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ON THE ¢-BESSEL FOURIER TRANSFORM

(COMMUNICATED BY R.K RAINA)

LAZHAR DHAOUADI

ABSTRACT. In this work, we are interested by the g-Bessel Fourier transform
with a new approach. Many important results of this g-integral transform are
proved with a new constructive demonstrations and we establish in particular
the associated g-Fourier-Neumen expansion which involves the g-little Jacobi
polynomials.

1. INTRODUCTION

In the recent mathematical literature one finds many articles which deal with the
theory of g-Fourier analysis associated with the g-Hankel transform. This theory
was elaborated first by Koornwinder and R.F. Swarttouw [12] and then by Fitouhi
and Al [5] §].

It should be noticed that in [5] we provided the mains results of g-Fourier analysis
in particular that the ¢-Hankel transform is extended to the L2, space like an
isometric operator. Often we use the crucial properties namely the positivity of the
g-Bessel translation operator to prove some results but these last property is not
ensured for any ¢ in the interval ]0, 1[. Thus, we will prove some main results of g-
Fourier analysis without the positivity argument especially the following statments:
- Inversion Formula in the £, , spaces with p > 1.

- Plancherel Formula in the L4, , N L4,1,, spaces with p > 2.

- Plancherel Formula in the £, 2, spaces.

Note that in the paper [7] we have proved that the positivity of the ¢-Bessel transla-
tion operator is ensured in all points of the interval ]0, 1[ when v > 0. In this article
we will try to show in a clear way the part in which the positivity of the g-Bessel
translation operator plays a role in g-Bessel Fourier analysis. In particular, when
we try to prove a g-version of the Young’s inequality for the associated convolution.

Many interesting result about the uncertainty principle for the g-Bessel transform
was proved in the last years. We cite for examples [2 [3] 4, @]. There are some
differences of the results cited above and our result:
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In this paper the Heisenberg uncertainty inequality is established for functions in
Ly 2, space.

The Hardy’s inequality discuss here is a quantitative uncertainty principles which
give an information about how a function and its g-Bessel Fourier transform are
linked.

In the end of this paper we use the remarkable work in [I] to establish a new result
about the g-Fourier-Neumen expansion involving the ¢-little Jacobi polynomials.

2. THE ¢-BESSEL TRANSFORM

The reader can see the references [10} [T} [I6] about g-series theory. The references
[5, B, T2] are devoted to the g-Bessel Fourier analysis. Throughout this paper, we
consider 0 < ¢ < 1 and v > —1. We denote by

RS ={¢", neZ}.
The g-Bessel operator is defined as follows [5]
1 — v v
Aguf(z) = — [fla™"e) = (1+¢*) (@) + 4" f(qz)]

The eigenfunction of A, , associated with the eigenvalue —\? is the function z
Jjv(Az,q?), where j,(.,¢?) is the normalized g-Bessel function defined by [5] 8| 10,
14, [16]
0 n(n+1)
. 2 n q
Jvlz,q7) = ) (—1 z
( ) Z( ) (@2, )0 (d%, )n

n=0
The ¢-Jackson integral of a function f defined on R is

Amf@m¢=<r—m§j¢7@%.

neZ

2n

We denote by L, ., the space of functions f defined on R;" such that

> 2 1 l/p
|umw—<A uwa”dﬂ) exdist.

We denote by C,,0 the space of functions defined on R;r tending to 0 as z — oo and
continuous at 0 equipped with the topology of uniform convergence. The space Cq o
is complete with respect to the norm

[ fllg,00 = sup |f(x)].

zGRf

The normalized g-Bessel function j, (., ¢?) satisfies the orthogonality relation

C§,y/ Ju(@t, ¢)ju (yt, ) gt = 64(2,y), Yo,y e RS (1)
0
where
Oifx #£y
6 = .
Q(‘Tu y) { (17—(1);2("+1) if r = Y
and

B 1 (q2V+27q2)oo
1-q¢ (¢%¢*)

Cq,v
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Let f be a function defined on R} then

/ FW)dq(w,y)y* dgy = f(x).
0
The normalized g-Bessel function j, (., ¢?) satisfies

