Bulletin of Mathematical Analysis and Applications ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 5 Issue 2 (2013), Pages 42-60.

ON THE q-BESSEL FOURIER TRANSFORM

(COMMUNICATED BY R.K RAINA)

LAZHAR DHAOUADI

ABSTRACT. In this work, we are interested by the q-Bessel Fourier transform with a new approach. Many important results of this q-integral transform are proved with a new constructive demonstrations and we establish in particular the associated q-Fourier-Neumen expansion which involves the q-little Jacobi polynomials.

1. Introduction

In the recent mathematical literature one finds many articles which deal with the theory of q-Fourier analysis associated with the q-Hankel transform. This theory was elaborated first by Koornwinder and R.F. Swarttouw [12] and then by Fitouhi and Al [5, 8].

It should be noticed that in [5] we provided the mains results of q-Fourier analysis in particular that the q-Hankel transform is extended to the $\mathcal{L}_{q,2,\nu}$ space like an isometric operator. Often we use the crucial properties namely the positivity of the q-Bessel translation operator to prove some results but these last property is not ensured for any q in the interval]0,1[. Thus, we will prove some main results of q-Fourier analysis without the positivity argument especially the following statments:

- Inversion Formula in the $\mathcal{L}_{q,p,\nu}$ spaces with $p \geq 1$.
- Plancherel Formula in the $\mathcal{L}_{q,p,\nu} \cap \mathcal{L}_{q,1,\nu}$ spaces with p > 2.
- Plancherel Formula in the $\mathcal{L}_{q,2,\nu}$ spaces.

Note that in the paper [7] we have proved that the positivity of the q-Bessel translation operator is ensured in all points of the interval]0,1[when $\nu \geq 0$. In this article we will try to show in a clear way the part in which the positivity of the q-Bessel translation operator plays a role in q-Bessel Fourier analysis. In particular, when we try to prove a q-version of the Young's inequality for the associated convolution.

Many interesting result about the uncertainty principle for the q-Bessel transform was proved in the last years. We cite for examples [2, 3, 4, 9]. There are some differences of the results cited above and our result:

 $^{^{\}rm 0}$ 2000 Mathematics Subject Classification: Primary 33D15,47A05.

Keywords and phrases. q-Bessel Fourier transform, Heisenberg uncertainty inequality, Hardys inequality, q-Fourier-Neumen expansion.

Submitted 29 Oct 2012. Published March 29, 2013.

In this paper the Heisenberg uncertainty inequality is established for functions in $\mathcal{L}_{q,2,\nu}$ space.

The Hardy's inequality discuss here is a quantitative uncertainty principles which give an information about how a function and its q-Bessel Fourier transform are linked.

In the end of this paper we use the remarkable work in [1] to establish a new result about the q-Fourier-Neumen expansion involving the q-little Jacobi polynomials.

2. The q-Bessel transform

The reader can see the references [10, 11, 16] about q-series theory. The references [5, 8, 12] are devoted to the q-Bessel Fourier analysis. Throughout this paper, we consider 0 < q < 1 and $\nu > -1$. We denote by

$$\mathbb{R}_q^+ = \{q^n, n \in \mathbb{Z}\}.$$

The q-Bessel operator is defined as follows [5]

$$\Delta_{q,\nu} f(x) = \frac{1}{r^2} \left[f(q^{-1}x) - (1+q^{2\nu})f(x) + q^{2\nu}f(qx) \right].$$

The eigenfunction of $\Delta_{q,\nu}$ associated with the eigenvalue $-\lambda^2$ is the function $x \mapsto j_{\nu}(\lambda x, q^2)$, where $j_{\nu}(., q^2)$ is the normalized q-Bessel function defined by [5, 8, 10, 14, 16]

$$j_{\nu}(x,q^2) = \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n+1)}}{(q^{2\nu+2},q^2)_n (q^2,q^2)_n} x^{2n}.$$

The q-Jackson integral of a function f defined on \mathbb{R}^+ is

$$\int_0^\infty f(t)d_qt = (1-q)\sum_{n\in\mathbb{Z}} q^n f(q^n).$$

We denote by $\mathcal{L}_{q,p,\nu}$ the space of functions f defined on \mathbb{R}^+ such that

$$||f||_{q,p,\nu} = \left(\int_0^\infty |f(x)|^p x^{2\nu+1} d_q x\right)^{1/p} \text{ exist.}$$

We denote by $C_{q,0}$ the space of functions defined on \mathbb{R}_q^+ tending to 0 as $x \to \infty$ and continuous at 0 equipped with the topology of uniform convergence. The space $C_{q,0}$ is complete with respect to the norm

$$||f||_{q,\infty} = \sup_{x \in \mathbb{R}^+} |f(x)|.$$

The normalized q-Bessel function $j_{\nu}(.,q^2)$ satisfies the orthogonality relation

$$c_{q,\nu}^2 \int_0^\infty j_{\nu}(xt, q^2) j_{\nu}(yt, q^2) t^{2\nu+1} d_q t = \delta_q(x, y), \quad \forall x, y \in \mathbb{R}_q^+$$
 (1)

where

$$\delta_q(x,y) = \begin{cases} 0 \text{ if } x \neq y \\ \frac{1}{(1-q)x^{2(\nu+1)}} \text{ if } x = y \end{cases}$$

and

$$c_{q,\nu} = \frac{1}{1-q} \frac{(q^{2\nu+2}, q^2)_{\infty}}{(q^2, q^2)_{\infty}}.$$

Let f be a function defined on \mathbb{R}_q^+ then

$$\int_0^\infty f(y)\delta_q(x,y)y^{2\nu+1}d_qy = f(x).$$

The normalized q-Bessel function $j_{\nu}(.,q^2)$ satisfies

$$|j_{\nu}(q^n, q^2)| \le \frac{(-q^2; q^2)_{\infty}(-q^{2\nu+2}; q^2)_{\infty}}{(q^{2\nu+2}; q^2)_{\infty}} \begin{cases} 1 & \text{if } n \ge 0\\ q^{n^2 - (2\nu+1)n} & \text{if } n < 0 \end{cases}$$

The q-Bessel Fourier transform $\mathcal{F}_{q,\nu}$ is defined by [5, 8, 12]

$$\mathcal{F}_{q,\nu}f(x) = c_{q,\nu} \int_0^\infty f(t) j_{\nu}(xt, q^2) t^{2\nu+1} d_q t, \quad \forall x \in \mathbb{R}_q^+.$$

Proposition 1. Let $f \in \mathcal{L}_{q,1,\nu}$ then $\mathcal{F}_{q,\nu}f \in \mathcal{C}_{q,0}$ and we have

$$\|\mathcal{F}_{q,\nu}(f)\|_{q,\infty} \le B_{q,\nu} \|f\|_{q,1,\nu}$$

where

$$B_{q,\nu} = \frac{1}{1-q} \frac{(-q^2; q^2)_{\infty} (-q^{2\nu+2}; q^2)_{\infty}}{(q^2; q^2)_{\infty}}.$$

Theorem 1. Let f be a function in the $\mathcal{L}_{q,p,\nu}$ space where $p \geq 1$ then

$$\mathcal{F}_{q,\nu}^2 f = f. \tag{2}$$

Proof. If $f \in \mathcal{L}_{q,p,\nu}$ then $\mathcal{F}_{q,\nu}f$ exist, and we have

$$\mathcal{F}_{q,\nu}^{2} f(x) = c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu} f(t) j_{\nu}(xt, q^{2}) t^{2\nu+1} d_{q} t$$

$$= \int_{0}^{\infty} f(y) \left[c_{q,\nu}^{2} \int_{0}^{\infty} j_{\nu}(xt, q^{2}) j_{\nu}(yt, q^{2}) t^{2\nu+1} d_{q} t \right] y^{2\nu+1} d_{q} y$$

$$= \int_{0}^{\infty} f(y) \delta_{q}(x, y) y^{2\nu+1} d_{q} y$$

$$= f(x).$$

The computations are justified by the Fubuni's theorem: If p>1 then we use the Hölder's inequality

$$\begin{split} &\int_0^\infty |f(y)| \left[\int_0^\infty |j_\nu(xt,q^2)j_\nu(yt,q^2)| t^{2\nu+1} d_q t \right] y^{2\nu+1} d_q y \\ &\leq \left[\int_0^\infty |f(y)|^p y^{2\nu+1} d_q y \right]^{1/p} \times \left[\int_0^\infty \sigma(y)^{\overline{p}} y^{2\nu+1} d_q y \right]^{1/\overline{p}}. \end{split}$$

The numbers p and \overline{p} above are conjugates and

$$\sigma(y) = \int_0^\infty |j_{\nu}(xt, q^2)j_{\nu}(yt, q^2)|t^{2\nu+1}d_qt,$$

then

$$\begin{split} &\int_0^\infty \sigma(y)^{\overline{p}} y^{2\nu+1} d_q y \\ &= \int_0^1 \sigma(y)^{\overline{p}} y^{2\nu+1} d_q y + \int_1^\infty \sigma y^{\overline{p}} y^{2\nu+1} d_q y. \end{split}$$

