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ON A TYPE OF QUARTER-SYMMETRIC NON-METRIC
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AJIT BARMAN

Abstract. The object of the present paper is to study a quarter-symmetric

non-metric φ-connection on a Kenmotsu manifold.

1. Introduction

The product of an almost contact manifold M and the real line R carries a nat-

ural almost complex structure. However if one takes M to be an almost contact

metric manifold and suppose that the product metric G on M × R is Kaehlerian,

then the structure on M is cosymplectic [8] and not Sasakian. On the other hand

Oubina [13] pointed out that if the conformally related metric e2tG, t being the

coordinate on R, is Kaehlerian, then M is Sasakian and conversely.

In [17], S. Tanno classified connected almost contact metric manifolds whose au-

tomorphism groups possess the maximum dimension. For such a manifold M, the

sectional curvature of plane sections containing ξ is a constant, say c. If c > o, M

is a homogeneous Sasakian manifold of constant sectional curvature. If c = 0, M is

the product of a line or a circle with a Kaehler manifold of constant holomorphic

sectional curvature. If c < o, M is a warped product space R ×f Cn. In 1971,

Kenmotsu studied a class of contact Riemannian manifolds satisfying some special

conditions [10]. We call it Kenmotsu manifold . Kenmotsu manifolds have been

studied by J.B. Jun , U.C. De and G. Pathak [9], C. Özgür and U.C. De [14], U.C.

De and G. Pathak [4], A. Yıldiz, U.C. De and B.E. Acet [19] and others.

In 1975, S. Golab [7] defined and studied quarter-symmetric connection in differen-

tiable manifolds with affine connections. A liner connection ∇ on an n-dimensional

Riemannian manifold (Mn, g) is called a quarter-symmetric connection [7] if its
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torsion tensor T satisfies

T (X,Y ) = η(Y )φX − η(X)φY, (1.1)

where η is a 1-form and φ is a (1,1) tensor field.

In particular, if φX = X , then the quarter-symmetric connection reduces to the

semi-symmetric connection [6]. Thus the notion of the quarter-symmetric connec-

tion generalizes the notion of the semi-symmetric connection.

If moreover, a quarter-symmetric connection ∇ satisfies the condition

(∇Xg)(Y, Z) 6= 0, (1.2)

then ∇ is said to be a quarter-symmetric non-metric connection.

The quarter-symmetric non-metric connection is said to be a quarter-symmetric

non-metric φ-connection if satisfies the condition

(∇Xφ)(Y ) = 0, (1.3)

for all X,Y, Z ∈ χ(Mn).

After S. Golab [7] and S.C.Rastogi ([15], [16]) continued the systematic study of

quarter-symmetric metric connection by R.S.Mishra and S.N.Pandey [11], K.Yano

and T. Imai [18], S. Mukhopadhyay, A. K. Roy and B. Barua [12], U.C.De and S.C.

Biswas [3], U.C. De and G. Pathak [4], J.B. Jun, U.C. De and G. Pathak [9], U.C.

De, C. Özgür and S. Sular [5] and others.

A Riemannian manifold is said to be semisymmetric if its curvature tensor K sat-

isfies the condition

K(X,Y ).K = 0,

where K(X,Y ) denotes the curvature operator and Ricci-semisymmetric if

K(X,Y ).S̃ = 0,

where S̃ denotes the Ricci tensor of the manifold.

In this paper we study Kenmotsu manifolds with respect to the quarter-symmetric

non-metric φ-connection. The paper is organized as follows: After introduction in

section 2, we give a brief account of the Kenmotsu manifolds. In section 3, we

define a quarter-symmetric non-metric φ-connection on a Kenmotsu manifold and

we establish the relation between the curvature tensors with respect to the quarter-

symmetric non-metric φ-connection and the Levi-Civita connection. Section 4,

deals with R.R = 0 in a Kenmotsu manifold with respect to the quarter-symmetric

non-metric φ-connection. In section 5, we investigate R.S = 0 in a Kenmotsu
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manifold with respect to the quarter-symmetric non-metric φ-connection and we

prove that the manifold is Ricci-semisymmetric with respect to the Levi-Civita

connection. Finally, we study S.R = 0 in a Kenmotsu manifold with respect to

the quarter-symmetric non-metric φ-connection, where R and S denotes the cur-

vature tensor and the Ricci tensor of the Kenmotsu manifold with respect to the

quarter-symmetric non-metric φ-connection respectively.

