BULLETIN OF MATHEMATICAL ANALYSIS AND APPLICATIONS

ISSN: 1821-1291, URL: http://www.bmathaa.org

Volume 9 Issue 1(2017), Pages 74-91.

A NOTE ON NEW OSTROWSKI TYPE INEQUALITIES USING A GENERALIZED KERNEL

WASEEM GHAZI ALSHANTI, ATHER QAYYUM

ABSTRACT. In this paper, Based on general form of 3-step kernel, new versions of Ostrowski's type integral inequality are developed. We investigate the new Ostrowski's integral inequalities for differentiable mapping f with first derivative belongs to two different Lebesgue spaces. Moreover, the case when $f'' \in L_2$ is considered. Some applications to cumulative distribution function, and to composite quadrature rules are also given.

1. Introduction

With reference to their applications, integral inequalities play an important role in several branches of mathematics and statistics. In 1938, Ostrowski [1] introduced an interesting integral inequality. His inequality measures the deviation of a function from its itegral mean. Consequently, associated with a differentiable mapping there has been an extensive research history of related results. The classical integral inequality of Ostrowski was presented as follows:

Theorem 1.1. Let $f:[a,b] \to \mathbb{R}$ be continuous mapping on [a,b] and differentiable on (a,b), whose derivative $f':(a,b) \to \mathbb{R}$ is bounded on (a,b), i.e.

$$||f'||_{\infty} = \sup_{t \in [a,b]} |f'(t)| < \infty$$

then for all $x \in [a, b]$

$$\left| f(x) - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right| \le \left[\frac{1}{4} + \left(\frac{x - \frac{a+b}{2}}{b-a} \right)^{2} \right] (b-a) \|f'\|_{\infty}. \tag{1.1}$$

In 2003, UJević [2] proved the following Ostrowski type inequality:

Theorem 1.2. Let $f:I\to\mathbb{R}$, where $I\subset\mathbb{R}$ is an interval, be a differentiable mapping in Int I, and let $a,b\in I$ nt I, a< b. If $\exists \ \gamma,\Gamma\in\mathbb{R}$ such that $\gamma\leq I$

²⁰⁰⁰ Mathematics Subject Classification. 26D15.

Key words and phrases. Ostrowski inequality, Differentiable mapping, Cumulative distribution function, Composite Quadrature Rule.

^{©2017} Universiteti i Prishtinës, Prishtinë, Kosovë.

Submitted May 12, 2016. Published January 23, 2017.

Communicated by Fuad Kittaneh.

 $f'(x) \leq \Gamma$, for all $x \in [a, b]$ and $f' \in L_1(a, b)$, then we have

$$\left| f(x) - \left(x - \frac{a+b}{2} \right) \frac{f(b) - f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{b-a}{2} (S-\gamma)$$

$$(1.2)$$

and

$$\left| f(x) - \left(x - \frac{a+b}{2} \right) \frac{f(b) - f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \frac{b-a}{2} (\Gamma - S),$$
(1.3)

where

$$S = \frac{f(b) - f(a)}{b - a}.$$

Recently, motivated by [2] and by utilizing 3-step linear kernel, Liu [3] investigated (1.2) and (1.3) as follows:

Theorem 1.3. Let $f: [a,b] \to \mathbb{R}$ be a differentiable mapping in (a,b). If $f' \in L_1[a,b]$ and $\gamma \leq f'(x) \leq \Gamma$, for all $x \in [a,b]$, then for all $x \in [a,\frac{a+b}{2}]$, we have

$$\left| \frac{f(x) - f(a+b-x)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \left[\frac{b-a}{4} + \left| x - \frac{3a+b}{4} \right| \right] (S-\gamma)$$

$$(1.4)$$

and

$$\left| \frac{f(x) - f(a+b-x)}{2} - \frac{1}{b-a} \int_{a}^{b} f(t)dt \right|$$

$$\leq \left[\frac{b-a}{4} + \left| x - \frac{3a+b}{4} \right| \right] (\Gamma - S),$$

$$(1.5)$$

where

$$S = \frac{f(b) - f(a)}{b - a}.$$

For other related results, the reader may be refer to [4]-[13].

In this paper, we point out some integral inequalities of Ostrowski type by introducing a general form of 3-step linear kernel. We establish our new estimations of the left hand side of both (1.4) and (1.5) by employing a differentiable mapping f with derivative belongs to two different Lebesgue spaces, namely, $f' \in L_1[a, b]$ and $f' \in L_2[a, b]$. Moreover, the case when $f'' \in L_2[a, b]$ is also carried out. Most of the new version of Ostrowski type inequality in our paper will be obtained by using both Hölder's integral inequality and Diaz-Metcalf inequality. Finally, we apply our results for both cumulative distribution function and composite quadrature rules.