(=% ) oo (=02 %) [ 1 ] if n>0
(€®%¢?) 0 g @i <0

The g-Bessel Fourier transform F , is defined by [5} [8, 12]

I, (¢", q%)| <

Fouf(x) = Cq,u/ f(#)gu(at, q2)t2’/+1dqt, Vo € R;r'
0
Proposition 1. Let f € L1, then Fq,f € Cq0 and we have
1F a0 (Fllg00 < Baw |l f]

¢,1v
where
g L (c0%0)x(=¢"" %)
LY 2. 42
q (%5 ¢%)oo
Theorem 1. Let f be a function in the Ly, space where p > 1 then
Fouf =1 (2)

Proof. If f € L4, then F,, f exist, and we have
F2ud@) = cun | FaufOilat, )
0
= / f(y) {c;,j/ Ju(zt, q2)ju(yt’ q2)t2y+1dqt y2”+1dqy
0 0
= / F@)3q(x,y)y*  dgy
0
= f(z)
The computations are justified by the Fubuni’s theorem: If p > 1 then we use the

Holder’s inequality

/ |f(y)] {/ |jv($t7q2)ju(yt,q2)|t2”+1dqt] 2,y
0 0

00 1/p %) B 1/p
< [ / If(y)l”y”“dqy] x [ / U(y)”yz’”*ldqy] :
0 0

The numbers p and p above are conjugates and

o0
oly) = / o at, @) (yt, Nyt
0
then

/ o(y)Py* gy
0

1 o)
- / U(y)pyzwrldqy + / pr92y+1dqy-
0 1
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Note that
1
P, 2v+1
/ a(y)Py™" " dyy
0

1 00
< ||ju(-aq2)||§,oo/0 [/0 |]u(33t q )|t2u+1d t] y2y+ld Y

1
< g s @) G ol (s @) g 0 20 DP UO y2”+1dqy} < 00,

and
/ o(y)Py* gy
1
- [es} y2u+1
< P el P [
. = . e 1
< il oot [ e dan < o
If p=1 then

/0 If @) [/0 |jV(xt7q2)ju(yt,q2)|t2u+ldqt:| vy

1
. 2 . 2
< [ llgawlliv (s a)llg.00llv (5 @) g0 x 22

O

Theorem 2. Let f be a function in the Lg.1,, N Lqp, space, where p > 2 then
1Fqvfllaz = 1 fllg.2.0-

Proof. Let f € Lg1,, N Lgp, then by Theorem [l we see that
Foul = 1.
This implies

/0 quf(513)2332114_1dtﬂj = /0 Fauf(z) |:Cq,1// f(t)jy(xt,q2)t2”+ldqt] 3:2”+1dq33
= /Oof {CqV/ Fa, vf (@) (2t q ) vrly x} t2”+1d t

/ f 2u+1d t.

The computations are justified by the Fubuni’s theorem

[0 ews [Vttt ) |
> Y/ o 1/p
[ o] [ [oopa]

00 = o [ 1Fun S @it )™y,
0

where
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then

Fa @l < cqu [ 1@l )y

Rl 1/p o)
< cqu { / f (y)lpy”“dqy} x { / Iju(:by,q2)|”y2”+ldqy]
0 0
Rl 1/p o) _ 1/p ~
< Cq,v |:/ |f(y)|;0y2u+1dqy:| X |:/ |jy(y, q2)|py2u+ldqy:| $72(u+1)/p
0 0

~2(u+1)/p,

1/p

< cqullfllgpwlliv (-, q2)||q7ﬁ7V33
This gives

(1) < Cz,u||f||q7p7u||jU(-aq2)||q7157u/0 G (at, %) a2+ 2D P g

<@ 1 lamalio (o) lapw [ [ it q2>|w2<"“>/“dqx] F20 0/

< Cyt—2+0/p,

and
o(t) = o / [P f @)1 (at, )™+ dye
= {Cq7U/ | F ,uf(év/t)Hj,,(x,q2)|x2’/+1dqx] 4—2w+1)
0
< Cq,VH]: 7uf”q,oo X |‘ju(,,q2)||q71)y % t72(1/+1)
< O2t72(u+1).
Note that