2. Kenmotsu Manifolds

Let M be an (2n+1)-dimensional almost contact metric manifold with an almost

contact metric structure (φ, ξ, η, g) consisting of a (1, 1) tensor field φ, a vector field

ξ, a 1-form η and a Riemannian metric g on M satisfying [2]

φ2(X) = −X + η(X)ξ, g(X, ξ) = η(X), (2.1)

η(ξ) = 1, φ(ξ) = 0, η(φ(X)) = 0, (2.2)

g(φX, φY ) = g(X,Y )− η(X)η(Y ), (2.3)

g(X,φY ) = −g(φX, Y ). (2.4)

for all vector fields X ,Y on M . If an almost contact metric manifold satisfies

(DXφ)(Y ) = g(φX, Y )ξ − η(Y )φX, (2.5)

then M is called a Kenmotsu manifold [10] . From the above relations , it follows

that

DXξ = X − η(X)ξ, (2.6)

(DXη)(Y ) = g(X,Y )− η(X)η(Y ). (2.7)

Moreover the curvature tensor K and the Ricci tensor S̃ and the Ricci operator Q̃

of the Kenmotsu manifold with respect to the Levi-Civita connection satisfies

K(X,Y )ξ = η(X)Y − η(Y )X, (2.8)

K(ξ,X)Y = η(Y )X − g(X,Y )ξ, (2.9)

K(X, ξ)Y = g(X,Y )ξ − η(Y )X, (2.10)

S̃(φX, φY ) = S̃(X,Y ) + 2nη(X)η(Y ), (2.11)

S̃(X,Y ) = g(Q̃X, Y ) = −2ng(X,Y ). (2.12)

Q̃X = −2nX. (2.13)

S̃(X, ξ) = −2nη(X). (2.14)
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3. Curvature tensor with respect to the quarter-symmetric

non-metric φ-connection

Let (M2n+1, g) be a Kenmotsu Manifold with the Levi-Civita connection D. We

define a linear connection ∇ on M by

∇XY = DXY − η(X)φY + g(X,Y )ξ − η(Y )X − η(X)Y. (3.1)

Using (3.1), the torsion tensor T of M with respect to the connection ∇ is given by

T (X,Y ) = ∇XY −∇Y X − [X,Y ] = η(Y )φX − η(X)φY. (3.2)

A linear connection satisfying (3.2) is called a quarter-symmetric connection.

Further using (3.1), we have

(∇Xg)(Y, Z) = Xg(Y, Z)− g(∇XY, Z)

−g(Y,∇XZ) = 2η(X)g(Y, Z) 6= 0. (3.3)

A linear connection ∇ satisfying (3.2) and (3.3) is called a quarter-symmetric non-

metric connection.

Again using (3.1), it follows that

(∇Xφ)(Y ) = ∇XφY − φ(∇XY ) = 0, (3.4)

A linear connection ∇ define by (3.1) satisfying (3.2), (3.3) and (3.4) is called a

quarter-symmetric non-metric φ-connection.

Conversely, we show that a linear connection ∇ defined on M satisfying (3.2),

(3.3) and (3.4) is given by (3.1).