2. Main Results

Before we introduce our main results for a general form of 3-step linear kernel, we commence with the following lemma:

Lemma 2.1. Consider the kernel

$$K(x,t) = \begin{cases} t - \left(a + h\frac{b-a}{2}\right), & t \in [a,x] \\ t - \left(\frac{a+b}{2} - h\frac{b-a}{2}\right), & t \in (x,a+b-x] \\ t - \left(b - h\frac{b-a}{2}\right), & t \in (a+b-x,b] \end{cases}$$
(2.1)

for all $x \in [a, \frac{a+b}{2}]$ and $h \in [0, 1]$, then the following identity holds:

$$\frac{1}{b-a} \int_{a}^{b} K(x,t) f'(t) dt$$

$$= \frac{1}{2} \left[(1-2h) f(x) + f(a+b-x) + h(f(a)+f(b)) \right]$$

$$-\frac{1}{b-a} \int_{a}^{b} f(t) dt. \tag{2.2}$$

Proof: From (2.1), we have

$$\int_{a}^{b} K(x,t)f'(t) dt$$

$$= \int_{a}^{x} \left(t - \left(a + h\frac{b-a}{2}\right)\right) f'(t) dt$$

$$+ \int_{x}^{a+b-x} \left(t - \left(\frac{a+b}{2} - h\frac{b-a}{2}\right)\right) f'(t) dt$$

$$+ \int_{a+b-x}^{b} \left(t - \left(b - h\frac{b-a}{2}\right)\right) f'(t) dt$$

$$= \left(\frac{b-a}{2}\right) (1-2h) f(x) + h\left(\frac{b-a}{2}\right) [f(a) + f(b)]$$

$$+ \left(\frac{b-a}{2}\right) f(a+b-x) - \int_{a}^{b} f(t) dt.$$

Hence, we obtain (2.2). Now, with the use of (2.2), we state and prove the following cases:

2.1 The case when $f' \in L_1[a,b]$ and f' is bounded

Theorem 2.2. Let $f:[a,b] \to \mathbb{R}$ be a differentiable mapping in (a,b). If $f' \in L_1[a,b]$ and $\gamma \leq f'(x) \leq \Gamma$, $\forall x \in [a,b]$, then $\forall x \in [a,\frac{a+b}{2}]$ and $h \in [0,1]$ we have

$$\left| \frac{1}{2} \left[(1 - 2h) f(x) + f(a + b - x) + h \left(f(a) + f(b) \right) \right] \right|$$

$$-h \left(\frac{a+b}{2} - x \right) S - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq m(x,h) (S - \gamma)$$

$$(2.3)$$

and

$$\left| \frac{1}{2} \left[(1 - 2h) f(x) + f(a + b - x) + h \left(f(a) + f(b) \right) \right] \right.$$

$$\left. - h \left(\frac{a + b}{2} - x \right) S - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right|$$

$$\leq m \left(x, h \right) \left(\Gamma - S \right),$$

$$(2.4)$$

where

$$m(x,h)$$

$$= \frac{1}{2} \left[\left(\frac{a+b}{2} - x \right) + h(x-a) + |(x-a) + h(x-b)| + \left| \left(x - \frac{a+b}{2} \right) - h(x-a) + |(x-a) + h(x-b)| \right| \right],$$
(2.5)

$$S = (f(b) - f(a))/(b - a), \ \gamma = \inf_{t \in [a,b]} f'(t), \ and \ \Gamma = \sup_{t \in [a,b]} f'(t).$$

Proof: From (2.2) and the facts

$$\frac{1}{b-a} \int_{a}^{b} f'(t) dt = \frac{f(b) - f(a)}{b-a}$$
 (2.6)

and

$$\int_{a}^{b} K(x,t)dt = h \frac{b-a}{2} (a+b-2x), \qquad (2.7)$$

it follows that

$$\frac{1}{b-a} \int_{a}^{b} K(x,t) f'(t) dt - \frac{1}{(b-a)^{2}} \int_{a}^{b} K(x,t) dt \int_{a}^{b} f'(t) dt$$

$$= \frac{1}{2} \left[(1-2h) f(x) + f(a+b-x) + h(f(a)+f(b)) \right]$$

$$-h\left(\frac{a+b}{2} - x\right) \frac{f(b) - f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(t) dt. \tag{2.8}$$

We denote

$$R_n(x) = \frac{1}{b-a} \int_a^b K(x,t) f'(t) dt - \frac{1}{(b-a)^2} \int_a^b K(x,t) dt \int_a^b f'(t) dt.$$
 (2.9)

If $C \in \mathbb{R}$ is an arbitrary constant, then we have

$$R_n(x) = \frac{1}{b-a} \int_a^b (f'(t) - C) \left[K(x,t) - \frac{1}{b-a} \int_a^b K(x,s) ds \right] dt.$$
 (2.10)

Furthermore, we have

$$|R_n(x)| \le \frac{1}{b-a} \max_{t \in [a,b]} \left| K(x,t) - \frac{1}{b-a} \int_a^b K(x,s) ds \right| \int_a^b |f'(t) - C| dt.$$
 (2.11)

Now, to compute

$$\max_{t \in [a,b]} \left| K(x,t) - \frac{1}{b-a} \int_{a}^{b} K(x,s) ds \right| \\
= \max_{t \in [a,b]} \left\{ \left| (x-a) + h(x-b) \right|, \left| \left(\frac{a+b}{2} - x \right) + h(x-a) \right|, \left| h(x-a) \right| \right\} \\
= \max_{t \in [a,b]} \left\{ \left| (x-a) + h(x-b) \right|, \left(\frac{a+b}{2} - x \right) + h(x-a) \right\} \\
= \frac{1}{2} \left[\left(\frac{a+b}{2} - x \right) + h(x-a) + \left| (x-a) + h(x-b) \right| \right] \\
+ \left| \left(x - \frac{a+b}{2} \right) - h(x-a) + \left| (x-a) + h(x-b) \right| \right]. \tag{2.12}$$

We also have

$$\int_{a}^{b} |f'(t) - \gamma| dt = (S - \gamma) (b - a)$$
(2.13)

and

$$\int_{a}^{b} |f'(t) - \Gamma| dt = (\Gamma - S) (b - a).$$
 (2.14)

Therefore, we obtain (2.3) and (2.4) by using (2.8)-(2.14) and choosing $C = \gamma$ and $C = \Gamma$ in (2.11), respectively.