{ —l< =2+ D+ 20+1 { 0<—2(r+1)(p-2) G l<p<2ops2

2w+ 1)p+20+1< -1 —2(v+1)(p-1)<0

Hence

oo

o0 1
/ '¢<f>lﬁf2”“dqt=/ |G()PE2 gt + / G072 dyt
0 0 1

1 o)
< 01/0 t*2<”+1>5/1”t2”+1dqt+02/1 7202 gt < o0,
which prove the result. O

Theorem 3. Let f be a function in the L4, space then
1Fqvfllaz = 1fllg.2.0-

Proof. We introduce the function ¢, as follows
Va(t) = cquiv(tz, 7).
The inner product (,) in the Hilbert space Ly 2, is defined by
£.9€ Lazu= (L9) = [ TO90Edyt ®)
0

Using () we write
I7£y:> <1/)I’1/}y> =0
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1
¥]l2 2, = — q:cfzmn.
We have
Fawf () = ([, ¢z),
and by Theorem [I]
fE€Ly2w=Fo =1
then
(i) =0,Vo e RF=Fy, f(x) = 0,Ve e Rf=f = 0.
Hence, {¢,x € R}} form an orthogonal basis of the Hilbert space Ly, and we
have

(e, Vo ERS} =Ly0,.

Now
fe€Lysy=>F=) ||w ”2 (f, Ya ),
zerF OBy
and then
111520 = D W N (fre)? = (L=q) Y @ DF f(2)” = 1 Fguf 13 200
sert T 020 zeRt
which achieve the proof. O

Proposition 2. Let f € L;,,, where p > 1 then Fq,f € Lyp.. If 1 <p <2 then

21
||]:q,Vquﬁv < Bjv Hf”qypyl/' (4)
Proof. This is an immediate consequence of Proposition Il Theorem Bl the Riesz-
Thorin theorem and the inversion formula (2I). (]

The g-translation operator is given as follow

T 0 W) = o [ P Ot 2 ot )t
0

Let us now introduce
Qv = {q€]0,1], T,, is positive for all z € R;r}
the set of the positivity of T,/,. We recall that T} is called positive if T}’ f > 0

for f > 0. In a recent paper [6] it was proved that if —1 < v </ then Q, C Q, .
As a consequence :

-+ If 0 < v then @, =|0, 1].
- If =1 < v <0 then ]0, o] C Q_ 1 CQyElo, 1, go~0.43.

- If — 1<V§——thenQyCQ_%

Theorem 4. Let f € Ly, then Ty [ exists and we have

/ Tqy,zf(y)y%“dqy:/ Fy)y*dyy.
0 0
and

/ F(2)Du (2,9, 2)2% Hdy2,
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where
o0
DV(Ia Y, Z) = Cg,u / jy(iES, q2jl/(y57 q2jy(25, q2)52y+1dqs'
0
If we suppose that T/, is a positive operator then for all p > 1 we have

ITqafllapw < [ fllgp.v- (5)

Proof. We write the operator T,/ in the following form

/ Fof (2o 22, )iu(yz, )22 dy
= Fou [Far f(2)hu(x2,6%)] ().

Ty . f(y)

So we have

oo

T [Fauf(2)iv(@2,¢*)] (1)3v (0, 4*)y*  dgy

Cq,/

/O Ty fy)y™ dy = / Faw [Far F(2)iu(x2,6%)] (0)y* T dgy
vz

:—]:2[11

o Fauf(0)

— / f 2v+1dqy

)iv(22,4%)] (0)

On the other hand

T, . f(y)

o0
/ Fau ()i @2, 2 (g2, 42)22 g2

oo oo
= CQ;V/ |:cq,V/ f(t)j,,(tz, q2)t21/+1dqt] Ju(22, q2)ju(yz, q2)z2v+1dqz
0 0

/ [ngu / Ju(xz,q2)ju(yz,q2)ju(tz,q2)z2”+1d¢12] F)Edgt
0 0

| sty s ay
0

The computations are justified by the Fubuni’s theorem

/o [/0 LF O (2, 4°)] tzwrldqt} jv(z2,6%)| 4, (y2, ¢*)| 22 dyz

=

oo o) _
||f||q,p,l,/0 [/0 ‘jy(tz7q2)‘pt2u+1dqt:| i (22,2 [julyz, )| 227 dy2

||f||q,p,uva(wf)Hq,p,,/O (22, )| | (y2, %)) 220V 0-5) "1 2,

IN
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is positive. Given a function f € C4 9 we obtains