Note that

$$\begin{split} & \int_{0}^{1} \sigma(y)^{\overline{p}} y^{2\nu+1} d_{q} y \\ & \leq \|j_{\nu}(.,q^{2})\|_{q,\infty}^{\overline{p}} \int_{0}^{1} \left[\int_{0}^{\infty} |j_{\nu}(xt,q^{2})| t^{2\nu+1} d_{q} t \right]^{\overline{p}} y^{2\nu+1} d_{q} y \\ & \leq \|j_{\nu}(.,q^{2})\|_{q,\infty}^{\overline{p}} \|j_{\nu}(.,q^{2})\|_{q,1,\nu}^{\overline{p}} x^{-2(\nu+1)\overline{p}} \left[\int_{0}^{1} y^{2\nu+1} d_{q} y \right] < \infty, \end{split}$$

and

$$\int_{1}^{\infty} \sigma(y)^{\overline{p}} y^{2\nu+1} d_{q} y
\leq \|j_{\nu}(.,q^{2})\|_{q,\infty}^{\overline{p}} \|j_{\nu}(.,q^{2})\|_{q,1,\nu}^{\overline{p}} \int_{1}^{\infty} \frac{y^{2\nu+1}}{y^{2(\nu+1)\overline{p}}} d_{q} y
\leq \|j_{\nu}(.,q^{2})\|_{q,\infty}^{\overline{p}} \|j_{\nu}(.,q^{2})\|_{q,1,\nu}^{\overline{p}} \int_{1}^{\infty} \frac{1}{y^{2(\nu+1)(\overline{p}-1)+1}} d_{q} y < \infty.$$

If p = 1 then

$$\int_0^\infty ||f(y)|| \left[\int_0^\infty |j_{\nu}(xt, q^2)j_{\nu}(yt, q^2)|t^{2\nu+1}d_q t \right] y^{2\nu+1}d_q y$$

$$\leq ||f||_{q,1,\nu} ||j_{\nu}(., q^2)||_{q,\infty} ||j_{\nu}(., q^2)||_{q,1,\nu} \times \frac{1}{x^{2(\nu+1)}}.$$

Theorem 2. Let f be a function in the $\mathcal{L}_{q,1,\nu} \cap \mathcal{L}_{q,p,\nu}$ space, where p > 2 then

$$\|\mathcal{F}_{q,\nu}f\|_{q,2,\nu} = \|f\|_{q,2,\nu}.$$

Proof. Let $f \in \mathcal{L}_{q,1,\nu} \cap \mathcal{L}_{q,p,\nu}$ then by Theorem 1 we see that

$$\mathcal{F}_{a,\nu}^2 f = f.$$

This implies

$$\begin{split} \int_0^\infty \mathcal{F}_{q,\nu} f(x)^2 x^{2\nu+1} d_q x &= \int_0^\infty \mathcal{F}_{q,\nu} f(x) \left[c_{q,\nu} \int_0^\infty f(t) j_{\nu}(xt,q^2) t^{2\nu+1} d_q t \right] x^{2\nu+1} d_q x \\ &= \int_0^\infty f(t) \left[c_{q,\nu} \int_0^\infty \mathcal{F}_{q,\nu} f(x) j_{\nu}(xt,q^2) x^{2\nu+1} d_q x \right] t^{2\nu+1} d_q t \\ &= \int_0^\infty f(t)^2 t^{2\nu+1} d_q t. \end{split}$$

The computations are justified by the Fubuni's theorem

$$\begin{split} & \int_0^\infty |f(t)| \left[c_{q,\nu} \int_0^\infty |\mathcal{F}_{q,\nu} f(x)| |j_{\nu}(xt,q^2)| x^{2\nu+1} d_q x \right] t^{2\nu+1} d_q t \\ & \leq \left[\int_0^\infty |f(t)|^p t^{2\nu+1} d_q t \right]^{1/p} \times \left[\int_0^\infty |\phi(t)|^{\overline{p}} t^{2\nu+1} d_q t \right]^{1/\overline{p}}, \end{split}$$

where

$$\phi(t) = c_{q,\nu} \int_0^\infty |\mathcal{F}_{q,\nu} f(x)| |j_{\nu}(xt,q^2)| x^{2\nu+1} d_q x,$$

then

$$\begin{split} \|\mathcal{F}_{q,\nu}f(x)\| &\leq c_{q,\nu} \int_{0}^{\infty} |f(y)| |j_{\nu}(xy,q^{2})|y^{2\nu+1}d_{q}y \\ &\leq c_{q,\nu} \left[\int_{0}^{\infty} |f(y)|^{p}y^{2\nu+1}d_{q}y \right]^{1/p} \times \left[\int_{0}^{\infty} |j_{\nu}(xy,q^{2})|^{\overline{p}}y^{2\nu+1}d_{q}y \right]^{1/\overline{p}} \\ &\leq c_{q,\nu} \left[\int_{0}^{\infty} |f(y)|^{p}y^{2\nu+1}d_{q}y \right]^{1/p} \times \left[\int_{0}^{\infty} |j_{\nu}(y,q^{2})|^{\overline{p}}y^{2\nu+1}d_{q}y \right]^{1/\overline{p}} x^{-2(\nu+1)/\overline{p}} \\ &\leq c_{q,\nu} \|f\|_{q,p,\nu} \|j_{\nu}(.,q^{2})\|_{q,\overline{p},\nu} x^{-2(\nu+1)/\overline{p}}. \end{split}$$

This gives

$$\phi(t) \leq c_{q,\nu}^2 \|f\|_{q,p,\nu} \|j_{\nu}(.,q^2)\|_{q,\overline{p},\nu} \int_0^\infty |j_{\nu}(xt,q^2)| x^{(2\nu+1)-2(\nu+1)/\overline{p}} d_q x$$

$$\leq c_{q,\nu}^2 \|f\|_{q,p,\nu} \|j_{\nu}(.,q^2)\|_{q,\overline{p},\nu} \left[\int_0^\infty |j_{\nu}(x,q^2)| x^{2(\nu+1)/p-1} d_q x \right] t^{-2(\nu+1)/p}$$

$$\leq C_1 t^{-2(\nu+1)/p},$$

and

$$\phi(t) = c_{q,\nu} \int_0^\infty |\mathcal{F}_{q,\nu} f(x)| |j_{\nu}(xt, q^2)| x^{2\nu+1} d_q x$$

$$= \left[c_{q,\nu} \int_0^\infty |\mathcal{F}_{q,\nu} f(x/t)| |j_{\nu}(x, q^2)| x^{2\nu+1} d_q x \right] t^{-2(\nu+1)}$$

$$\leq c_{q,\nu} \|\mathcal{F}_{q,\nu} f\|_{q,\infty} \times \|j_{\nu}(., q^2)\|_{q,1,\nu} \times t^{-2(\nu+1)}$$

$$\leq C_2 t^{-2(\nu+1)}.$$

Note that

$$\left\{ \begin{array}{ll} -1<-2(\nu+1)\frac{\overline{p}}{p}+2\nu+1 \\ -2(\nu+1)\overline{p}+2\nu+1<-1 \end{array} \right. \Leftrightarrow \left\{ \begin{array}{ll} 0<-2(\nu+1)(\overline{p}-2) \\ -2(\nu+1)(\overline{p}-1)<0 \end{array} \right. \Leftrightarrow 1<\overline{p}<2 \Leftrightarrow p>2.$$

Hence

$$\begin{split} \int_0^\infty |\phi(t)|^{\overline{p}} t^{2\nu+1} d_q t &= \int_0^1 |\phi(t)|^{\overline{p}} t^{2\nu+1} d_q t + \int_1^\infty |\phi(t)|^{\overline{p}} t^{2\nu+1} d_q t \\ &\leq C_1 \int_0^1 t^{-2(v+1)\overline{p}/p} t^{2\nu+1} d_q t + C_2 \int_1^\infty t^{-2(v+1)\overline{p}} t^{2\nu+1} d_q t < \infty, \end{split}$$

which prove the result.