Remark. Choosing h = 0 in both (2.3) and (2.4) respectively, yields

$$\left| \frac{\left[f\left(x \right) + f\left(a + b - x \right) \right]}{2} - \frac{1}{b - a} \int_{a}^{b} f\left(t \right) dt \right|$$

$$\leq \left[\frac{b - a}{4} + \left| x - \frac{3a + b}{4} \right| \right] (S - \gamma)$$

$$(2.15)$$

and

$$\left| \frac{\left[f\left(x\right) + f\left(a+b-x\right) \right]}{2} - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right|$$

$$\leq \left[\frac{b-a}{4} + \left| x - \frac{3a+b}{4} \right| \right] (\Gamma - S).$$

$$(2.16)$$

Noting that (2.15) and (2.16) are similar to those obtained by [3].

Corollary 2.3. Under the assumptions of Theorem (4),

choosing
$$x = \frac{3a+b}{4}$$
, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{3a + b}{4}\right) + f\left(\frac{a + 3b}{4}\right) + h\left(f\left(a\right) + f\left(b\right)\right) \right] - h\left(\frac{b - a}{4}\right) S - \frac{1}{b - a} \int_{a}^{b} f\left(t\right) dt \right|$$

$$\leq \frac{b - a}{8} \left[(1 + h) + |1 - 3h| + |(1 + h) - |1 - 3h|| \right] (S - \gamma)$$
(2.17)

and

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{3a + b}{4}\right) + f\left(\frac{a + 3b}{4}\right) + h\left(f\left(a\right) + f\left(b\right)\right) \right] - h\left(\frac{b - a}{4}\right) S - \frac{1}{b - a} \int_{a}^{b} f\left(t\right) dt \right| \\
\leq \frac{b - a}{8} \left[(1 + h) + |1 - 3h| + |(1 + h) - |1 - 3h|| \right] (\Gamma - S), \tag{2.18}$$

choosing x = a, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f(a) + f(b) + h \left(f(a) + f(b) \right) \right] - h \left(\frac{b - a}{2} \right) S \right|$$

$$- \frac{1}{b - a} \int_{a}^{b} f(t) dt$$

$$\leq \frac{b - a}{2} \left[\left(\frac{1}{2} + h \right) + \left| \frac{1}{2} - h \right| \right] (S - \gamma)$$

$$(2.19)$$

and

$$\left| \frac{1}{2} \left[(1 - 2h) f(a) + f(b) + h \left(f(a) + f(b) \right) \right] - h \left(\frac{b - a}{2} \right) S \right|$$

$$- \frac{1}{b - a} \int_{a}^{b} f(t) dt$$

$$\leq \frac{b - a}{2} \left[\left(\frac{1}{2} + h \right) + \left| \frac{1}{2} - h \right| \right] (\Gamma - S), \qquad (2.20)$$

choosing $x = \frac{a+b}{2}$, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{a+b}{2}\right) + f\left(\frac{a+b}{2}\right) + h\left(f\left(a\right) + f\left(b\right)\right) \right] - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right|$$

$$\leq \frac{b-a}{4} \left[1 + |1 - 2h| \right] (S - \gamma)$$

$$(2.21)$$

and

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{a+b}{2}\right) + f\left(\frac{a+b}{2}\right) + h\left(f\left(a\right) + f\left(b\right)\right) \right] - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right|$$

$$\leq \frac{b-a}{4} \left[1 + \left| 1 - 2h \right| \right] (\Gamma - S).$$

$$(2.22)$$

A new inequality of Ostrowski's type may be stated as follows:

Corollary 2.4. Let f be as in Theorem (4). Additionally, if f is symmetric about $x = \frac{a+b}{2}$, then $\forall x \in [a, \frac{a+b}{2}]$, we have

$$\left| (1-h) f(x) + \frac{h}{2} (f(a) + f(b)) - h \left(\frac{a+b}{2} - x \right) S - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq m(x,h) (S-\gamma)$$
(2.23)

and

$$\left| (1-h) f(x) + \frac{h}{2} (f(a) + f(b)) - h \left(\frac{a+b}{2} - x \right) S - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq m(x,h) (\Gamma - S).$$
(2.24)

Remark. Choosing h = 1 in both (2.23) and (2.24) with $x = \frac{a+b}{2}$ yields

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{b - a}{2} (S - \gamma)$$

$$(2.25)$$

and

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{b - a}{2} \left(\Gamma - S \right). \tag{2.26}$$

2.2 The case when $f'' \in L_2[a,b]$

Theorem 2.5. Let $f:[a,b] \to \mathbb{R}$ be a twice continuously differentiable mapping in (a,b) with $f'' \in L_2[a,b]$. Then $\forall x \in [a,\frac{a+b}{2}]$ and $h \in [0,1]$ we have

$$\left| \frac{1}{2} \left[(1 - 2h) f(x) + f(a + b - x) + h(f(a) + f(b)) \right] \right|$$

$$-h\left(\frac{a+b}{2} - x\right) S - \frac{1}{b-a} \int_{a}^{b} f(t) dt$$

$$\leq \frac{(b-a)^{\frac{1}{2}}}{\sqrt{2}\pi} \left[\frac{(b-a)^{2}}{48} \left(8h^{3} + 1 \right) + \left(x - \left(\frac{3a+b}{4} + h \frac{b-a}{2} \right) \right)^{2} \right]$$

$$+ (1-2h) \left(\frac{(1-2h)^{2} (b-a)^{2}}{48} + \left(x - \frac{3a+b}{4} \right)^{2} \right)$$

$$- \frac{h^{2}}{2} (a+b-2x)^{2} \right|^{\frac{1}{2}} \|f''\|_{2}.$$

$$(2.27)$$

Proof: Let $R_n(x)$ be defined by (2.9). From (2.8), we get

$$R_{n}(x) = \frac{1}{2} \left[(1 - 2h) f(x) + f(a + b - x) + h(f(a) + f(b)) \right]$$
$$-h\left(\frac{a+b}{2} - x\right) \frac{f(b) - f(a)}{b-a} - \frac{1}{b-a} \int_{a}^{b} f(t) dt. \tag{2.28}$$