| Pasten s
0

Now suppose that T,

iE

Ty fy)| =

< /0 |Dq,y($,y,t)| |f(t)|t2v+1dqt
= |:/0 Dq,y($,y7t)t2v+ldqt:| Hf”q,oo = Hf“q,oo
which implies
1770 f oo < 11400
If the function f € Lg,1,, then we obtains
Tty = [ TEaf@]
= / U | Dy (z,y, )] | f(1)] t2y+1dqt:| Y Hldy
0 0
<

/ { / Dq,,,@,y,t)y?”“dqy] £ Pt
0 0
< / PO gt = | 10

The result is a consequence of the Riesz-Thorin theorem.
Notice that the kernel D, ,(z,y,t) can be written as follows
o0
Dyy(z,y,t) = C§,u/ Ju(@2,¢°)ju (Y2, ¢*)ju(tz, ¢*) 2%+ dyz
0

- Cq7u-7:q7u I:]V(‘,E27q2).71/(yz7q2)} (t)7

which implies

o0
/ Dy (z,y, )t Hd,t
0

/ Fow Lo (02, (92, 4] (Ot
0

= T, lv(@z,6*)iu(yz,0)] (0) = 1.

The g-convolution product is defined by

g9 =FoulFouf X Feugl.

Theorem 5. Let 1< p,r s such that
1 1 1
-4 - = 1=-
p T s

Given two functions f € Ly, and g € Ly, then f x4 g exists and we have

[xqg(z) = cq,u/o Ty . fW)gw)y™ T dgy.

and
f *q g € Eq,s,u'
Fau(f *q 9) = Fau(f) X Fgu(g).

49
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If s > 2 then
1 *a 9llg50 < Baw 1f1lgp N9l g - (6)

If we suppose that T . is a positive operator then

||f *q g||q)s7]j S CQ;V ||f||q,p,1/ ||g||q7r,y . (7)
Proof. We have

frqg(@) = FoulFouf X Faugl(2)

= CW/ Fawf @) < Farwgy)iv(zy, ¢®)y* dgy
0

= cq,l,/ Faufy) x [cw/ Q(Z)jy(zy,q2)22”+1dqz] jolzy, @)y Hdgy
0 0

- C"”’/o [C‘I’”/o Farl (y>jv(zy’qQ)jv(Iy,qQ)yz”“dqy} 9(2)2% A2

— cq)l,/o T;zf(z)g(z)z2”+1dqz.

The computations are justified by the Fubuni’s theorem

/ [Fau f(y)] % [/ lg(2)] % ‘j,j(zy,qQ)] ZQVquz] |j,j(:cy,q2)‘ g2y
0 0

Sl=

o0 o0 —
< ”g”q,nIJ/O [Fguf(y)] x [/0 ‘jy(zy7q2)‘T22V+1qu} ‘jy($y7q2)|y21/+ldqy
o0
< Algllyrn Hj”("qz)Hqi,u/O |Fyuf(y)| x {‘jv(wy,q2)|y_2";2} Y Hldy
o 2v427P P
< Mollg,r 130G g0 1o Flly 5.0 (/ [Uu(wy,qz)}y_ T } y2”+1dqy>
) 1
<

. 0. vy (1-2)—
”g”qmu HJV('7 q2)||q7;)l, ||FQ7l’f||q7ﬁ7y </0 }jy(fﬁy, q2)|10y2( +1)(1 7') 1dqy)
From Proposition 2] we deduce that

