lemma
2.7, and hence the details are omitted. �

Theorem 3.4. Assume that {an} is nonincreasing and condition (2.4) holds. If

P >
αα

(α+ 1)1+α
(3.5)

then every solution {xn} of equation (1.2) is either oscillatory or tends to zero as
n → ∞.

Proof. Let {xn} be a positive solution of equation (1.2). Then

∆(an(∆
2zn)

α) +M2qnx
α
n+1−τ ≤ 0.

We claim that {xn} is bounded. If not, then there exists a sequence {nj} such that
lim
j→∞

nj = ∞ and lim
j→∞

xnj
= ∞ and,

xnj
= max[xs; n0 ≤ s ≤ nj ].

Since n− δ → ∞ as n → ∞, we can choose nj − δ > n0. As n− δ ≤ n, we have

xnj−δ ≤ max[xs : n0 ≤ s ≤ nj − δ].

Therefore, for all large j

znj
= xnj

− bnj
h(xnj−δ) ≥ (1−M1b)xnj

.

Thus znj
→ ∞ as j → ∞, so {zn} is positive and unbounded. It follows from

Lemma 3.1 that case (iii) has to hold. Part(I) of Lemma 3.3 provides

P ≤ r − r1+
1
α .
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Using the inequality Bu−Au1+ 1
α ≤

αα

(α+ 1)α+1

Bα+1

Aα
, with A = B = 1 and u = r,

we obtain

P ≤
αα

(α+ 1)α+1

which contradicts (3.5). So, we conclude that both {xn} and {zn} are bounded.
Lemma 3.1 now implies that for zn either case (iv) or case (v) holds.

If case (iv) holds, then Lemma 3.2 ensures that lim
n→∞

xn = 0. On the other hand

if the case (v) holds, then there exists a finite limit lim
n→∞

zn = −d < 0. We know

that 0 < xn is bounded, so

lim
n→∞

supxn = c, 0 ≤ c < ∞.

We claim that c = 0. If not, then there exists a sequence {nj} such that lim
j→∞

nj = ∞

and lim
j→∞

xnj
= c. It is easy to see that for ǫ =

c(1−M1b)

2bM1
> 0, we have xnj−δ <

c+ ǫ. Moreover,

0 > −δ = lim
j→∞

znj
≥ lim

j→∞

(xnj
−M1b(c+ ǫ)) =

c

2
(1−M1b) > 0

which is a contradiction. Thus c = 0 and lim
n→∞

xn = 0. This completes the proof.

The proof of the next result is similar to that of Theorem 2.9. so it is omitted. �

Theorem 3.5. Assume that condition (2.4) holds and {an} is nonincreasing with

lim
n→∞

a
−1

α
n

A(n)
= 0. If

P +Q > 1,

then every solution {xn} of equation (1.2) is either oscillatory or tends to zero as
n → ∞.

Corollary 3.6. Assume that condition (2.4) holds and {an} is nonincreasing with

lim
n→∞

sup
a

−1

α
n

A(n)
= 0. If

Q = lim
n→∞

sup
1

A(n+ 1)

n
∑

s=n0

Aα+1(s)pl(s) > 1,

then every solution {xn} of equation (1.2) is either oscillatory or tends to zero as
n → ∞.

We conclude this section with the following example.

Example 3.1. Consider the third order difference equation

∆

(

1

n

(

∆2

(

xn −
1

3

(

xn−1

1 + x2
n−1

)))3
)

+
λ

n6
x3
n−1(1 + x2

n−1) = 0, n ≥ 1. (3.6)

Corollary 3.6 implies that every solution of equation (3.6) is either oscillatory or
converges to zero as n → ∞, provided that λ > 0.
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4. Conclusion

In this paper we establish sufficient conditions which ensure that all solutions of
equations (1.1) and (1.2) are either oscillatory or tend to zero as n → ∞, under
the condition {an} is nonincreasing. Therefore our results complement to those
obtained in [15] for the case {an} is nondecreasing, f(u) = uα and h(u) = u. It
would be interesting to obtain similar results to equations (1.1) and (1.2) when
∞
∑

n=n0

1

a
1
α
n

< ∞.
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