Theorem 3. Let f be a function in the $\mathcal{L}_{q,2,\nu}$ space then

$$\|\mathcal{F}_{q,\nu}f\|_{q,2,\nu} = \|f\|_{q,2,\nu}.$$

Proof. We introduce the function ψ_x as follows

$$\psi_x(t) = c_{q,\nu} j_{\nu}(tx, q^2).$$

The inner product \langle , \rangle in the Hilbert space $\mathcal{L}_{q,2,\nu}$ is defined by

$$f, g \in \mathcal{L}_{q,2,\nu} \Rightarrow \langle f, g \rangle = \int_0^\infty f(t)g(t)t^{2\nu+1}d_qt.$$
 (3)

Using (1) we write

$$x \neq y \Rightarrow \langle \psi_x, \psi_y \rangle = 0$$

$$\|\psi_x\|_{q,2,\nu}^2 = \frac{1}{1-q} x^{-2(\nu+1)}.$$

We have

$$\mathcal{F}_{q,\nu}f(x) = \langle f, \psi_x \rangle,$$

and by Theorem 1

$$f \in \mathcal{L}_{q,2,\nu} \Rightarrow \mathcal{F}_{q,\nu}^2 f = f,$$

then

$$\langle f, \psi_x \rangle = 0, \forall x \in \mathbb{R}_q^+ \Rightarrow \mathcal{F}_{q,\nu} f(x) = 0, \forall x \in \mathbb{R}_q^+ \Rightarrow f = 0.$$

Hence, $\{\psi_x, x \in \mathbb{R}_q^+\}$ form an orthogonal basis of the Hilbert space $\mathcal{L}_{q,2,\nu}$ and we have

$$\overline{\{\psi_x, \quad \forall x \in \mathbb{R}_q^+\}} = \mathcal{L}_{q,2,\nu}.$$

Now

$$f \in \mathcal{L}_{q,2,\nu} \Rightarrow f = \sum_{x \in \mathbb{R}^+_+} \frac{1}{\|\psi_x\|_{q,2,\nu}^2} \langle f, \psi_x \rangle \psi_x,$$

and then

$$||f||_{q,2,\nu}^2 = \sum_{x \in \mathbb{R}_n^+} \frac{1}{||\psi_x||_{q,2,\nu}^2} \langle f, \psi_x \rangle^2 = (1-q) \sum_{x \in \mathbb{R}_n^+} x^{2(\nu+1)} \mathcal{F}_{q,\nu} f(x)^2 = ||\mathcal{F}_{q,\nu} f||_{q,2,\nu}^2,$$

which achieve the proof.

Proposition 2. Let $f \in \mathcal{L}_{q,p,\nu}$ where $p \geq 1$ then $\mathcal{F}_{q,\nu}f \in \mathcal{L}_{q,\overline{p},\nu}$. If $1 \leq p \leq 2$ then

$$\|\mathcal{F}_{q,\nu}f\|_{q,\overline{p},\nu} \le B_{q,\nu}^{\frac{2}{p}-1} \|f\|_{q,p,\nu}.$$
 (4)

Proof. This is an immediate consequence of Proposition 1, Theorem 3, the Riesz-Thorin theorem and the inversion formula (2).

The q-translation operator is given as follow

$$T_{q,x}^{\nu}f(y) = c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu}f(t)j_{\nu}(yt,q^{2})j_{\nu}(xt,q^{2})t^{2\nu+1}d_{q}t.$$

Let us now introduce

$$Q_{\nu} = \{q \in]0,1[, \quad T_{q,x}^{\nu} \quad \text{is positive for all} \quad x \in \mathbb{R}_q^+\}$$

the set of the positivity of $T^{\nu}_{q,x}$. We recall that $T^{\nu}_{q,x}$ is called positive if $T^{\nu}_{q,x}f \geq 0$ for $f \geq 0$. In a recent paper [6] it was proved that if $-1 < \nu < \nu'$ then $Q_{\nu} \subset Q_{\nu'}$. As a consequence:

- -: If $0 \le \nu$ then $Q_{\nu} =]0, 1[$.
- -: If $-\frac{1}{2} \le \nu < 0$ then $]0, q_0] \subset Q_{-\frac{1}{2}} \subset Q_{\nu} \subsetneq]0, 1[, q_0 \simeq 0.43.$
- -: If $-1 < \nu \le -\frac{1}{2}$ then $Q_{\nu} \subset Q_{-\frac{1}{2}}$.

Theorem 4. Let $f \in \mathcal{L}_{q,p,\nu}$ then $T_{q,x}^{\nu}f$ exists and we have

$$\int_0^\infty T_{q,x}^{\nu} f(y) y^{2\nu+1} d_q y = \int_0^\infty f(y) y^{2\nu+1} d_q y.$$

and

$$T_{q,x}^{\nu}f(y) = \int_0^{\infty} f(z)D_{\nu}(x,y,z)z^{2\nu+1}d_qz,$$

where

$$D_{\nu}(x,y,z) = c_{q,\nu}^2 \int_0^\infty j_{\nu}(xs,q^2j_{\nu}(ys,q^2j_{\nu}(zs,q^2)s^{2\nu+1}d_qs.$$

If we suppose that $T_{q,x}^{\nu}$ is a positive operator then for all $p \geq 1$ we have

$$||T_{q,x}^{\nu}f||_{q,p,\nu} \le ||f||_{q,p,\nu}. \tag{5}$$

Proof. We write the operator $T_{q,x}^{\nu}$ in the following form

$$T_{q,x}^{\nu}f(y) = c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu}f(z)j_{\nu}(xz,q^{2})j_{\nu}(yz,q^{2})z^{2\nu+1}d_{q}z$$
$$= \mathcal{F}_{q,\nu}\left[\mathcal{F}_{q,\nu}f(z)j_{\nu}(xz,q^{2})\right](y).$$

So we have

$$\int_{0}^{\infty} T_{q,x}^{\nu} f(y) y^{2\nu+1} d_{q} y = \int_{0}^{\infty} \mathcal{F}_{q,\nu} \left[\mathcal{F}_{q,\nu} f(z) j_{\nu}(xz, q^{2}) \right] (y) y^{2\nu+1} d_{q} y
= \frac{1}{c_{q,\nu}} c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu} \left[\mathcal{F}_{q,\nu} f(z) j_{\nu}(xz, q^{2}) \right] (y) j_{\nu}(0, q^{2}) y^{2\nu+1} d_{q} y
= \frac{1}{c_{q,\nu}} \mathcal{F}_{q,\nu}^{2} \left[\mathcal{F}_{q,\nu} f(z) j_{\nu}(xz, q^{2}) \right] (0)
= \frac{1}{c_{q,\nu}} \mathcal{F}_{q,\nu} f(0)
= \int_{0}^{\infty} f(y) y^{2\nu+1} d_{q} y.$$

On the other hand

$$\begin{split} T^{\nu}_{q,x}f(y) &= c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu}f(z)j_{\nu}(xz,q^{2})j_{\nu}(yz,q^{2})z^{2\nu+1}d_{q}z \\ &= c_{q,\nu} \int_{0}^{\infty} \left[c_{q,\nu} \int_{0}^{\infty} f(t)j_{\nu}(tz,q^{2})t^{2\nu+1}d_{q}t\right]j_{\nu}(xz,q^{2})j_{\nu}(yz,q^{2})z^{2\nu+1}d_{q}z \\ &= \int_{0}^{\infty} \left[c_{q,\nu}^{2} \int_{0}^{\infty} j_{\nu}(xz,q^{2})j_{\nu}(yz,q^{2})j_{\nu}(tz,q^{2})z^{2\nu+1}d_{q}z\right]f(t)t^{2\nu+1}d_{q}t \\ &= \int_{0}^{\infty} D_{q,\nu}(x,y,t)f(t)t^{2\nu+1}d_{q}t. \end{split}$$

The computations are justified by the Fubuni's theorem

$$\begin{split} & \int_{0}^{\infty} \left[\int_{0}^{\infty} |f(t)| \left| j_{\nu}(tz,q^{2}) \right| t^{2\nu+1} d_{q}t \right] \left| j_{v}(xz,q^{2}) \right| \left| j_{\nu}(yz,q^{2}) \right| z^{2\nu+1} d_{q}z \\ & \leq & \left\| f \right\|_{q,p,\nu} \int_{0}^{\infty} \left[\int_{0}^{\infty} \left| j_{\nu}(tz,q^{2}) \right|^{\overline{p}} t^{2\nu+1} d_{q}t \right]^{\frac{1}{\overline{p}}} \left| j_{\nu}(xz,q^{2}) \right| \left| j_{v}(yz,q^{2}) \right| z^{2\nu+1} d_{q}z \\ & \leq & \left\| f \right\|_{q,p,\nu} \left\| j_{\nu}(.,q^{2}) \right\|_{q,\overline{p},\nu} \int_{0}^{\infty} \left| j_{\nu}(xz,q^{2}) \right| \left| j_{\nu}(yz,q^{2}) \right| z^{2(\nu+1)\left(1-\frac{1}{\overline{p}}\right)-1} d_{q}z. \end{split}$$