Fouf € Lapw and Fgug € Lo

Then, using the Holder inequality and the fact that
1 1 1
—+t=-=
p T

5
to conclude that
Fouvf X Fqug € Lz
Which implies that
frq9=FoulFouf x Fong] € Lsw

and by the inversion formula (2]) we obtain

Faw (f*q 9) = Fguf X Fgug.
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Suppose that s > 2, so 1 <35 < 2 and we can write

||f*q g||q7511/ = ||‘7: sV [‘Fq;l’f X‘F;Vg]Hq”s’y
2
S B‘ISJ/ H]: )Vf||q7ﬁ7y ”]: 7Vg||q7F)1/
2o1pdoi i
< qu’/ qu’/ Bq,u ||f||q,p,1/ ||g||q,r,1/
<

Baw 1£llgpw 19llg.rs -

Now suppose that T/, is a positive operator.
We introduce the operator K as follows

Ky9(e) = con [ TL()ol2)22 1d,
0
By the Holder inequality and (@) we get

||ng||q)oo S CQ;V ||f||q,p,1/ ||g||q,ﬁ7u .
The Minkowski inequality leads to

1K 19l g p0 < Caw [fllgp I9llg1,0 -
Hence we have
K¢ Lyp = Cq0, Kr:iLg1y— Lypu-
Then the operator Ky satisfies
K¢ :Lyry = Lgsy
and

1f *q 9lly s = 1K s9llgs < cqw 1fllgpn 191400 -
(]

Remark 1. We discuss here the sharp results for the Hausdorf-Young inequality
provided above. An inequality already sharper than ([@) is given in formula (7). In
fact we have cq,, < By, .
To obtained (7) without the positivity argument, we can do by using which is a
q-Riemann-Liouville fractional integral generalizing the q-Mehler integral represen-
tation for the q-Bessel function j,(.,q*) which can be proved in a straightforward
way [8]
1242 2
. q t ydq )OO - 2
NG =2 (Tt q ) M, ¢ )td,t
i) = )y [ T P
together with the inequalities for the q-Bessel function which is given as formula
(24) in the paper []
Jo(z;6°) <1, Vz Ry
Combine this formulas we arrive at
v(@:¢*)| <1, Vo eR}), v=>0.

Then the inequalities {{)) can be written as follows

23
| F ,Vf”q,ﬁ,l/ < cgv ||f||q7p7u-

This should give the sharpest version of (@) in the cases v > 0. Unfortunately the
positivity of the operator T, , is satisfied in this case.
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In fact we can prove that if we are in the positivity cases then
70 @] oo < 1-
To prove this recalling that
TY vy, @) = ju (@, ¢*)ju (Y, ¢%).
So we have

o0
/ qul,(:zr, Y, t)jv(ta q2)t2”+1dqt = ju(Ia qz)jV(yv q2)-
0

We obtains for all x,y € R

IN

o0
g, )] % 1iv (v, 4°))| /0 Dy (2, y,t) |5 (t, )| 27+ dyt

IN

|:~/O qu(x’y,t)t%j-i_ldqt ij("q2)||‘b°o ’
The fact that
/ D‘LU(xv Y, t)t2u+1dqt =1
0

implies

1o @) e < Ml @)

q q,00

which gives the result.

3. UNCERTAINTY PRINCIPLE
We introduce two g¢-difference operators

fla"tz) — f(x)

T

aqf(x) =

and

0 F @) = f(@) - flgx)

xT

Then we have
040, f(x) = 0,0, f(x) = Agu f().

Proposition 3. If (0,f,g) exist and lim |a®* T f(g ' a)g(a)| =0 then
a—r o0
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Proof. The following computation

/ 8qf(3:)g(3:):1:2”+1dq3:
/ f q 13333 f( )g(x)xQ”qu:v
_ / fq 195) 2u+1d / f 2u+1dw
_ q21/+1/ f(x)g(q:c 22, ¢ f(:v )o2d,z
0 z x
_ 21/+1 f 33 qg(qZC 2u+ld / f 2v+1dqx+a2”+1f(q71a)g(a)

2u+1
_ / f(z 9 z) g(qx)x%“dqx+a2”+1f(q_1a)g(a)

T
= == [ r@og@ e + 0 g algta)
leads to the result. O
Corollary 1. If f € L2, such that xFy,f € Lg2,, then
194 f Nl = lzFqu fll,-

Proof. In fact we have

10af1l5 = (0af,04f) = —(f.0;04f)
—{(, &g f)
= - <]:q7ufv ]:quq,Vf>
= (Faguf 2 Fouf)
= JaFeufl3,
which prove the result. ([

Theorem 6. Assume that f belongs to the space Lg2,. Then the q-Bessel trans-
form satisfies the following uncertainty principal

1F15 < K I fllo 12 F g £l

where

[L+vaxa™]

= T g
Proof. In fact
Opxf = flx) — ¢ f(qm)

29y f = fla~ ) — f(x).