If we choose C=f'((a+b)/2) in (2.10) and use the Cauchy inequality, then we get

$$|R_{n}(x)| = \frac{1}{b-a} \int_{a}^{b} \left| f'(t) - f'\left(\frac{(a+b)}{2}\right) \right| \left| K(x,t) - \frac{1}{b-a} \int_{a}^{b} K(x,s) ds \right| dt$$

$$\leq \frac{1}{b-a} \left(\int_{a}^{b} \left(f'(t) - f'\left(\frac{a+b}{2}\right) \right)^{2} dt \right)^{\frac{1}{2}}$$

$$\times \left(\int_{a}^{b} \left(K(x,t) - \frac{1}{b-a} \int_{a}^{b} K(x,s) ds \right)^{2} dt \right)^{\frac{1}{2}}. \tag{2.29}$$

Now, by using Diaz-Metcalf inequality [10], we get

$$\int_{a}^{b} \left(f'(t) - f'\left(\frac{a+b}{2}\right) \right)^{2} dt \le \frac{(b-a)^{2}}{\pi^{2}} \|f''\|_{2}^{2}. \tag{2.30}$$

Moreover, we also have

$$\int_{a}^{b} \left(K(x,t) - \frac{1}{b-a} \int_{a}^{b} K(x,s) ds \right)^{2} dt$$

$$= \frac{b-a}{2} \left[\frac{(b-a)^{2}}{48} \left(8h^{3} + 1 \right) + \left(x - \left(\frac{3a+b}{4} + h \frac{b-a}{2} \right) \right)^{2} + (1-2h) \left(\frac{(1-2h)^{2} (b-a)^{2}}{48} + \left(x - \frac{3a+b}{4} \right)^{2} \right) - \frac{h^{2}}{2} (a+b-2x)^{2} \right].$$
(2.31)

Therefore, by using (2.28), (2.29), (2.30), and (2.31), we obtain (2.27).

Remark. Choosing h = 0 in (2.27), yields

$$\left| \frac{1}{2} \left[f(x) + f(a+b-x) \right] - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq \frac{(b-a)^{\frac{1}{2}}}{\pi} \left[\frac{(b-a)^{2}}{48} + \left(x - \frac{3a+b}{4}\right)^{2} \right]^{\frac{1}{2}} \|f''\|_{2}.$$
(2.32)

Corollary 2.6. Under the assumption of Theorem (5),

choosing $x = \frac{3a+b}{4}$, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{3a + b}{4}\right) + f\left(\frac{a + 3b}{4}\right) + h\left(f\left(a\right) + f\left(b\right)\right) \right] - h\left(\frac{b - a}{4}\right) S - \frac{1}{b - a} \int_{a}^{b} f\left(t\right) dt \right| \\
\leq \frac{(b - a)^{\frac{3}{2}}}{4\sqrt{3}\pi} \left[9h^{2} - 3h + 1 \right]^{\frac{1}{2}} \|f''\|_{2}, \tag{2.33}$$

choosing x = a, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f(a) + f(b) + h (f(a) + f(b)) \right] \right|
- h \left(\frac{b - a}{2} \right) S - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right|
\leq \frac{(b - a)^{\frac{3}{2}}}{2\sqrt{3}\pi} \|f''\|_{2},$$
(2.34)

A NOTE ON NEW OSTROWSKI TYPE INEQUALITIES USING A GENERALIZED KERNEB3

choosing $x = \frac{a+b}{2}$, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{a+b}{2}\right) + f\left(\frac{a+b}{2}\right) + h\left(f\left(a\right) + f\left(b\right)\right) \right] - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right| \\
\leq \frac{(b-a)^{\frac{3}{2}}}{2\sqrt{3}\pi} \left[3h^{2} - 3h + 1 \right]^{\frac{1}{2}} \|f''\|_{2}. \tag{2.35}$$

Additional new inequality of Ostrowski's type may be stated as follows:

Corollary 2.7. Let f be as in Theorem (5). Additionally, if f is symmetric about $x = \frac{a+b}{2}$, then $\forall x \in \left[a, \frac{a+b}{2}\right]$ we have

$$\left| (1-h) f(x) + \frac{h}{2} (f(a) + f(b)) - h \left(\frac{a+b}{2} - x \right) S \right|
- \frac{1}{b-a} \int_{a}^{b} f(t) dt \left| \right|
\leq \frac{(b-a)^{\frac{1}{2}}}{\sqrt{2}\pi} \left[\frac{(b-a)^{2}}{48} \left(8h^{3} + 1 \right) + \left(x - \left(\frac{3a+b}{4} + h \frac{b-a}{2} \right) \right)^{2} \right.
+ (1-2h) \left(\frac{(1-2h)^{2} (b-a)^{2}}{48} + \left(x - \frac{3a+b}{4} \right)^{2} \right)
- \frac{h^{2}}{2} (a+b-2x)^{2} \right]^{\frac{1}{2}} \|f''\|_{2}.$$
(2.36)