Now suppose that $T_{q,x}^{\nu}$ is positive. Given a function $f \in \mathcal{C}_{q,0}$ we obtains

$$\begin{split} \left| T_{q,x}^{\nu} f(y) \right| &= \left| \int_{0}^{\infty} D_{q,\nu}(x,y,t) f(t) t^{2\nu+1} d_{q} t \right| \\ &\leq \int_{0}^{\infty} \left| D_{q,\nu}(x,y,t) \right| \left| f(t) \right| t^{2\nu+1} d_{q} t \\ &\leq \left[\int_{0}^{\infty} D_{q,\nu}(x,y,t) t^{2\nu+1} d_{q} t \right] \left\| f \right\|_{q,\infty} = \left\| f \right\|_{q,\infty} \end{split}$$

which implies

$$\left\|T_{q,x}^{\nu}f\right\|_{q,\infty}\leq \left\|f\right\|_{q,\infty}.$$

If the function $f \in \mathcal{L}_{q,1,\nu}$ then we obtains

$$\begin{split} \left\| T_{q,x}^{\nu} f \right\|_{q,1,\nu} &= \int_{0}^{\infty} \left| T_{q,x}^{\nu} f(y) \right| y^{2\nu+1} d_{q} y \\ &\leq \int_{0}^{\infty} \left[\int_{0}^{\infty} \left| D_{q,\nu}(x,y,t) \right| \left| f(t) \right| t^{2\nu+1} d_{q} t \right] y^{2\nu+1} d_{q} y \\ &\leq \int_{0}^{\infty} \left[\int_{0}^{\infty} D_{q,\nu}(x,y,t) y^{2\nu+1} d_{q} y \right] \left| f(t) \right| t^{2\nu+1} d_{q} t \\ &\leq \int_{0}^{\infty} \left| f(t) \right| t^{2\nu+1} d_{q} t = \| f \|_{q,1,\nu} \, . \end{split}$$

The result is a consequence of the Riesz-Thorin theorem.

Notice that the kernel $D_{q,\nu}(x,y,t)$ can be written as follows

$$\begin{array}{lcl} D_{q,\nu}(x,y,t) & = & c_{q,\nu}^2 \int_0^\infty j_\nu(xz,q^2) j_\nu(yz,q^2) j_\nu(tz,q^2) z^{2\nu+1} d_q z \\ \\ & = & c_{q,\nu} \mathcal{F}_{q,\nu} \left[j_\nu(xz,q^2) j_\nu(yz,q^2) \right](t), \end{array}$$

which implies

$$\int_{0}^{\infty} D_{q,\nu}(x,y,t) t^{2\nu+1} d_{q}t = c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu} \left[j_{\nu}(xz,q^{2}) j_{\nu}(yz,q^{2}) \right] (t) t^{2\nu+1} d_{q}t$$
$$= \mathcal{F}_{q,\nu}^{2} \left[j_{\nu}(xz,q^{2}) j_{\nu}(yz,q^{2}) \right] (0) = 1.$$

The q-convolution product is defined by

$$f *_{q} g = \mathcal{F}_{q,\nu} \left[\mathcal{F}_{q,\nu} f \times \mathcal{F}_{q,\nu} g \right].$$

Theorem 5. Let $1 \le p, r, s$ such that

$$\frac{1}{n} + \frac{1}{r} - 1 = \frac{1}{s}$$

Given two functions $f \in \mathcal{L}_{q,p,\nu}$ and $g \in \mathcal{L}_{q,r,\nu}$ then $f *_q g$ exists and we have

$$f *_q g(x) = c_{q,\nu} \int_0^\infty T_{q,x}^{\nu} f(y)g(y)y^{2\nu+1}d_q y.$$

and

$$f *_q g \in \mathcal{L}_{q,s,\nu}.$$

$$\mathcal{F}_{q,\nu}(f *_q g) = \mathcal{F}_{q,\nu}(f) \times \mathcal{F}_{q,\nu}(g).$$

If $s \geq 2$ then

$$||f *_{q} g||_{q,s,\nu} \le B_{q,\nu} ||f||_{q,p,\nu} ||g||_{q,r,\nu}.$$
 (6)

If we suppose that $T_{q,x}^{\nu}$ is a positive operator then

$$||f *_{q} g||_{q,s,\nu} \le c_{q,\nu} ||f||_{q,p,\nu} ||g||_{q,r,\nu}.$$
 (7)

Proof. We have

$$\begin{split} f *_{q} g(x) &= \mathcal{F}_{q,\nu} \left[\mathcal{F}_{q,\nu} f \times \mathcal{F}_{q,\nu} g \right](x) \\ &= c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu} f(y) \times \mathcal{F}_{q,\nu} g(y) j_{\nu}(xy,q^{2}) y^{2\nu+1} d_{q} y \\ &= c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu} f(y) \times \left[c_{q,\nu} \int_{0}^{\infty} g(z) j_{\nu}(zy,q^{2}) z^{2\nu+1} d_{q} z \right] j_{\nu}(xy,q^{2}) y^{2\nu+1} d_{q} y \\ &= c_{q,\nu} \int_{0}^{\infty} \left[c_{q,\nu} \int_{0}^{\infty} \mathcal{F}_{q,\nu} f(y) j_{\nu}(zy,q^{2}) j_{\nu}(xy,q^{2}) y^{2\nu+1} d_{q} y \right] g(z) z^{2\nu+1} d_{q} z \\ &= c_{q,\nu} \int_{0}^{\infty} T_{q,x}^{\nu} f(z) g(z) z^{2\nu+1} d_{q} z. \end{split}$$

The computations are justified by the Fubuni's theorem

$$\int_{0}^{\infty} |F_{q,\nu}f(y)| \times \left[\int_{0}^{\infty} |g(z)| \times |j_{\nu}(zy,q^{2})| z^{2\nu+1} d_{q}z \right] |j_{\nu}(xy,q^{2})| y^{2\nu+1} d_{q}y \\
\leq \|g\|_{q,r,\nu} \int_{0}^{\infty} |F_{q,\nu}f(y)| \times \left[\int_{0}^{\infty} |j_{\nu}(zy,q^{2})|^{\overline{r}} z^{2\nu+1} d_{q}z \right]^{\frac{1}{\overline{r}}} |j_{\nu}(xy,q^{2})| y^{2\nu+1} d_{q}y \\
\leq \|g\|_{q,r,\nu} \|j_{\nu}(.,q^{2})\|_{q,\overline{r},\nu} \int_{0}^{\infty} |F_{q,\nu}f(y)| \times \left[|j_{\nu}(xy,q^{2})| y^{-\frac{2\nu+2}{\overline{r}}} \right] y^{2\nu+1} d_{q}y \\
\leq \|g\|_{q,r,\nu} \|j_{\nu}(.,q^{2})\|_{q,\overline{r},\nu} \|F_{q,\nu}f\|_{q,\overline{p},\nu} \left(\int_{0}^{\infty} \left[|j_{\nu}(xy,q^{2})| y^{-\frac{2\nu+2}{\overline{r}}} \right]^{p} y^{2\nu+1} d_{q}y \right)^{\frac{1}{p}} \\
\leq \|g\|_{q,r,\nu} \|j_{\nu}(.,q^{2})\|_{q,\overline{r},\nu} \|F_{q,\nu}f\|_{q,\overline{p},\nu} \left(\int_{0}^{\infty} |j_{\nu}(xy,q^{2})|^{p} y^{2(\nu+1)\left(1-\frac{p}{r}\right)-1} d_{q}y \right)^{\frac{1}{p}}.$$

From Proposition 2 we deduce that

$$\mathcal{F}_{q,\nu}f \in \mathcal{L}_{q,\overline{p},\nu} \text{ and } \mathcal{F}_{q,\nu}g \in \mathcal{L}_{q,\overline{r},\nu}.$$

Then, using the Hölder inequality and the fact that

$$\frac{1}{\overline{p}} + \frac{1}{\overline{r}} = \frac{1}{\overline{s}}$$

to conclude that

$$\mathcal{F}_{q,\nu}f \times \mathcal{F}_{q,\nu}g \in \mathcal{L}_{q,\overline{s},\nu}.$$

Which implies that

$$f *_q g = \mathcal{F}_{q,\nu} \left[\mathcal{F}_{q,\nu} f \times \mathcal{F}_{q,\nu} g \right] \in \mathcal{L}_{q,s,\nu}$$

and by the inversion formula (2) we obtain

$$\mathcal{F}_{q,\nu}\left(f*_{q}g\right) = \mathcal{F}_{q,\nu}f \times \mathcal{F}_{q,\nu}g.$$

Suppose that $s \geq 2$, so $1 \leq \overline{s} \leq 2$ and we can write

$$\begin{split} \|f *_{q} g\|_{q,s,\nu} &= \|\mathcal{F}_{q,\nu} [\mathcal{F}_{q,\nu} f \times \mathcal{F}_{q,\nu} g]\|_{q,s,\nu} \\ &\leq B_{q,\nu}^{\frac{2}{s}-1} \|\mathcal{F}_{q,\nu} f\|_{q,\overline{p},\nu} \|\mathcal{F}_{q,\nu} g\|_{q,\overline{r},\nu} \\ &\leq B_{q,\nu}^{\frac{2}{s}-1} B_{q,\nu}^{\frac{2}{p}-1} B_{q,\nu}^{\frac{2}{r}-1} \|f\|_{q,p,\nu} \|g\|_{q,r,\nu} \\ &\leq B_{q,\nu} \|f\|_{q,p,\nu} \|g\|_{q,r,\nu} \,. \end{split}$$