We introduce the following operator
Aqf(x) = f(qiv),
then
(Agf.g) =q 2T (f, A 1g).
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So

1

10 072 f(z) — ¢* T2 Ag20, f ()] = f(x)

Assume that = f and xF,,, f belongs to the space L4 2,. Then we have

1 1 _
<f7f>:—m@fﬁqﬁ—m<aqf’IAq1f>'

By Cauchy-Schwartz inequality we get

1 1 _
() < T—mrm el 10af Ny + Ty 19af 1z =6 411,

On the other hand
leAg Al = va < a e f s
Corollary [ leads to the result. (I

4. HARDY’S THEOREM

The following Lemma from complex analysis is crucial for the proof of our main
theorem.

Lemma 1. For every p € N, there exist o, > 0 for which
12215, (2,6°)| < apel®l, VzecC.

Proof. In fact

1 —

2p| 2 n(n 1) 2n+2p
z zZ,q < q <

| | |-]V( )| (q27q2) (q2u+2,q2) ZO | |

- gPPtD) iq (n72p71)|z|2n.
T (@07 (@12, 6%) 00 £

Now using the Stirling’s formula
nn
n! ~vV2rn—,
en
we see that there exist an entire ng > p such that

1
n(n—2p—1) Y >
q < (2TL)', n = no,

which implies

oo oo 1
n(n—2p—1)|,2n 2n |z
Z q Pz < Z o) |2]*"* < el®l.

n=ngo n=ngo

Finally there exist o, > 0 such that

|21 1jv (2, 4%

mE <op, VzeCl

This complete the proof. O
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Lemma 2. Let h be an entire function on C such that

Ih(z)] < Ce?’, zec,

h(z)] < Ce ", z€R,
for some positive constants a and C. Then there exist C* € R such
h(z) = Crear”

The reader can see the reference [17] for the proof.

Now we are in a position to state and prove the g-analogue of the Hardy’s theorem
Theorem 7. Suppose f € L41,, satisfying the following estimates
f@)| < Ces, vz R}, (®)

\Fyuf(@)] < Ce 3%, VzeR,

where C is a positive constant. Then there exist A € R such that
f(2) = Acg v Fqu (eféﬁ) (z), VzeC.

Proof. We claim that F, ., f is an analytic function and there exist C’ > 0 such that

\Fauf(z)] < Cle2l?’ vzec.
We have

Fonf(2)] < can / F@)1 (2, )2 dye

From the Lemmalll if |z| > 1 then there exist o; > 0 such that
01

— 1 ¢"Fl vz eR}.
1+ |2% 22 ’ e

. 1 .
', (22, ¢%)| = WWM)%HUV(M"JW <

Then we obtain

00 =% (z—|2])? o 1
[ Fauf(2)] < Corcqn l/ qul’] ezl < Coicqy [/ dqaz} e3lal”,
0 0

1+ |z|2 x2 1+ 22
Now, if |z| < 1 then there exist o3 > 0 such that
2 j (22, 0%)] < 02", Vo € Ry

Therefore
|Fauf(2)] < Cozeq {/OO eézzﬂdqx} < Coscqy {/OO eézzﬂdqx] e2lel”
0 0
which leads to the estimate (§). Using Lemma [2] we obtain
Fouf(z) = comst.ef%zz7 Vz € C,
and by Theorem [I we conclude that
J(2) = const. Fy, (¢747) (2), WzeC.
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Corollary 2. Suppose f € Lq1,, satisfying the following estimates
f(z)] < Ce ", vz eR],

| Fovf(z)] < 06_012, Vz € R,

where C,p,o are a positive constant and po = %. We suppose that there exist

a € R;r such that a’p = % Then there exist A € R such that
f(z) = AcguFqu (e“’t2) (2), VzeC.