Let H be a tensor field of type (1, 2) and

∇XY = DXY +H(X,Y ). (3.5)

Then we have

T (X,Y ) = H(X,Y )−H(Y,X). (3.6)

Further using (3.5), it follows that

(∇Xg)(Y, Z) = ∇Xg(Y, Z)− g(∇XY, Z)− g(Y,∇XZ) = −g(H(X,Y ), Z)

−g(Y,H(X,Z)). (3.7)
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From (3.3) and (3.7), we obtain

g(H(X,Y ), Z) + g(Y,H(X,Z)) = −2η(X)g(Y, Z). (3.8)

Also using (3.8) and (3.6), we get

g(T (X,Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X) = 2g(H(X,Y ), Z) + 2η(X)g(Y, Z)

+2η(Y )g(X,Z)− 2η(Z)g(X,Y ).(3.9)

Hence,

g(H(X,Y ), Z) =
1

2
[g(T (X,Y ), Z) + g(T (Z,X), Y ) + g(T (Z, Y ), X)]− η(X)g(Y, Z)

−η(Y )g(X,Z) + η(Z)g(X,Y )(3.10)

Let T ′ be a tensor field of type (1, 2) given by

g(T ′(X,Y ), Z) = g(T (Z,X), Y ). (3.11)

Then

T ′(X,Y ) = g(X,φY )ξ − η(X)φY. (3.12)

From (3.10) we have by using (3.11) and (3.12)

g(H(X,Y ), Z) =
1

2
[g(T (X,Y ), Z) + g(T ′(X,Y ), Y ) + g(T ′(Y,X), X)]− η(X)g(Y, Z)

−η(Y )g(X,Z) + η(Z)g(X,Y ) = −η(X)g(φY, Z)− η(X)g(Y, Z)− η(Y )g(X,Z)

+η(Z)g(X,Y ).(3.13)

Hence,

H(X,Y ) = −η(X)φY − η(X)Y − η(Y )X + g(X,Y )ξ. (3.14)

From (3.5) and (3.14), it follows that

∇XY = DXY − η(X)φY + g(X,Y )ξ − η(Y )X − η(X)Y.

Analogous to the definitions of the curvature tensor of M with respect to the

Levi-Civita connection D, we define the curvature tensor of M with respect to the

quarter-symmetric non-metric φ-connection ∇ by

R(X,Y )Z = ∇X∇Y Z −∇Y ∇XZ −∇[X,Y ]Z, (3.15)

where R be the curvature tensor with respect to the quarter-symmetric non-metric

φ-connection ∇.
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From (3.1) and (3.15), we obtain

R(X,Y )Z = K(X,Y )Z + η(X)(DY φ)(Z) − η(Y )(DXφ)(Z)

+η(X)η(Z)φY − η(Y )η(Z)φX + η(Y )η(Z)X

−η(X)η(Z)Y − η(Y )g(X,φZ)ξ + η(X)g(Y, φZ)ξ

+g(Y, Z)DXξ − g(X,Z)DY ξ + g(Y, Z)η(X)ξ

−g(X,Z)η(Y )ξ − g(Y, Z)X + g(X,Z)Y

−(DXη)(Y )Z + (DY η)(X)Z + (DY η)(X)

−(DXη)(Y )− (DXη)(Y )φZ + (DY η)(X)φZ. (3.16)

Using (2.5), (2.6), (2.7) in (3.16), we have

R(X,Y )Z = K(X,Y )Z + η(Y )η(Z)X − η(X)η(Z)Y + g(Y, Z)X

−g(X,Z)Y. (3.17)

From (3.17), it follows that the curvature tensor R satisfies

R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0, (3.18)

and

R(X,Y )Z = −R(Y,X)Z, (3.19)

which implies that R satisfies the first Bianchi identity and skew-symmetric with

respect to the first two variables with respect to the quarter-symmetric non-metric

φ-connection ∇.

Taking the inner product of (3.17) with W , it follows that

R̃(X,Y, Z,W ) = K̃(X,Y, Z,W ) + η(Y )η(Z)g(X,W )− η(X)η(Z)g(Y,W )

+g(Y, Z)g(X,W )− g(X,Z)g(Y,W ), (3.20)

where R̃(X,Y, Z,W ) = g(R(X,Y )Z,W ) and K̃(X,Y, Z,W ) = g(K(X,Y )Z,W ).