Now suppose that $T_{q,x}^{\nu}$ is a positive operator. We introduce the operator K_f as follows

$$K_f g(x) = c_{q,\nu} \int_0^\infty T_{q,x}^{\nu} f(z) g(z) z^{2\nu+1} d_q z.$$

By the Hölder inequality and (5) we get

$$||K_f g||_{q,\infty} \le c_{q,\nu} ||f||_{q,p,\nu} ||g||_{q,\overline{p},\nu}.$$

The Minkowski inequality leads to

$$||K_f g||_{q,p,\nu} \le c_{q,\nu} ||f||_{q,p,\nu} ||g||_{q,1,\nu}$$

Hence we have

$$K_f: \mathcal{L}_{q,\overline{p},\nu} \to \mathcal{C}_{q,0}, \quad K_f: \mathcal{L}_{q,1,\nu} \to \mathcal{L}_{q,p,\nu}.$$

Then the operator K_f satisfies

$$K_f: \mathcal{L}_{q,r,\nu} \to \mathcal{L}_{q,s,\nu}$$

and

$$||f *_q g||_{q,s,\nu} = ||K_f g||_{q,s,\nu} \le c_{q,\nu} ||f||_{q,p,\nu} ||g||_{q,r,\nu}.$$

Remark 1. We discuss here the sharp results for the Hausdorf-Young inequality provided above. An inequality already sharper than (6) is given in formula (7). In fact we have $c_{q,\nu} < B_{q,\nu}$.

To obtained (7) without the positivity argument, we can do by using which is a q-Riemann-Liouville fractional integral generalizing the q-Mehler integral representation for the q-Bessel function $j_{\nu}(.,q^2)$ which can be proved in a straightforward way [8]

$$j_{\nu}(\lambda, q^2) = [2\nu]_q \int_0^1 \frac{(q^2 t^2, q^2)_{\infty}}{(q^{2\nu} t^2, q^2)_{\infty}} j_0(\lambda t, q^2) t d_q t$$

together with the inequalities for the q-Bessel function which is given as formula (24) in the paper [4]

$$|j_0(x;q^2)| \le 1, \quad \forall x \in \mathbb{R}_q^+.$$

Combine this formulas we arrive at

$$|j_{\nu}(x;q^2)| \le 1, \quad \forall x \in \mathbb{R}_q^+, \quad \nu \ge 0.$$

Then the inequalities (4) can be written as follows

$$\|\mathcal{F}_{q,\nu}f\|_{q,\overline{p},\nu} \le c_{q,\nu}^{\frac{2}{p}-1} \|f\|_{q,p,\nu}.$$

This should give the sharpest version of (6) in the cases $\nu \geq 0$. Unfortunately the positivity of the operator $T_{q,x}^{\nu}$ is satisfied in this case.

In fact we can prove that if we are in the positivity cases then

$$||j_{\nu}(.,q^2)||_{q,\infty} \le 1.$$

To prove this recalling that

$$T_{q,x}^{\nu}j_{\nu}(y,q^2) = j_{\nu}(x,q^2)j_{\nu}(y,q^2).$$

So we have

$$\int_0^\infty D_{q,\nu}(x,y,t) j_v(t,q^2) t^{2v+1} d_q t = j_\nu(x,q^2) j_\nu(y,q^2).$$

We obtains for all $x, y \in \mathbb{R}_q^+$

$$\begin{aligned} \left| j_{\nu}(x,q^2) \right| \times \left| j_{\nu}(y,q^2) \right| & \leq & \int_0^{\infty} D_{q,\nu}(x,y,t) \left| j_{\nu}(t,q^2) \right| t^{2\nu+1} d_q t \\ & \leq & \left[\int_0^{\infty} D_{q,\nu}(x,y,t) t^{2\nu+1} d_q t \right] \left\| j_{\nu}(.,q^2) \right\|_{q,\infty}. \end{aligned}$$

The fact that

$$\int_{0}^{\infty} D_{q,\nu}(x,y,t)t^{2\nu+1}d_{q}t = 1$$

implies

$$||j_{\nu}(.,q^2)||_{q,\infty}^2 \le ||j_{\nu}(.,q^2)||_{q,\infty}$$

which gives the result.

3. Uncertainty principle

We introduce two q-difference operators

$$\partial_q f(x) = \frac{f(q^{-1}x) - f(x)}{x}$$

and

$$\partial_q^* f(x) = \frac{f(x) - q^{2\nu+1} f(qx)}{x}.$$

Then we have

$$\partial_q \partial_q^* f(x) = \partial_q^* \partial_q f(x) = \Delta_{q,\nu} f(x).$$

Proposition 3. If $\langle \partial_q f, g \rangle$ exist and $\lim_{a \to \infty} \left| a^{2\nu+1} f(q^{-1}a) g(a) \right| = 0$ then

$$\langle \partial_q f, g \rangle = - \langle f, \partial_q^* g \rangle.$$

Proof. The following computation

$$\int_{0}^{a} \partial_{q} f(x)g(x)x^{2\nu+1}d_{q}x$$

$$= \int_{0}^{a} \frac{f(q^{-1}x) - f(x)}{x}g(x)x^{2\nu+1}d_{q}x$$

$$= \int_{0}^{a} \frac{f(q^{-1}x)}{x}g(x)x^{2\nu+1}d_{q}x - \int_{0}^{a} \frac{f(x)}{x}g(x)x^{2\nu+1}d_{q}x$$

$$= q^{2\nu+1} \int_{0}^{q^{-1}a} \frac{f(x)}{x}g(qx)x^{2\nu+1}d_{q}x - \int_{0}^{a} \frac{f(x)}{x}\partial_{q}g(x)x^{2\nu+1}d_{q}x$$

$$= q^{2\nu+1} \int_{0}^{a} \frac{f(x)}{x}\partial_{q}g(qx)x^{2\nu+1}d_{q}x - \int_{0}^{a} \frac{f(x)}{x}g(x)x^{2\nu+1}d_{q}x + a^{2\nu+1}f(q^{-1}a)g(a)$$

$$= -\int_{0}^{a} f(x)\frac{g(x) - q^{2\nu+1}g(qx)}{x}x^{2\nu+1}d_{q}x + a^{2\nu+1}f(q^{-1}a)g(a)$$

$$= -\int_{0}^{a} f(x)\partial_{q}^{*}g(x)x^{2\nu+1}d_{q}x + a^{2\nu+1}f(q^{-1}a)g(a)$$

leads to the result.

Corollary 1. If $f \in \mathcal{L}_{q,2,\nu}$ such that $x\mathcal{F}_{q,\nu}f \in \mathcal{L}_{q,2,\nu}$ then

$$\left\|\partial_q f\right\|_2 = \left\|x \mathcal{F}_{q,\nu} f\right\|_2.$$

Proof. In fact we have

$$\begin{aligned} \|\partial_{q}f\|_{2}^{2} &= \langle \partial_{q}f, \partial_{q}f \rangle = -\langle f, \partial_{q}^{*}\partial_{q}f \rangle \\ &= -\langle f, \Delta_{q,\nu}f \rangle \\ &= -\langle \mathcal{F}_{q,\nu}f, \mathcal{F}_{q,\nu}\Delta_{q,\nu}f \rangle \\ &= \langle \mathcal{F}_{q,\nu}f, x^{2}\mathcal{F}_{q,\nu}f \rangle \\ &= \|x\mathcal{F}_{q,\nu}f\|_{2}^{2}, \end{aligned}$$

which prove the result.