Proof. Let a € R, and put
fa(z) = f(az),

then )
Fovfalz) = W]:qyuf(x/a)-
In the end, applying Theorem [7 to the function f,. (]

Corollary 3. Suppose f € L1, satisfying the following estimates
f(@)] < Ce™, VeeRF,

|.7"q71,f(:1:)| < C’e*‘”z’ Vr € R, (9)

where C,p,o are a positive constant and po > +. We suppose that there exist

1
_1 _
a € R} such that a*p = 5. Then f = 0.

Proof. In fact there exists ¢’ < o such that po’ = %. Then the function f satisfying
the estimates of Corollary [ if we replacing o by ¢’. Which implies

Foufz) = const.e“’lmz, vz € R.
On the other hand, f satisfying the estimates (@), then

const.e ™7 *" < 06_012, Vo € R.
This implies F, , f =0, and by Theorem [l we conclude that f = 0. (]

5. THE ¢-FOURIER-NEUMANN EXPANSIONS

The little g-Jacobi polynomials are defined for v, 5 > —1 by [15]

L B qn+V+B+l
Pu(2397,4":q) = 201 ¢ qx ).

qu-‘rl
We define the functions

—n

g

(¥, ¢? 12 ¢%)

Byn(; q2) = quV(n)q_n(UH) (¥H2nt2v g2, qz)zpn@z? q2uu 1; qz)
and )
Jutont1(¢";¢%)
Ton(; q2) = 0g4u(n) nx,,_,_l )
where
1— q2u+4n+2
Ogu(n) = | —F——

1—gq '
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Consider Ly , as an Hilbert space with the inner product

1
o) = [ F@hgla)s® d
0
The g-Paley-Wiener space is defined by
1
PW} = {f € Lyoy: flz) = cqﬂ,/o u(t)ju(xt, @)t T dgt, ue 5;2} :

Proposition 4. PW/ is a closed subspace of L2, and with the inner product
given in (3J) is an Hilbert space.

Proof. In fact, given f € L,2, and let {f,}nen be a sequence of element of PWy
which converge to f in L2-norm. For n € N, there exist u,, € Ly 5 such that

1
Ful2) = o / wn () (t, )P,

Moreover
nlggo l.fn — qu,2-,v =0.
This give
nlggo |‘fq7ufn - quf“q,lu =0,
and then
1 o)
li_)m [/ | Fg v fnlz) — fq,l,f(x)|2x2”+1dqx —|—/ | ,Vf(x)|2x2”+1dqgc =0,

which implies
/ |Fawf (@)?2* gz = 0= Fy o f(z) =0, Vo €RINJ1,+ool.
1
Then f € PW/. O
Proposition 5. We have
Fou(Ton)(@) = Pon(@:a*)x0(2), Vo € R

AS a consequence
1
/ Pu,n(x; q2)PIJ,m(5E; q2)x2y+l dqx = 6n,m'
0

Proof. The following proof is identical to the proof of Lemma 1 in [I]. Using an
identity established in [12} 13]

o0
/ t (0"t 0%) Jo (g ¢7)dgt
0
VRATO=1 2012, %) o
(g1 MOte g2 %)

1A p+0 1—XA+u—0
X 261 ( q q2;"(’]'2 qz; q2m2n+1+)\+9#> , (10)

where n,m € Z and 0, u, A € C such that Re(1 — A+ 6 + u) > 0, 0, u are not equal
to a negative integer and

A+0+1—p)/2, m—n+A+0+1—p)/2

_ (1 _ q)qn()\fl)qt(mfn)# (q
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are not a non-positive integer [13].

