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A NOTE ON NEW OSTROWSKI TYPE INEQUALITIES USING
A GENERALIZED KERNEL

WASEEM GHAZI ALSHANTI, ATHER QAYYUM

ABSTRACT. In this paper, Based on general form of 3-step kernel, new ver-
sions of Ostrowski’s type integral inequality are developed. We investigate the
new Ostrowski’s integral inequalities for differentiable mapping f with first
derivative belongs to two different Lebesgue spaces. Moreover, the case when
f " € Ls is considered. Some applications to cumulative distribution function,
and to composite quadrature rules are also given.

1. INTRODUCTION

With reference to their applications, integral inequalities play an important role
in several branches of mathematics and statistics. In 1938, Ostrowski [I] introduced
an interesting integral inequality. His inequality measures the deviation of a func-
tion from its itegral mean. Consequently, associated with a differentiable mapping
there has been an extensive research history of related results. The classical integral
inequality of Ostrowski was presented as follows:

Theorem 1.1. Let f : [a,b] = R be continuous mapping on [a,b] and differentiable
on (a,b), whose derivative f’: (a,b) — R is bounded on (a,b), i.e.

[ loe = sup [ ()] < o0
te(a,b]
then for all z € [a, b]
b
1 1 — ath
f@ -5 [ s < [T (52 ) [e-alfl.. @

In 2003, UlJevié¢ [2] proved the following Ostrowski type inequality:

Theorem 1.2. Let f : I — R , where I C R is an interval, be a differentiable
mapping in Int I , and let a,b € Int I , a < b . If 3T € R such that v <
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f(x) T, for all x € [a,b] and f" € Ly(a,b), then we have

f(x)_<x_a42rb)f(bl)):CJ:(a)_bia/f(t)dt 12)

b—a
< (=7
and
b
fo) - (o= 52 ) FO L [ s
< hr-s),
where

Recently, motivated by [2] and by utilizing 3-step linear kernel, Liu [3] investi-

gated ([1.2) and (1.3]) as follows:

Theorem 1.3. Let f: [a,b] — R be a differentiable mapping in (a,b). If f' €
Ly [a,b] and v < f'(z) <T, for all x € [a,b], then for all x € [a, ‘%Lb], we have

f(x)—f(Qa—&-b—a?)_bia/f(t)dt (1.4)
< [b;a+‘x_3azbu(5_7)
and
f($)—f(2a+b_x)_b1a/bf(t)dt (1.5)
e | [0
where

For other related results, the reader may be refer to [4]-[13].

In this paper, we point out some integral inequalities of Ostrowski type by intro-
ducing a general form of 3-step linear kernel. We establish our new estimations of
the left hand side of both and by employing a differentiable mapping f
with derivative belongs to two different Lebesgue spaces, namely, f ' € L; [a, b] and
f ' € Ly[a,b]. Moreover, the case when f” € Lo [a,b] is also carried out. Most of
the new version of Ostrowski type inequality in our paper will be obtained by using
both Holder’s integral inequality and Diaz-Metcalf inequality. Finally, we apply our
results for both cumulative distribution function and composite quadrature rules.
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2. MAIN RESULTS

Before we introduce our main results for a general form of 3-step linear kernel,
we commence with the following lemma:

Lemma 2.1. Consider the kernel

t— (a+h%5%), t € la,z]
K(z,t) =S t— (2 —hb52), te(z,a+b-—a] (2.1)
t—(b—h%2), te(at+b—mb

for all z € |a, ‘%rb} and h € [0,1], then the following identity holds:

b
bia/K(a:,t)f’(t)dt

= S0 F@)+ Flatb—a)+h(f (@) +f ()]
b
’bia / £ (8)dt. (2.2)

Proof: From ({2.1]), we have

Hence, we obtain (2.2). Now, with the use of (2.2]), we state and prove the following

cases:

2.1 The case when f’ € Ly [a,b] and f’ is bounded
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Theorem 2.2. Let f : [a,b] — R be a differentiable mapping in (a,b). If f' €
Lyfa,b) and v < f' () <T, Va € [a,b], then Vo € [a, “2]and h € [0,1] we have

S @4 farb-n+hT@+TO] @3
b
_h<a;rb—x)8—bia/f(t)dt
< m(z,h)(S—7)
and
=M@+ farb-Dth(f@+FO)] @0
b
_h(a;b_x)g_bia/f(t)dt
< m(x,h) (T -209), '
where
m (z, h) (2.5)
_ ;[(“;Lb_x)+h(m_a)+|(x—a)+h(x—b)|
+ <xa;rb>h(za)+(za)+h(zb)|”,

S =(f(b) = f(a)/(b—a), v= teifif,b]fl(t)’ and I' = sup f'(t).

te(a,b]
Proof: From and the facts
b
1 ) f ()~ f(a)
tydt = 12— 2.
1 - (26)
and
b—a