From (3.20) yields,

R̃(X,Y, Z,W ) = −R̃(Y,X,Z,W ), (3.21)

and

R̃(X,Y, Z,W ) = −R̃(X,Y,W,Z). (3.22)

Contracting (3.20) over X and W , we obtain

S(Y, Z) = S̃(Y, Z) + 2nη(Y )η(Z) + 2ng(Y, Z), (3.23)

where S be the Ricci tensor with respect to the quarter-symmetric non-metric φ-

connection ∇.

From (3.23), we have

S(Y, Z) = S(Z, Y ), (3.24)
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And putting Z = ξ in (3.23) and using (2.14), we get

S(Y, ξ) = 2nη(Y ). (3.25)

Again contracting (3.23) over Y and Z, it follows that

r = r̃ + 2n(2n+ 2), (3.26)

where r and r̃ are the scalar curvatures with respect to the quarter-symmetric non-

metric φ-connection ∇ and the Levi-Civita connection D respectively.

From the above discussions we can state as follows:

Theorem 3.1. For a Kenmotsu manifold M with respect to the quarter-symmetric

non-metric φ-connection ∇

(i) The curvature tensor R is given by (3.17),

(ii) The Ricci tensor S is given by (3.23),

(iii) R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0,

(iv) R(X,Y )Z = −R(Y,X)Z,

(v) R̃(X,Y, Z,W ) + R̃(Y,X,Z,W ) = 0,

(vi) R̃(X,Y, Z,W ) + R̃(X,Y,W,Z) = 0,

(vii) S(Y, ξ) = 2nη(Y ),

(viii) r = r̃ + 2n(2n+ 2),

(ix) The Ricci tensor S is symmetric.

4. Kenmotsu manifolds with respect to the quarter-symmetric

non-metric φ-connection ∇ satisfying R.R = 0

Definition 4.1. A Kenmotsu manifold M2n+1, (n > 1) is said to be an Einstein

manifold if its Ricci tensor S̃ of the Levi-Civita connection is of the form

S̃(X,Y ) = ag(X,Y ), (4.1)

where a is a constant on the manifold .

In this section we suppose that the manifold under consideration is semisymmetric

with respect to the quarter-symmetric non-metric φ-connection M2n+1, that is,

(R(X,Y ).R)(U, V )W = 0

Then we have

(R(X,Y ))R(U, V )W −R(R(X,Y )U, V )W −R(U,R(X,Y )V )W

−R(U, V )R(X,Y )W = 0. (4.2)

Putting X = ξ in (4.2), it follows that

R(ξ, Y )R(U, V )W −R(R(ξ, Y )U, V )W −R(U,R(ξ, Y )V )W

−R(U, V )R(ξ, Y )W = 0. (4.3)
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Putting U = ξ in (4.3), we obtain

R(ξ, Y )R(ξ, V )W −R(R(ξ, Y )ξ, V )W −R(ξ, R(ξ, Y )V )W

−R(ξ, V )R(ξ, Y )W = 0. (4.4)

Using (2.8), (2.9), (2.10), (2.1), (2.2) and (3.17) in (4.4), we have

K(Y, V )W = g(Y,W )V − g(V,W )Y. (4.5)

From (4.5), it follows that the manifold is a manifold of constant curvature −1,

that is, the manifold under consideration is locally isometric to the hyperbolic

space Hn(−1).

Conversly if the manifold is a manifold of constant curvature−1, then it is semisym-

metric (K.K=0).

Hence we can state the following:

Theorem 4.1. If a Kenmotsu manifold is semisymmetric with respect to the quarter-

symmetric non-metric φ-connection, then the manifold is semisymmetric with re-

spect to the Levi-Civita connection.