Theorem 6. Assume that f belongs to the space $\mathcal{L}_{q,2,\nu}$. Then the q-Bessel transform satisfies the following uncertainty principal

$$||f||_{2}^{2} \le k_{q,v} ||xf||_{2} ||x\mathcal{F}_{q,\nu}f||_{2}$$

where

$$k_{q,\nu} = \frac{\left[1 + \sqrt{q} \times q^{\nu+1}\right]}{1 - q^{2(\nu+1)}}.$$

Proof. In fact

$$\partial_q^* x f = f(x) - q^{2\nu+2} f(qx)$$
$$x \partial_q f = f(q^{-1}x) - f(x).$$

We introduce the following operator

$$\Lambda_q f(x) = f(qx),$$

then

$$\langle \Lambda_q f, g \rangle = q^{-2(\nu+1)} \langle f, \Lambda_q^{-1} g \rangle.$$

So

$$\frac{1}{1 - q^{2(\nu+1)}} \left[\partial_q^* x f(x) - q^{2\nu+2} \Lambda_q x \partial_q f(x) \right] = f(x)$$

Assume that xf and $x\mathcal{F}_{q,\nu}f$ belongs to the space $\mathcal{L}_{q,2,\nu}$. Then we have

$$\langle f, f \rangle = -\frac{1}{1 - q^{2(\nu+1)}} \langle xf, \partial_q f \rangle - \frac{1}{1 - q^{2(\nu+1)}} \langle \partial_q f, x\Lambda_q^{-1} f \rangle.$$

By Cauchy-Schwartz inequality we get

$$\left\langle f,f\right\rangle \leq\frac{1}{1-q^{2(\nu+1)}}\left\Vert xf\right\Vert _{2}\left\Vert \partial_{q}f\right\Vert _{2}+\frac{1}{1-q^{2(\nu+1)}}\left\Vert \partial_{q}f\right\Vert _{2}\left\Vert x\Lambda_{q}^{-1}f\right\Vert _{2}.$$

On the other hand

$$||x\Lambda_q^{-1}f||_2 = \sqrt{q} \times q^{\nu+1} ||xf||_2$$

Corollary 1 leads to the result.

4. Hardy's theorem

The following Lemma from complex analysis is crucial for the proof of our main theorem.

Lemma 1. For every $p \in \mathbb{N}$, there exist $\sigma_p > 0$ for which

$$|z|^{2p}|j_{\nu}(z,q^2)| < \sigma_p e^{|z|}, \quad \forall z \in \mathbb{C}.$$

Proof. In fact

$$|z|^{2p}|j_{\nu}(z,q^{2})| \leq \frac{1}{(q^{2},q^{2})_{\infty}(q^{2\nu+2},q^{2})_{\infty}} \sum_{n=0}^{\infty} q^{n(n-1)}|z|^{2n+2p}$$
$$\leq \frac{q^{p(p+1)}}{(q^{2},q^{2})_{\infty}(q^{2\nu+2},q^{2})_{\infty}} \sum_{n=p}^{\infty} q^{n(n-2p-1)}|z|^{2n}.$$

Now using the Stirling's formula

$$n! \sim \sqrt{2\pi n} \frac{n^n}{e^n},$$

we see that there exist an entire $n_0 \ge p$ such that

$$q^{n(n-2p-1)} < \frac{1}{(2n)!}, \quad \forall n \ge n_0,$$

which implies

$$\sum_{n=n_0}^{\infty} q^{n(n-2p-1)} |z|^{2n} < \sum_{n=n_0}^{\infty} \frac{1}{(2n)!} |z|^{2n} < e^{|z|}.$$

Finally there exist $\sigma_p > 0$ such that

$$\frac{|z|^{2p}|j_{\nu}(z,q^2)|}{e^{|z|}} < \sigma_p, \quad \forall z \in \mathbb{C}$$

This complete the proof.

Lemma 2. Let h be an entire function on \mathbb{C} such that

$$|h(z)| \le Ce^{a|z|^2}, \quad z \in \mathbb{C},$$

$$|h(x)| \le Ce^{-ax^2}, \quad x \in \mathbb{R},$$

for some positive constants a and C. Then there exist $C^* \in \mathbb{R}$ such

$$h(x) = C^* e^{-ax^2}.$$

The reader can see the reference [17] for the proof.

Now we are in a position to state and prove the q-analogue of the Hardy's theorem

Theorem 7. Suppose $f \in \mathcal{L}_{q,1,\nu}$ satisfying the following estimates

$$|f(x)| \le Ce^{-\frac{1}{2}x^2}, \quad \forall x \in \mathbb{R}_q^+,$$
 (8)

$$|\mathcal{F}_{a,\nu}f(x)| \le Ce^{-\frac{1}{2}x^2}, \quad \forall x \in \mathbb{R},$$

where C is a positive constant. Then there exist $A \in \mathbb{R}$ such that

$$f(z) = Ac_{q,\nu}\mathcal{F}_{q,\nu}\left(e^{-\frac{1}{2}x^2}\right)(z), \quad \forall z \in \mathbb{C}.$$

Proof. We claim that $\mathcal{F}_{q,\nu}f$ is an analytic function and there exist C'>0 such that

$$|\mathcal{F}_{q,\nu}f(z)| \le C' e^{\frac{1}{2}|z|^2}, \quad \forall z \in \mathbb{C}.$$

We have

$$|\mathcal{F}_{q,\nu}f(z)| \le c_{q,\nu} \int_0^\infty |f(x)| |j_{\nu}(zx,q^2)| x^{2\nu+1} d_q x.$$

From the Lemma 1, if |z| > 1 then there exist $\sigma_1 > 0$ such that

$$|x^{2\nu+1}|j_{\nu}(zx,q^2)| = \frac{1}{|z|^{2\nu+1}}(|z|x)^{2\nu+1}|j_{\nu}(zx,q^2)| < \frac{\sigma_1}{1+|z|^2x^2}e^{x|z|}, \quad \forall x \in \mathbb{R}_q^+.$$

Then we obtain

$$|\mathcal{F}_{q,\nu}f(z)| \le C\sigma_1 c_{q,\nu} \left[\int_0^\infty \frac{e^{-\frac{1}{2}(x-|z|)^2}}{1+|z|^2 x^2} d_q x \right] e^{\frac{1}{2}|z|^2} < C\sigma_1 c_{q,\nu} \left[\int_0^\infty \frac{1}{1+x^2} d_q x \right] e^{\frac{1}{2}|z|^2}.$$

Now, if $|z| \leq 1$ then there exist $\sigma_2 > 0$ such that

$$x^{2\nu+1}|j_{\nu}(zx,q^2)| \le \sigma_2 e^x, \quad \forall x \in \mathbb{R}_q^+.$$

Therefore

$$|\mathcal{F}_{q,\nu}f(z)| \le C\sigma_2 c_{q,\nu} \left[\int_0^\infty e^{-\frac{1}{2}x^2 + x} d_q x \right] \le C\sigma_2 c_{q,\nu} \left[\int_0^\infty e^{-\frac{1}{2}x^2 + x} d_q x \right] e^{\frac{1}{2}|z|^2},$$

which leads to the estimate (8). Using Lemma 2, we obtain

$$\mathcal{F}_{q,\nu}f(z) = \text{const.}e^{-\frac{1}{2}z^2}, \quad \forall z \in \mathbb{C},$$

and by Theorem 1, we conclude that

$$f(z) = \text{const.} \mathcal{F}_{q,\nu}\left(e^{-\frac{1}{2}t^2}\right)(z), \quad \forall z \in \mathbb{C}.$$

Corollary 2. Suppose $f \in \mathcal{L}_{q,1,\nu}$ satisfying the following estimates

$$|f(x)| \le Ce^{-px^2}, \quad \forall x \in \mathbb{R}_q^+,$$

$$|\mathcal{F}_{q,\nu}f(x)| \le Ce^{-\sigma x^2}, \quad \forall x \in \mathbb{R},$$

where C, p, σ are a positive constant and $p\sigma = \frac{1}{4}$. We suppose that there exist $a \in \mathbb{R}^+_a$ such that $a^2p = \frac{1}{2}$. Then there exist $A \in \mathbb{R}$ such that

$$f(z) = Ac_{q,\nu}\mathcal{F}_{q,\nu}\left(e^{-\sigma t^2}\right)(z), \quad \forall z \in \mathbb{C}.$$

Proof. Let $a \in \mathbb{R}_q^+$, and put

$$f_a(x) = f(ax),$$

then

$$\mathcal{F}_{q,\nu}f_a(x) = \frac{1}{a^{2\nu+2}}\mathcal{F}_{q,\nu}f(x/a).$$

In the end, applying Theorem 7 to the function f_a .

Corollary 3. Suppose $f \in \mathcal{L}_{q,1,\nu}$ satisfying the following estimates

$$|f(x)| \le Ce^{-px^2}, \quad \forall x \in \mathbb{R}_q^+,$$

$$|\mathcal{F}_{q,\nu}f(x)| \le Ce^{-\sigma x^2}, \quad \forall x \in \mathbb{R},$$
 (9)

where C, p, σ are a positive constant and $p\sigma > \frac{1}{4}$. We suppose that there exist $a \in \mathbb{R}_q^+$ such that $a^2p = \frac{1}{2}$. Then $f \equiv 0$.

Proof. In fact there exists $\sigma' < \sigma$ such that $p\sigma' = \frac{1}{4}$. Then the function f satisfying the estimates of Corollary 2, if we replacing σ by σ' . Which implies

$$\mathcal{F}_{q,\nu}f(x) = \text{const.}e^{-\sigma'x^2}, \quad \forall x \in \mathbb{R}.$$

On the other hand, f satisfying the estimates (9), then

$$\left| \text{const.} e^{-\sigma' x^2} \right| \le C e^{-\sigma x^2}, \quad \forall x \in \mathbb{R}.$$

This implies $\mathcal{F}_{q,\nu}f\equiv 0$, and by Theorem 1 we conclude that $f\equiv 0$.