/K(z,t)dt = h" % (at b 22), (2.7)

it follows that
1 b 1 b b
K(z,t ’tdt—i/Kx,tdt/ " (t) dt
i | Keor a2 [Kena [ 510

[(1=2h) f(x) + f(a+b—xz)+h(f(a)+ [ (D))

N =

b

_h<“;b_x)f<b)_f(a>— 1a/f(t)dt. (2.8)
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We denote

b b b
R,(x) = bia/K(x,t)f’(t) dt — (b_la)Z/K(a:,t)dt/f’(t) dt. (2.9)

a

If C € R is an arbitrary constant, then we have

b
Rolae) = [ 10 -C)

a

b
K(z,t) — bia /K(x,s)ds] dt. (2.10)

Furthermore, we have

R ()] < —— max | K(z,t) b_a/K(x,s)ds /|f’(t)—C\dt. (2.11)

~ b— atela,b]

Now, to compute

b
1
K -—— | K
tren[;a’)g] (z,1) b—a/ (z,8)ds

- E%{K;ﬁa)mnbn, (“;bx)w(aza) 7h(ra)l}
_ trél[%{|(xa)+h<xb)|,<“;bx>+h(xa)}
_ ;Ka;rb—x>+h(x—a)+|($—a)+h($—b)|
+‘(za;rb>h(xa)+|(xa)+h(xb)|H. (2.12)
We also have \
[0 -ldt=s-n -0 (2.13)
and ab
/|f’(t)fl“|dt: (T~ S)(b—a). (2.14)

a

Therefore, we obtain ([2.3)) and (2.4) by using (2.8])-(2.14]) and choosing C = ~
and C' =T in (2.11)), respectively.

Remark. Choosing h = 0 in both and respectively, yields

[f () + fla+b—2x) 1 a/f(t) dt (2.15)

2 b—

<

[b;a+’x_3a+b

H (5 - )
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2 2 2

and
|[f(x)+f(2a+b_x)]—bla/bf(t)dt (2.16)
; {b4a+’I 3a+bH -5,
Noting that and are similar to those obtained by [3].
Corollary 2.3. Under the assumptions of Theorem (4),
choosing x = 3““’, yields
sa-mr (32 s () vnv@+ s
_h(b4a>s_ bia/bf(t)dt
< I)_Ta[(1+h)+|1—3h\+|(1+h)—|1—3h\|}(5—7) (2.17)
and
a2 s (220 +f(‘”f") PR @)+ £0)
—h ( ) S~ —/f
< b% [(1+h)+|1—=3h|+|(1+h)—|1=3n|](([-S5), (2.18)
choosing x = a, yields
Sa-ms@ro+n@+ sl -n(50)s
—bia/bf(t)dt
< b;a{(;+h)+’;—hu (S —7) (2.19)
and
Sla-ams @ ro @+ w-n(50) s
—bla/bf(t)dt
<[] oo
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choosing x = “T“’ yields

Sla-mr (S) s () +rv @+ o)

2 2
) b
—b_a/f(t)dt

< %[H 11— 2h)] (S —~) (2.21)

—bia/bf(t)dt

b—a
4
A new inequality of Ostrowski’s type may be stated as follows:

DN | =

and

-2 r (0) 41 (50) +rU @+ )

DN | =

< [1+[1—2n](T=5). (2:22)

Corollary 2.4. Let f be as in Theorem (4). Additionally, if f is symmetric about
T = “TH’, then Yz € [a, “TH'] , we have

(1—h)f(fc)+h(f(a)+f(b))_h<a‘;b_x)5

2
b
s [
< m(x,h)(S—7) (2.23)
and
a-ns@+ @+ -n(45-2)s
b
—bia/f(t)dt
< m(x,h)(T-239). (2.24)

Remark. Choosing h =1 in both and with © = %*b yields

b

f(a);_f(b)ibia/f(t)dt gbga(Sf’y) (2.25)
and .

|f(a);rf(b)_bia/f(t)dt <oty (2.26)

2.2 The case when f " € Ls[a,b]



A NOTE ON NEW OSTROWSKI TYPE INEQUALITIES USING A GENERALIZED KERNER1

Theorem 2.5. Let f : [a,b] = R be a twice continuously differentiable mapping
in (a,b) with f" € Ly[a,b]. Then Vz € [a, “t]and h € [0,1] we have

‘;[(1—2h)f(x)+f(a+b—x)+h(f(a)+f(b))]
h(“;bx)sbia/bf(t)dt
(b\_ﬁjr)é l(b;8a)2 (3K +1) + (:r, (3a:b+hb;a)>2

+(1-2n) <(1 7%)48@7&) + <:c 3“4%) )

2

- h2(a+b—2x)2] Nf s (2.27)

IN

Proof: Let R, (z) be defined by (2.9)). From (2.8)), we get

Ro(z) = S[1—=2h)f(2)+flat+b—x)+h(f(a)+f (D))

_h(a;b—x>f(bz_im)—blaa/bf(t)dt. (2.28)