Remark. Choosing h = 1 in (2.36) with $x = \frac{a+b}{2}$ yields

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{(b - a)^{\frac{3}{2}}}{2\sqrt{3}\pi} \|f''\|_{2}. \tag{2.37}$$

2.3 The case when $f' \in L_2[a,b]$

Theorem 2.8. Let $f:[a,b] \to \mathbb{R}$ be an absolutely continuous mapping in (a,b) with $f' \in L_2[a,b]$. Then $\forall x \in [a,\frac{a+b}{2}]$ and $h \in [0,1]$ we have

$$\left| \frac{1}{2} \left[(1 - 2h) f(x) + f(a + b - x) + h(f(a) + f(b)) \right] \right|
- h\left(\frac{a+b}{2} - x\right) S - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|
\leq (b-a)^{-\frac{1}{2}} \left[\frac{(b-a)^{2}}{48} \left(8h^{3} + 1 \right) + \left(x - \left(\frac{3a+b}{4} + h \frac{b-a}{2} \right) \right)^{2} \right]
+ (1-2h) \left(\frac{(1-2h)^{2} (b-a)^{2}}{48} + \left(x - \frac{3a+b}{4} \right)^{2} \right)
- \frac{h^{2}}{2} (a+b-2x)^{2} \right]^{\frac{1}{2}} \sqrt{\frac{\sigma(f')}{2}},$$
(2.38)

where $\sigma(f')$ is defined by

$$\sigma(f') = \|f\|_2^2 - \frac{(f(b) - f(a))^2}{b - a} = \|f\|_2^2 - S^2(b - a).$$

Proof: Let $R_n(x)$ be defined by (2.9). If we choose $C = \frac{1}{b-a} \int_a^b f'(t) dt$ in (2.10) and use the Cauchy inequality and (2.31), then we have

$$|R_{n}(x)| = \frac{1}{b-a} \int_{a}^{b} \left| f'(t) - \frac{1}{b-a} \int_{a}^{b} f'(t) dt \right| \left| K(x,t) - \frac{1}{b-a} \int_{a}^{b} K(x,s) ds \right| dt$$

$$\leq \frac{1}{b-a} \left(\int_{a}^{b} \left(f'(t) - \frac{1}{b-a} \int_{a}^{b} f'(t) dt \right)^{2} dt \right)^{\frac{1}{2}}$$

$$\times \left(\int_{a}^{b} \left(K(x,t) - \frac{1}{b-a} \int_{a}^{b} K(x,s) ds \right)^{2} dt \right)^{\frac{1}{2}}$$

$$\leq \sqrt{\frac{\sigma\left(f'\right)}{2}} \left(b-a\right)^{-\frac{1}{2}} \left[\frac{\left(b-a\right)^{2}}{48} \left(8h^{3}+1\right) + \left(x-\left(\frac{3a+b}{4}+h\frac{b-a}{2}\right)\right)^{2} \right. \\ \left. + \left(1-2h\right) \left(\frac{\left(1-2h\right)^{2} \left(b-a\right)^{2}}{48} + \left(x-\frac{3a+b}{4}\right)^{2}\right) - \frac{h^{2}}{2} \left(a+b-2x\right)^{2} \right]^{\frac{1}{2}}.$$

Remark. Choosing h = 0 in (2.38) yields

$$\left| \frac{1}{2} \left[f(x) + f(a+b-x) \right] - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq (b-a)^{-\frac{1}{2}} \left[\frac{(b-a)^{2}}{48} + \left(x - \frac{3a+b}{4} \right)^{2} \right]^{\frac{1}{2}} \sqrt{\sigma(f')}.$$
 (2.39)

Corollary 2.9. Under the assumption of Theorem (6),

choosing $x = \frac{3a+b}{4}$, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{3a + b}{4}\right) + f\left(\frac{a + 3b}{4}\right) + h\left(f\left(a\right) + f\left(b\right)\right) \right] - h\left(\frac{b - a}{4}\right) S - \frac{1}{b - a} \int_{a}^{b} f\left(t\right) dt \right| \\
\leq \frac{(b - a)^{\frac{1}{2}}}{4\sqrt{3}} \left[9h^{2} - 3h + 1 \right]^{\frac{1}{2}} \sqrt{\sigma\left(f'\right)}, \tag{2.40}$$

choosing x = a, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f(a) + f(b) + h (f(a) + f(b)) \right] - h \left(\frac{b - a}{2} \right) S - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{(b - a)^{\frac{1}{2}}}{2\sqrt{3}} \sqrt{\sigma(f')},$$
(2.41)

choosing $x = \frac{a+b}{2}$, yields

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{a+b}{2}\right) + f\left(\frac{a+b}{2}\right) + h\left(f\left(a\right) + f\left(b\right)\right) \right] - \frac{1}{b-a} \int_{a}^{b} f\left(t\right) dt \right| \le \frac{(b-a)^{\frac{1}{2}}}{2\sqrt{3}} \left[3h^{2} - 3h + 1 \right]^{\frac{1}{2}} \sqrt{\sigma(f')}.$$
 (2.42)

Further inequality of Ostrowski's type may be stated as follows:

Corollary 2.10. Let f be as in Theorem (6). Additionally, if f is symmetric about $x = \frac{a+b}{2}$, then $\forall x \in \left[a, \frac{a+b}{2}\right]$ we have

$$\left| (1-h) f(x) + \frac{h}{2} (f(a) + f(b)) - h \left(\frac{a+b}{2} - x \right) S - \frac{1}{b-a} \int_{a}^{b} f(t) dt \right|$$

$$\leq (b-a)^{-\frac{1}{2}} \left[\frac{(b-a)^{2}}{48} \left(8h^{3} + 1 \right) + \left(x - \left(\frac{3a+b}{4} + h \frac{b-a}{2} \right) \right)^{2} + (1-2h) \left(\frac{(1-2h)^{2} (b-a)^{2}}{48} + \left(x - \frac{3a+b}{4} \right)^{2} \right) - \frac{h^{2}}{2} (a+b-2x)^{2} \right]^{\frac{1}{2}} \sqrt{\frac{\sigma(f')}{2}}. \tag{2.43}$$

Remark. Choosing h = 1 in (2.43) with $x = \frac{a+b}{2}$ yields

$$\left| \frac{f(a) + f(b)}{2} - \frac{1}{b - a} \int_{a}^{b} f(t) dt \right| \le \frac{(b - a)^{\frac{1}{2}}}{2\sqrt{3}} \sqrt{\sigma(f')}. \tag{2.44}$$

3. Application to Cumulative Distribution Function

Let X be a random variable taking values in the finite interval [a,b] with the probability density function $f:[a,b]\to [0,1]$ and cumulative distribution function such that

$$F(x) = \Pr(X \le x) = \int_{a}^{x} f(t) dt,$$

$$F(b) = \Pr(X \le b) = \int_{a}^{b} f(t) dt = 1.$$

Then the following theorem holds:

Theorem 3.1. Let X and F be as above. Then with the assumption of Theorem (4), we have

$$\left| \frac{1}{2} \left[(1 - 2h) F(x) + F(a + b - x) \right] + \frac{1}{b - a} \left(h(x - a) - (b - E(X)) \right) \right|$$

$$\leq m(x, h) \left(\frac{1}{b - a} - \gamma \right)$$
(3.1)

and

$$\left| \frac{1}{2} \left[(1 - 2h) F(x) + F(a + b - x) \right] + \frac{1}{b - a} \left(h(x - a) - (b - E(X)) \right) \right|$$

$$\leq m(x, h) \left(\Gamma - \frac{1}{b - a} \right), \tag{3.2}$$

 $\forall x \in \left[a, \frac{a+b}{2}\right] \text{ and } h \in [0,1], \text{ where } E(X) \text{ is the expectation of } X.$

Proof: By (2.3) and (2.4) on choosing f = F and taking into account

$$E(X) = \int_{a}^{b} t f(t) dt = b - \int_{a}^{b} F(t) dt$$

we can obtain inequality (3.1) and (3.2).

Corollary 3.2. Under the assumption of Theorem (7) with $x = \frac{a+b}{2}$ and h = 1, we have

$$\left| E\left(X \right) - \frac{a+b}{2} \right| \le \frac{\left(b-a \right)^2}{2} \left(\frac{1}{b-a} - \gamma \right)$$

and

$$\left| E\left(X \right) - \frac{a+b}{2} \right| \le \frac{\left(b-a \right)^2}{2} \left(\Gamma - \frac{1}{b-a} \right).$$

Theorem 3.3. Let X and F be as above. Then with the assumption of Theorem (5), we have

$$\left| \frac{1}{2} \left[(1 - 2h) F(x) + F(a + b - x) \right] + \frac{1}{b - a} \left(h(x - a) - (b - E(X)) \right) \right|$$

$$\leq \frac{(b - a)^{\frac{1}{2}}}{\sqrt{2}\pi} \left[\frac{(b - a)^{2}}{48} \left(8h^{3} + 1 \right) + \left(x - \left(\frac{3a + b}{4} + h \frac{b - a}{2} \right) \right)^{2} \right]$$

$$+ (1 - 2h) \left(\frac{(1 - 2h)^{2} (b - a)^{2}}{48} + \left(x - \frac{3a + b}{4} \right)^{2} \right)$$

$$- \frac{h^{2}}{2} (a + b - 2x)^{2} \right]^{\frac{1}{2}} \|f\|_{2}, \tag{3.3}$$

 $\forall x \in \left[a, \frac{a+b}{2}\right] \text{ and } h \in [0, 1].$

Proof: By (2.27) on choosing f = F and taking into account

$$E(X) = \int_{a}^{b} t f(t) dt = b - \int_{a}^{b} F(t) dt,$$

we obtain (3.3).

Corollary 3.4. Under the assumption of Theorem (8) with $x = \frac{a+b}{2}$ and h = 1, we have

$$\left|E\left(X\right)-\frac{a+b}{2}\right|\leq\frac{\left(b-a\right)^{\frac{3}{2}}}{2\sqrt{3}\pi}\left\|f\right.'\right\|_{2}.$$

Theorem 3.5. Let X and F be as above. Then with the assumption of Theorem (6), we have

$$\left| \frac{1}{2} \left[(1 - 2h) F(x) + F(a + b - x) \right] + \frac{1}{b - a} \left(h(x - a) - (b - E(X)) \right) \right|$$

$$\leq (b - a)^{-\frac{1}{2}} \left[\frac{(b - a)^2}{48} \left(8h^3 + 1 \right) + \left(x - \left(\frac{3a + b}{4} + h \frac{b - a}{2} \right) \right)^2 \right]$$

$$+ (1 - 2h) \left(\frac{(1 - 2h)^2 (b - a)^2}{48} + \left(x - \frac{3a + b}{4} \right)^2 \right)$$

$$- \frac{h^2}{2} (a + b - 2x)^2 \right]^{\frac{1}{2}} \sqrt{\frac{\sigma(f)}{2}}, \tag{3.4}$$

where $\sigma(f)$ is defined by

$$\sigma(f) = ||f||_2^2 - \frac{1}{b-a}.$$

Proof: By (2.38) on choosing f = F and taking into account

$$E(X) = \int_{a}^{b} t f(t) dt = b - \int_{a}^{b} F(t) dt,$$

we obtain (3.4).