5. The q-Fourier-Neumann Expansions

The little q-Jacobi polynomials are defined for $\nu, \beta > -1$ by [15]

$$p_n(x; q^{\nu}, q^{\beta}; q) = {}_{2}\phi_1\left(\begin{array}{c} q^{n+\nu+\beta+1}, q^{-n} \\ q^{\nu+1} \end{array} \middle| q; qx\right).$$

We define the functions

$$P_{\nu,n}(x;q^2) = \sigma_{q,\nu}(n)q^{-n(\nu+1)} \frac{(q^{2+2n}, q^{2\nu+2}; q^2)_{\infty}}{(q^{2+2n+2\nu}, q^2; q^2)_{\infty}} p_n(x^2; q^{2\nu}, 1; q^2)$$

and

$$\mathcal{J}_{\nu,n}(x;q^2) = \sigma_{q,\nu}(n) \frac{J_{\nu+2n+1}(q^n x;q^2)}{x^{\nu+1}},$$

where

$$\sigma_{q,\nu}(n) = \sqrt{\frac{1 - q^{2\nu + 4n + 2}}{1 - q}}.$$

Consider $\mathcal{L}^{\nu}_{q,2}$ as an Hilbert space with the inner product

$$\langle f|g\rangle = \int_0^1 f(x)g(x)x^{2\nu+1}d_qx.$$

The q-Paley-Wiener space is defined by

$$PW_q^{\nu} = \left\{ f \in \mathcal{L}_{q,2,\nu} : f(x) = c_{q,\nu} \int_0^1 u(t) j_{\nu}(xt, q^2) t^{2\nu+1} d_q t, \quad u \in \mathcal{L}_{q,2}^{\nu} \right\}.$$

Proposition 4. PW_q^{ν} is a closed subspace of $\mathcal{L}_{q,2,\nu}$ and with the inner product given in (3) is an Hilbert space.

Proof. In fact, given $f \in \mathcal{L}_{q,2,\nu}$ and let $\{f_n\}_{n \in \mathbb{N}}$ be a sequence of element of PW_q^{ν} which converge to f in L^2 -norm. For $n \in \mathbb{N}$, there exist $u_n \in \mathcal{L}_{q,2}^{\nu}$ such that

$$f_n(x) = c_{q,\nu} \int_0^1 u_n(t) j_{\nu}(xt, q^2) t^{2\nu+1} d_q t.$$

Moreover

$$\lim_{n \to \infty} ||f_n - f||_{q,2,\nu} = 0.$$

This give

$$\lim_{n \to \infty} \| \mathcal{F}_{q,\nu} f_n - \mathcal{F}_{q,\nu} f \|_{q,2,\nu} = 0,$$

and then

$$\lim_{n \to \infty} \left[\int_0^1 |\mathcal{F}_{q,\nu} f_n(x) - \mathcal{F}_{q,\nu} f(x)|^2 x^{2\nu+1} d_q x + \int_1^\infty |\mathcal{F}_{q,\nu} f(x)|^2 x^{2\nu+1} d_q x \right] = 0,$$

which implies

$$\int_{1}^{\infty} |\mathcal{F}_{q,\nu}f(x)|^{2} x^{2\nu+1} d_{q}x = 0 \Rightarrow \mathcal{F}_{q,\nu}f(x) = 0, \quad \forall x \in \mathbb{R}_{q}^{+} \cap]1, +\infty[.$$

Then $f \in PW_q^{\nu}$.

Proposition 5. We have

$$\mathcal{F}_{q,\nu}(\mathcal{J}_{\nu,n})(x) = P_{\nu,n}(x;q^2)\chi_{[0,1]}(x), \quad \forall x \in \mathbb{R}_q^+.$$

As a consequence

$$\int_0^1 P_{\nu,n}(x;q^2) P_{\nu,m}(x;q^2) x^{2\nu+1} d_q x = \delta_{n,m}.$$

Proof. The following proof is identical to the proof of Lemma 1 in [1]. Using an identity established in [12, 13]

$$\int_{0}^{\infty} t^{-\lambda} J_{\mu}(q^{m}t; q^{2}) J_{\theta}(q^{n}t; q^{2}) d_{q}t
= (1 - q) q^{n(\lambda - 1) + (m - n)\mu} \frac{(q^{1 + \lambda + \theta - \mu}, q^{2\mu + 2}; q^{2})_{\infty}}{(q^{1 - \lambda + \theta + \mu}, q^{2}; q^{2})_{\infty}}
\times {}_{2}\phi_{1} \begin{pmatrix} q^{1 - \lambda + \mu + \theta}, q^{1 - \lambda + \mu - \theta} \\ q^{2\mu + 2} \end{pmatrix} q^{2}; q^{2m - 2n + 1 + \lambda + \theta - \mu} \end{pmatrix}, (10)$$

where $n, m \in \mathbb{Z}$ and $\theta, \mu, \lambda \in \mathbb{C}$ such that $\text{Re}(1 - \lambda + \theta + \mu) > 0$, θ, μ are not equal to a negative integer and

$$(\lambda + \theta + 1 - \mu)/2$$
, $m - n + (\lambda + \theta + 1 - \mu)/2$

are not a non-positive integer [13].

To evaluate $\mathcal{F}_{q,\nu}(\mathcal{J}_{\nu,n})(x)$ when $x=q^m\leq 1$, we take in (10)

$$q^{m} = x, \mu = \nu, \theta = \nu + 2n + 1, \lambda = 0$$

then

$$\mathcal{F}_{q,\nu}(\mathcal{J}_{\nu,n})(x) = \sigma_{q,\nu}(n) \frac{x^{-\nu}}{1-q} \int_0^\infty J_{\nu}(xt;q^2) J_{\nu+2n+1}(q^n t;q^2) d_q t
= \sigma_{q,\nu}(n) q^{-n(\nu+1)} \frac{(q^{2+2n},q^{2\nu+2};q^2)_{\infty}}{(q^{2+2n+2\nu},q^2;q^2)_{\infty}} {}_2\phi_1 \left(\begin{array}{c} q^{2+2\nu+2n},q^{-2n} \\ q^{2\nu+2} \end{array} \middle| q^2;q^2 x^2 \right)
= P_{\nu,n}(x;q^2).$$

To evaluate $\mathcal{F}_{q,\nu}(\mathcal{J}_{\nu,m})(x)$ when $x=q^n>1$, we consider in (10)

$$q^n = x, \mu = \nu + 2m + 1, \theta = \nu, \lambda = 0$$

In this way, $1 + \lambda + \theta - \mu = -2m$. This gives for $m \in \mathbb{N}$ a factor

$$(q^{-2m}; q^2)_{\infty} = 0$$

on the numerator and then

$$\mathcal{F}_{a,\nu}(\mathcal{J}_{\nu,m})(x) = 0, \quad x > 1$$

By setting $\lambda=1,\ \theta=\nu+2n+1,$ and $\mu=\nu+2m+1$ in , it is clear that, for $n,m=0,1,2,\ldots,$

$$\int_0^\infty J_{\nu+2n+1}(q^n x; q^2) J_{\nu+2m+1}(q^m x; q^2) \frac{d_q x}{x} = \frac{1}{\sigma_{q,\nu}(n)^2} \delta_{n,m}$$

and then

$$\int_{0}^{\infty} \mathcal{J}_{\nu,n}(x;q^{2}) \mathcal{J}_{\nu,m}(x;q^{2}) x^{2\nu+1} d_{q}x = \delta_{n,m}.$$

Now we use the arguments of q-Bessel Fourier analysis provided in this paper to show that

$$\langle P_{\nu,n}\chi_{[0,1]}, P_{\nu,m}\chi_{[0,1]}\rangle = \langle \mathcal{F}_{q,\nu}(\mathcal{J}_{v,n}), \mathcal{F}_{q,\nu}(\mathcal{J}_{v,m})\rangle = \langle \mathcal{J}_{\nu,n}, \mathcal{J}_{\nu,m}\rangle = \delta_{n,m}.$$
(11)

Another proof of the orthogonality of the little q-Jacobi polynomials can be found in [15]

Proposition 6. The systems

$$\{\mathcal{J}_{\nu,n}\}_{n=0}^{\infty}, \quad \{P_{\nu,n}\}_{n=0}^{\infty}$$

forme two orthonormals basis respectively of the Hilbert spaces PW_q^v and $\mathcal{L}_{q,2}^{\nu}$.