To evaluate Fy ,(Jun)(x) when x = ¢™ < 1, we take in (I0)
" =z,u=v,0=v+2n+1,A=0

then

]:qyu(jv,n)(x) = quu(n)

I*l/

i / T (2t 4*) Jyyont1 (g ) dgt
—4qJo

- (n)q—n(u+1>(q2+2"7q2”+2;q2)oo p gt g
v (q2+2n+2u, q2: qz)oo q2v+2

- Pu,n(x; q2)
To evaluate Fy ,(Jy,m)(x) when = ¢" > 1, we consider in (0]

7% qzwz)

"=x,u=v+2m+1,0=v,A=0
In this way, 1 + A + 0 — up = —2m. This gives for m € N a factor
(@*™6%)o0 =0
on the numerator and then
For(Tom)(x) =0, z>1

By setting A =1, 0 =v+2n+1,and py = v+ 2m+ 1 in , it is clear that, for
n,m=20,1,2,...,
o dgx 1
Jvn n;QJvm m;zizianm
/0 +on+1(0" 2 07) Jutami1 (¢ @5 q7) - Ogn(n)2 ™

and then -

/ ju,n(x;QQ)ju,m(x;q2) $2U+1dq$ = 5n,m-

0

Now we use the arguments of ¢-Bessel Fourier analysis provided in this paper to
show that

<Pv,nX[0,1]7Pv,mX[0,1]> = <]:q,u(~7v,n)a]:q,V(u7v,m)> = <t7u,n7jl/,m> = On,m- (11)
Another proof of the orthogonality of the little g-Jacobi polynomials can be found
in [15] (]
Proposition 6. The systems

{TontnZo: {Puntnio

forme two orthonormals basis respectively of the Hilbert spaces PW," and LY 5.

Proof. From () we derive the orthonormality. To prove that the system {7, }72 ¢
is complet in PW/, given a function f € PW7 such that
(fyTom) =0, ¥YneN.
Then
(Fau () Fou(Tum)) =0, VneN,
which implies
<]:q,U(f)7 PV,nX[O,1]> = <]:q,1/(f)X[O,1]uPu,n> = <]:q,u(f)u Pu,n> = 07 vn € N.
From the definition of the polynomial P, , we conclude that

(Fau(f)t™*) =0, VneN.
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Then
e n(n+1)
n q 2n 2n +
cyg -1 Fou(f),t"") ™ =0, VaxeR],
: n:O( ) (q2,q2)n(q2”+2,q2)n< awf) > !

which can be written as
2 _ +
Foo(f)x) =0, VreR).

By the inversion formula (2) we conclude that f = 0. From (1) we derive the
orthonormality. To prove that the system {P,,}52, is complet in Ly 5, given a
function f € Ly 5 such that

(fIPom)y =0, ¥neN
Then
<f|t2”>:(), Vn € N.
Which leads to the result. O

Proposition 7. Let A € R} then
Cawdv(AT50%) Zj" v(N @) Pou(z), Vo €[0,1]NR}.

As a consequence we have

oo 2—2+1)

> [Po(z:q?)]” = — Vo € [0,1]NRY
n=0

and for all X € R}

oo v

S [Funig®)]” = WG—ZW

n=0
A
X |:5Ju+1(>‘;q2)‘]z//(>‘/‘ﬁq2) — St NPV N @) = T () L (N a6 | -

Proof. Let A € R and consider the function
Va0, NRS 5 R, @ cquiv(Az; ¢°).

Then ¢y € L] , and we can write

o0

Ua(@) =Y (UrlPos) Pan(z), Vo €[0,1]NR]. (12)

n=0
Note that

<¢)\|Pn,1/> <¢)\u n,vX[0 1]> <¢)\7 (jn l/)> = 'F(iy(j’ﬂﬂl)()\) = jn,l/()\; q2)-
Then we deduce the result. Using the Parseval’s theorem and (IZ) we obtain

oo LL'_2(U+1)
ngo [Pn,u(UC;QQ)] = ¢l ., = 1-4

The second identity is deduced also from the Parseval’s theorem

oo

Z [jn,u(Aaq2)} qu2(w>\)

n=0
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and the following relation proved in [I4]

(1]
2]
3]

[4]

[5]
[6]
[7]
(8]
[9]
(10]
(1]
(12]
(13]
(14]
(15]
(16]

(17]

! 1—q)g"!
lagt: )2t = LT D
/0 (], (agt; ¢*)] " td, o

X [aJqul(GQ; ) J(a:¢?) — Jus1(aq; ¢°) Ty (a; ) — J), 4 (aq; ¢°) T, (a; qz)}-
0
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