Corollary 3.6. Under the assumption of Theorem (9) with $x = \frac{a+b}{2}$ and h = 1, we have

$$\left| E\left(X \right) - \frac{a+b}{2} \right| \le \frac{\left(b-a \right)^{\frac{1}{2}}}{2\sqrt{3}} \sqrt{\sigma\left(f \right)}.$$

4. Application to Composite Quadrature Rules

Let $I_n: a=x_0 < x_1 < x_2 < < x_{n-1} < x_n=b$ be a partition of the interval [a,b] and $\delta_i=x_{i+1}-x_i$ (i=0,1,....,n-1). Consider the following general quadrature rule:

$$S(f, I_n) = \frac{1}{2} \sum_{i=0}^{n-1} \left[(1 - 2h) f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) + hf(x_i) + f(x_{i+1}) \right] \delta_i - \frac{h}{4} \sum_{i=0}^{n-1} \left[f(x_{i+1}) - f(x_i) \right] \delta_i.$$

$$(4.1)$$

Theorem 4.1. Let $f:[a,b] \to \mathbb{R}$ be a differentiable mapping in (a,b). If $f' \in L_1[a,b]$ and $\gamma \leq f'(x) \leq \Gamma$, $\forall x \in [a,b]$, then $\forall x \in \left[a,\frac{a+b}{2}\right]$ and $h \in [0,1]$ we have

$$\int_{a}^{b} f(x) dx = S(f, I_n) + R(f, I_n),$$

where $S(f, I_n)$ is defined by by formula (4.1), and the remainder $R(f, I_n)$ satisfies the estimates

$$R(f, I_n) \le \left[\frac{(1+h) + |1 - 3h| + |(1+h) - |1 - 3h||}{8} \right] \sum_{i=0}^{n-1} (S_i - \gamma) \delta_i^2$$
 (4.2)

and

$$R(f, I_n) \le \left[\frac{(1+h) + |1 - 3h| + |(1+h) - |1 - 3h||}{8} \right] \sum_{i=0}^{n-1} (\Gamma - S_i) \, \delta_i^2, \tag{4.3}$$

where $S_i = (f(x_{i+1}) - f(x_i))/\delta_i$, i = 0, 1,, n - 1.

Proof: Applying (2.17) and (2.18) to the interval $[x_i, x_{i+1}]$, then, respectively, we get

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) \right. \\ + h \left[f\left(x_i\right) + f\left(x_{i+1}\right) \right] \delta_i - \frac{h}{4} \left[f\left(x_{i+1}\right) - f\left(x_i\right) \right] \delta_i \\ - \left. \int_{x_i}^{x_{i+1}} f\left(t\right) dt \right| \\ \le \left[\frac{(1+h) + |1 - 3h| + |(1+h) - |1 - 3h||}{8} \right] (S_i - \gamma) \delta_i^2$$

and

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) + h \left[f\left(x_i\right) + f\left(x_{i+1}\right) \right] \delta_i - \frac{h}{4} \left[f\left(x_{i+1}\right) - f\left(x_i\right) \right] \delta_i - \int_{x_i}^{x_{i+1}} f\left(t\right) dt \right|$$

$$\leq \left[\frac{(1+h) + |1 - 3h| + |(1+h) - |1 - 3h||}{8} \right] (\Gamma - S_i) \delta_i^2,$$

for all i = 0, 1,, n - 1. Now summing over i from 0 to n - 1 and using the triangle inequality, we get both (4.2) and (4.3).

Theorem 4.2. Let $f:[a,b] \to \mathbb{R}$ be a twice continuously differentiable mapping in (a,b) with $f'' \in L_2[a,b]$. Then $\forall x \in \left[a,\frac{a+b}{2}\right]$ and $h \in [0,1]$ we have

$$\int_{a}^{b} f(x) dx = S(f, I_n) + R(f, I_n),$$

where $S(f, I_n)$ is defined by by formula (4.1), and the remainder $R(f, I_n)$ satisfies the estimate

$$R(f, I_n) \le \frac{\left[9h^2 - 3h + 1\right]^{\frac{1}{2}}}{4\sqrt{3}\pi} \|f''\|_2 \sum_{i=0}^{n-1} \delta_i^{\frac{5}{2}}.$$
 (4.4)

Proof: Applying (2.33) to the interval $[x_i, x_{i+1}]$, we get

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) \right. \right.$$

$$\left. + h \left[f\left(x_i\right) + f\left(x_{i+1}\right) \right] \delta_i - \frac{h}{4} \left[f\left(x_{i+1}\right) - f\left(x_i\right) \right] \delta_i$$

$$\left. - \int_{x_i}^{x_{i+1}} f\left(t\right) dt \right|$$

$$\leq \frac{\left[9h^2 - 3h + 1 \right]^{\frac{1}{2}}}{4\sqrt{3}\pi} \left\| f'' \right\|_2 \delta_i^{\frac{5}{2}},$$

for all i = 0, 1,, n - 1. Now summing over i from 0 to n - 1 and using the triangle inequality, we get (4.4).