Proof. From (11) we derive the orthonormality. To prove that the system $\{\mathcal{J}_{\nu,n}\}_{n=0}^{\infty}$ is complet in PW_q^{ν} , given a function $f \in PW_q^{\nu}$ such that

$$\langle f, \mathcal{J}_{\nu,n} \rangle = 0, \quad \forall n \in \mathbb{N}.$$

Then

$$\langle \mathcal{F}_{q,\nu}(f), \mathcal{F}_{q,\nu}(\mathcal{J}_{\nu,n}) \rangle = 0, \quad \forall n \in \mathbb{N},$$

which implies

$$\left\langle \mathcal{F}_{q,\nu}(f), P_{\nu,n}\chi_{[0,1]} \right\rangle = \left\langle \mathcal{F}_{q,\nu}(f)\chi_{[0,1]}, P_{\nu,n} \right\rangle = \left\langle \mathcal{F}_{q,\nu}(f), P_{\nu,n} \right\rangle = 0, \quad \forall n \in \mathbb{N}.$$

From the definition of the polynomial $P_{\nu,n}$ we conclude that

$$\langle \mathcal{F}_{q,\nu}(f), t^{2n} \rangle = 0, \quad \forall n \in \mathbb{N}.$$

Then

$$c_{q,\nu} \sum_{n=0}^{\infty} (-1)^n \frac{q^{n(n+1)}}{(q^2,q^2)_n (q^{2\nu+2},q^2)_n} \left\langle \mathcal{F}_{q,\nu}(f), t^{2n} \right\rangle x^{2n} = 0, \quad \forall x \in \mathbb{R}_q^+,$$

which can be written as

$$\mathcal{F}_{q,\nu}^2(f)(x) = 0, \quad \forall x \in \mathbb{R}_q^+.$$

By the inversion formula (2) we conclude that f = 0. From (11) we derive the orthonormality. To prove that the system $\{P_{\nu,n}\}_{n=0}^{\infty}$ is complet in $\mathcal{L}_{q,2}^{\nu}$, given a function $f \in \mathcal{L}_{q,2}^{\nu}$ such that

$$\langle f|P_{\nu,n}\rangle = 0, \quad \forall n \in \mathbb{N}$$

Then

$$\langle f|t^{2n}\rangle=0, \quad \forall n\in\mathbb{N}.$$

Which leads to the result.

Proposition 7. Let $\lambda \in \mathbb{R}_q^+$ then

$$c_{q,\nu}j_{\nu}(\lambda x;q^2) = \sum_{n=0}^{\infty} \mathcal{J}_{n,\nu}(\lambda;q^2) P_{n,\nu}(x), \quad \forall x \in [0,1] \cap \mathbb{R}_q^+.$$

As a consequence we have

$$\sum_{n=0}^{\infty} \left[P_{n,\nu}(x; q^2) \right]^2 = \frac{x^{-2(\nu+1)}}{1-q}, \quad \forall x \in [0, 1] \cap \mathbb{R}_q^+$$

and for all $\lambda \in \mathbb{R}_q^+$

$$\begin{split} &\sum_{n=0}^{\infty} \left[\mathcal{J}_{n,\nu}(\lambda;q^2) \right]^2 = -\frac{q^{\nu}}{2(1-q)\lambda^{1+2\nu}} \\ &\times \left[\frac{\lambda}{q} J_{\nu+1}(\lambda;q^2) J_{\nu}'(\lambda/q;q^2) - J_{\nu+1}(\lambda;q^2) J_{\nu}(\lambda/q;q^2) - J_{\nu+1}'(\lambda;q^2) J_{\nu}(\lambda/q;q^2) \right]. \end{split}$$

Proof. Let $\lambda \in \mathbb{R}$ and consider the function

$$\psi_{\lambda}: [0,1] \cap \mathbb{R}_q^+ \to \mathbb{R}, \quad x \mapsto c_{q,\nu} j_{\nu}(\lambda x; q^2).$$

Then $\psi_{\lambda} \in \mathcal{L}^{\nu}_{q,2}$ and we can write

$$\psi_{\lambda}(x) = \sum_{n=0}^{\infty} \langle \psi_{\lambda} | P_{n,\nu} \rangle P_{n,\nu}(x), \quad \forall x \in [0,1] \cap \mathbb{R}_q^+.$$
 (12)

Note that

$$\langle \psi_{\lambda} | P_{n,\nu} \rangle = \langle \psi_{\lambda}, P_{n,\nu} \chi_{[0,1]} \rangle = \langle \psi_{\lambda}, \mathcal{F}_{q,\nu} (\mathcal{J}_{n,\nu}) \rangle = \mathcal{F}_{q,\nu}^2 (\mathcal{J}_{n,\nu})(\lambda) = \mathcal{J}_{n,\nu}(\lambda; q^2).$$

Then we deduce the result. Using the Parseval's theorem and (12) we obtain

$$\sum_{n=0}^{\infty} \left[P_{n,\nu}(x;q^2) \right]^2 = \|\psi_x\|_{q,2,\nu}^2 = \frac{x^{-2(\nu+1)}}{1-q}.$$

The second identity is deduced also from the Parseval's theorem

$$\sum_{n=0}^{\infty} \left[\mathcal{J}_{n,\nu}(\lambda; q^2) \right]^2 = N_{q,\nu,2}^2(\psi_{\lambda}),$$

and the following relation proved in [14]

$$\int_0^1 \left[J_{\nu}(aqt;q^2) \right]^2 t d_q t = -\frac{(1-q)q^{\nu-1}}{2a} \times \left[a J_{\nu+1}(aq;q^2) J'_{\nu}(a;q^2) - J_{\nu+1}(aq;q^2) J_{\nu}(a;q^2) - J'_{\nu+1}(aq;q^2) J_{\nu}(a;q^2) \right].$$

References

- L. D. Abreu, O. Ciaurri and J. L. Varona, A q-linear analogue of the plane wave expansion, Advances in Applied Mathematics, Volume 50, Article 415-428 (2013)
- [2] N. Bettaibi, A. Fitouhi and W. Binous, Uncertainty principles for the q-trigonometric Fourier transforms, Math. Sci. Res. J, Volume 11 (2007).
- [3] N. Bettaibi, Uncertainty principles in q²-analogue Fourier analysis, Math. Sci. Res. J, Volume 11 (2007).
- [4] N. Bettaibi, F. Bouzeffour, H. Ben Elmonser and W. Binous, Elements of harmonic analysis related to the third basic zero order Bessel function, J. Math. Anal. Appl. Volume 342, Article 1203-1219 (2008).
- [5] L. Dhaouadi, A. Fitouhi and J. El Kamel, Inequalities in q-Fourier Analysis, Journal of Inequalities in Pure and Applied Mathematics, Volume 7, Issue 5, Article 171 (2006).
- [6] L. Dhaouadi, W. Binous and A. Fitouhi, Paley-Wiener theorem for the q-Bessel transform and associated q-sampling formula, Expo. Math. Volume 27, Issue 1, Article 55-72 (2009).
- [7] A. Fitouhi and L. Dhaouadi, Positivity of the Generalized Translation Associated with the q-Hankel Transform, Constructive Approximation, Volume 34, Aricle 453-472 (2011).
- [8] A. Fitouhi, M. Hamza and F. Bouzeffour, The q- j_{α} Bessel function, J. Appr. Theory, Volume 115, Article 144-166 (2002).
- [9] A. Fitouhi, N. Bettaibi and R. Bettaieb, On Hardy's inequality for symmetric integral transforms and analogous, Appl. Math. Comput, Volume 198 (2008).
- [10] G. Gasper and M. Rahman, Basic hypergeometric series, Encycopedia of mathematics and its applications, Volume 35, Cambridge university press (1990).
- [11] F. H. Jackson, On a q-Definite Integrals, Quarterly Journal of Pure and Application Mathematics, Volume 41, Article 193-203 (1910).
- [12] T.H. Koornwinder and R. F. Swarttouw, On q-analogues of the Hankel and Fourier Transforms, Trans. A. M. S, Volume 333, Article 445-461 (1992).
- [13] T.H. Koornwinder, R.F. Swarttouw, On q-analogues of the Fourier and Hankel transforms, arXiv:1208.2521v1 [math.CA] (2012) (this paper is [12] with some corrections).
- [14] H. T. Koelink and R. F. Swarttouw, On the zeros of the Hahn-Exton q-Bessel Function and associated q-Lommel polynomials, J. Math. Anal. Appl, Volume 186, Article 690-710 (1994).
- [15] R. Koekoek and R. F. Swarttouw, The Askey-scheme of hypergeometric orthogonal polynomials and its q-analogue, Delft University of Technology, Report no. 98-17 (1998).
- [16] R. F. Swarttouw, The Hahn-Exton q-Bessel functions, Ph. D. Thesis, Delft Technical University (1992).
- [17] A. Sitaram and M. Sundari, An analogue of Hardy's theorem for very rapidly decreasing functions on semi-simple Lie groups, Pacific J, Math. Volume 177, Article 187-200 (1997).

 $E ext{-}mail\ address: lazhardhaouadi@yahoo.fr}$