5. Kenmotsu manifolds with respect to the quarter-symmetric

non-metric φ-connection ∇ satisfying R.S = 0

In this section we suppose that the manifold under consideration is Ricci-semisymmetric

with respect to the quarter-symmetric non-metric φ-connection M2n+1, that is,

(R(X,Y ).S)(U, V ) = 0

Then we have

S(R(X,Y )U, V ) + S(U,R(X,Y )V ) = 0. (5.1)

Putting X = ξ in (5.1), it follows that

S(R(ξ, Y )U, V ) + S(U,R(ξ, Y )V ) = 0. (5.2)

Using (2.9), (2.14), (2.1), (2.2) and (3.17) in (5.2), we obtain

η(U)S(Y, V ) + η(V )S(Y, U) = −4nη(U)η(V )η(Y ). (5.3)

Putting U = ξ in (5.3) and using (2.1) and (2.2), we get

S̃(Y, V ) = −2ng(Y, V ). (5.4)
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Therefore , S̃(Y, V ) = ag(Y, V ),

where a = −2n.

This result shows that the manifold is an Einstein manifold.

Conversly if the manifold is an Einstein manifold, then the manifold is Ricci-

semisymmetric (K.S̃ = 0).

Therefore, we can state the following:

Theorem 5.1. If a Kenmotsu manifold is Ricci-semisymmetric with respect to the

quarter-symmetric non-metric φ-connection, then the manifold is Ricci-semisymmetric

with respect to the Levi-Civita connection.

6. Kenmotsu manifolds with respect to the quarter-symmetric

non-metric φ-connection ∇ satisfying S.R = 0

In this section we suppose that the manifold under consideration is satisfied

S.R = 0 with respect to the quarter-symmetric non-metric φ-connection M2n+1,

that is,

(S(X,Y ).R)(U, V )W = 0. (6.1)

This implies

(X ∧S Y )R(U, V )W +R((X ∧S Y )U, V )W +R(U, (X ∧S Y )V )W

+R(U, V )(X ∧S Y )W = 0, (6.2)

where the endomorphism X ∧S Y is defined by

(X ∧S Y )W = S(Y,W )X − S(X,W )Y. (6.3)

Using the above we obtain

S(Y,R(U, V )W )X − S(X,R(U, V )W )Y + S(Y, U)R(X,V )W

−S(X,U)R(Y, V )W + S(Y, V )R(U,X)W − S(X,V )R(U, Y )W

+S(Y,W )R(U, V )X − S(X,W )R(U, V )Y = 0. (6.4)

Putting Y = ξ in (6.4) and using (3.17), (3.25) and (3.23), we get

2nη(R(U, V )W )X − S(X,R(U, V )W )ξ + 2nη(U)R(X,V )W

−S(X,U)[K(ξ, V )W + η(V )η(W )ξ − η(W )V + g(V,W )ξ

−η(W )V ] + 2nη(V )R(U,X)W − S(X,V )[K(U, ξ)W + η(W )U

−η(U)η(W )ξ + η(W )U − g(U,W )ξ] + 2nη(W )R(U, V )X

−S(X,W )[K(U, V )ξ + 2η(V )U − 2η(U)V ] = 0. (6.5)
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Putting U = ξ in (6.5) and using (3.17), (3.25), (2.8), (2.9), (2.10), (2.14)and (3.23),

we have

η(W )S(X,V )ξ + 2nK(X,V )W − 2nη(X)η(W )V

+2ng(V,W )X − 2ng(X,W )V

−η(V )S(X,W )ξ + S(X,W )V = 0. (6.6)

Contracting X in (6.6) and using (2.1), (2.2) and (2.14), we obtain

S̃(V,W ) = −2ng(V,W ). (6.7)

Therefore,

S̃(Y,W ) = ag(Y,W ),

where a = −2n

This result shows that the manifold is an Einstein manifold.

Hence we can state the following theorem:

Theorem 6.1. If a Kenmotsu manifold with respect to the quarter-symmetric non-

metric φ-connection satisfies S.R = 0, then the manifold is an Einstein manifold.

Acknowledgements. The author wishes to express his sincere thanks and grat-

itude to the referee for his valuable suggestions towards the improvement of the

paper.
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