Theorem 4.3. Let $f:[a,b] \to \mathbb{R}$ be an absolutely continuous mapping in (a,b) with $f' \in L_2[a,b]$. Then $\forall x \in \left[a,\frac{a+b}{2}\right]$ and $h \in [0,1]$ we have

$$\int_{a}^{b} f(x) dx = S(f, I_n) + R(f, I_n),$$

where $S(f, I_n)$ is defined by by formula (4.1), and the remainder $R(f, I_n)$ satisfies the estimate

$$R(f, I_n) \le \frac{\left[9h^2 - 3h + 1\right]^{\frac{1}{2}} \sum_{i=0}^{n-1} \left[\|f\|_2^2 - S_i^2 \delta_i \right]^{\frac{1}{2}} \delta_i^{\frac{3}{2}}, \tag{4.5}$$

where $S_i = (f(x_{i+1}) - f(x_i))/\delta_i$, i = 0, 1,, n - 1.

Proof: Applying (2.40) to the interval $[x_i, x_{i+1}]$, we get

$$\left| \frac{1}{2} \left[(1 - 2h) f\left(\frac{3x_i + x_{i+1}}{4}\right) + f\left(\frac{x_i + 3x_{i+1}}{4}\right) \right. \\
+ h \left[f\left(x_i\right) + f\left(x_{i+1}\right) \right] \delta_i - \frac{h}{4} \left[f\left(x_{i+1}\right) - f\left(x_i\right) \right] \delta_i \\
- \int_{x_i}^{x_{i+1}} f\left(t\right) dt \right| \\
\leq \frac{\left[9h^2 - 3h + 1 \right]^{\frac{1}{2}}}{4\sqrt{3}} \left[\|f\|_2^2 - S_i^2 \delta_i \right]^{\frac{1}{2}} \delta_i^{\frac{3}{2}},$$

for all i = 0, 1,, n - 1. Now summing over i from 0 to n - 1 and using the triangle inequality, we get (4.5).

References

- A. Ostrowski, Über die Absolutabweichung einer differentienbaren Funktionen von ihren Integralimittelwert, Comment. Math. Hel (1938); 10: 226-227.
- [2] N. UJević, New bounds for the first inequality of Ostrowski-Grüss type and applications, Computers and Mathematics with Applications (2003); 46: 421-427.
- [3] W. Liu, New Bounds for the Companion of Ostrowski's Inequality and Applications, Filomat (2014); 28: 167-178.
- [4] M. W. Alomari, A companion of Ostrowski's inequality for mappings whose first derivatives are bounded and applications in numerical integration, Kragujevac Journal of Mathematics, Volume 36 No. 1 (2012), Pages 77–82.
- [5] W. Liu, Y. Zhu and J. Park, Some companions of perturbed Ostrowski-type inequalities based on the quadratic kernel function with three sections and applications, Journal of Inequalities and Applications, (2013); 226.
- [6] G. Anastassiou, Ostrowski type inequalities, Proceedings of the American Mathematical Society 123.12 (1995); 3775-3781.
- [7] G. Anastassiou, and Jerome A. Goldstein, Higher order Ostrowski type inequalities over Euclidean domains. Journal of Mathematical Analysis and Applications 337.2 (2008); 962-968.
- [8] N. Barnett, S. S. Dragomir, and Ian Gomm, A companion for the Ostrowski and the generalised trapezoid inequalities, Mathematical and Computer Modelling 50.1 (2009); 179-187.
- [9] Z. Liu, Some companions of an Ostrowski type inequality and applications, Journal of Inequalities in Pure and Applied Mathematics 10.2 (2009).
- [10] D.S. Mitrinović, J.E. Pecarić and A.M. Fink, Inequalities involving functions and their integrals and derivatives, Mathematics and its Applications. (East European Series), Kluwer Acadamic Publications Dordrecht (1991); 53.
- [11] A. Qayyum, M. Shoaib, and I. Faye, A Companion of Ostrowski Type Integral Inequality Using a 5-Step Kernel with Some Applications, Filomat 30:13 (2016), 3601–3614.
- [12] A. Qayyum, M. Shoaib, and I. Faye, Companion of Ostrowski-type inequality based on 5-step quadratic kernel and applications, Journal of Nonlinear Science and Applications, 9 (2016); 537-552.
- [13] M. Z. Sarikaya, H. Budak, A. Qayyum, An improved version of perturbed companion of Ostrowski type inequalities, Journal of inequalities and special functions, vol. 7 (3), (2016).
- [14] W. Liu, W. Wen, and J. Park, A refinement of the difference between two integral means in terms of the cumulative variation and applications, Journal of Mathematical Inequalities 10 (2016); 147-157.
- [15] W. Liu, and J. Park, A companion of Ostrowski like inequality and application to composite quadrature rules, Journal of Computational Analysis and Applications (2017).
- [16] N. Barnett, P. Cerone, S.S. Dragomir, J. Roumeliotis, and A. Sofo, A survey on Ostrowski type inequalities for twice differentiable mappings and applications, (2001).
- [17] F. Aurelia, and C. Niculescu. A note on Ostrowski's inequality. Journal of Inequalities and Applications, 2005.5 (2005); 1-10.
- [18] S. S. Dragomir, P. Cerone, and J. Roumeliotis. A new generalization of Ostrowski's integral inequality for mappings whose derivatives are bounded and applications in numerical integration and for special means, Applied Mathematics Letters 13.1 (2000); 19-25.

Waseem Ghazi Alshanti

Department of Mathematics, University of Hail,, Kingdom of Saudi Arabia. E-mail address: waseemalshanti@yahoo.com

Ather Qayyum

Department of Mathematics, University of Hail,, Kingdom of Saudi Arabia. *E-mail address*: atherqayyum@gmail.com