If we choose C' = f ' ((a+b)/2) in (2.10) and use the Cauchy inequality, then
we get

= gt flro-(45°)
Ao s)e)

a

b b 2\ 3
X /(K(x,t) - bla/K(Jc,s)ds> dt| . (2.29)

DN | =

K(z,t) — dt

K
b—a/ (z,8)ds

a a

Now, by using Diaz-Metcalf inequality [10], we get

/(f/(t)_f/(a;b)) di < (b ) 15 (2.30)
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Moreover, we also have

b

/(K(x,t)bla/bK(x,s)ds)Zdt

a

_ b—a (b—a)? 3 3a+b b—a\\’
5 [48 (8h° +1) + (2 — T T
(1—2h)°(b—a)’ 3a+b\>
+(1—2h) < 15 + | 1
h? 2
-5 (a+b—22)7|. (2.31)
Therefore, by using (2.28]), (2.29), (2.30]), and (2.31)), we obtain (2.27).
Remark. Choosing h =0 in , yields
. b
S+ r@ro-o)- o [raa
(b—a)® (b—a? , ( Batb)’ ;”f,,” (232
T 18 Ty 2° '
Corollary 2.6. Under the assumption of Theorem (5),
choosing x = B“TH’, yields
1 3a+0b a+ 3b
Sa-mr (32 s () vnv @+ s )]
b 1 b
—a
—h( . )s— b_a/f(t)dt
(b — a)% 2 3 "
< VY rgp2 _3p41]2 : 2.33
S ik [ 1217, (2.33)

choosing x = a, yields

SI0=207 @470+ @+ O)

o

(b_a) "
< Sl (2.34)
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choosing x = % yields

’; [(1—2h)f(a;b>+f<a;b>+h(f(a)+f(b))

(b—a)?

O rap2 g 4117 177, . 2.35
| 14171, )

Additional new inequality of Ostrowski’s type may be stated as follows

Corollary 2.7. Let f be as in Theorem (5). Additionally, if f is symmetric about
T = “T"‘b, then Vx € [a7 “T'H’] we have

IN
—
S@
|
N
3]s
S
1
—
>
S
©l g
SN—
1)
—
o0
>
w
—_
SN—
JF
7 N
|
7N
w
IS
JF
>~
>
>
|
S
~__
~__
[\v]

2 2 2
+(1-2h) <(1 _2h)48(b_“) + (x— 3“:1’) )

2

- (aso=20?| g,

[NIE

(2.36)
Remark. Choosing h =1 in (2.36) with x = “'H’ yields
fla+re) 1 b (b-a)?
a)+ 2 7
— < . .
y = [ roa) < S, (2:37)

a

2.3 The case when f’ € L3 [a,b]
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Theorem 2.8. Let f : [a,b] — R be an absolutely continuous mapping in (a,b)
with ' € Ly[a,b]. Then Yz € [a, “E2]and h € [0,1] we have

31020 @)+ fatb=) 4R (7 @+ £ 0)

_h<a;b—x)5—bia/bf(t)dt
(b—a)"? l(b;;)Z (8h% +1) + (x— (3az—b+hb;a)>2

+(1-2h) <(1 7%)48@7&) + <:c 3“4”’) )

_h;(a—i-b—Zx)z]z U(g/),

IN

(2.38)

where o (f ') is defined by

2
YOI -2 p-a).

o (F ) =Ifls ===

Proof: Let R, (z) be defined by (2.9). If we choose C' = 72— [ f/(¢)dt in (2.10

8 —

and use the Cauchy inequality and (2.31]), then we have

IN
S
| | =
=)
—
o~
Kﬁ
/\\
<
|
S
—_
=)
—
\
S
S~—
QL
=
~
[V
u
S
N

S 0(51) (b—a)y l(b;ga)Q (8h° +1) + (x_ <3a:b +hb;a>)2

+(1 - 2h) <(1 W) baf <as 3“{’)2) h;(aerZz)Q];.
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Remark. Choosing h =0 in yields

b

F@+Farb-o) - [

]

Corollary 2.9. Under the assumption of Theorem (6),

DO =

1
2

choosing x = ?’ajb, yields

Lo (23 o)
_h(b;“)S—bia/bf(t)dt

(b*a) 2 % /
< T/??[gh —3h+1]2 /o (f"), (2.40)

Nl=

choosing x = a, yields

Sla-mi@+ o+ nG @+ ron-n(50)s

G (2.41)

choosing x = a;b, yields

‘; [(1—2h)f(a;b>+f(a;b>+h(f(a)+f(b))

b
1
b_a/f(t)dt

(b—a)* W
< e [3h? —3h +1]% \/o (f'). (2.42)

Further inequality of Ostrowski’s type may be stated as follows:
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Corollary 2.10. Let f be as in Theorem (6). Additionally, if f is symmetric about
T = QTH’, then Vx € [a, ‘IT“’] we have

a-n @+ U@+ o) -n ("5 o) s

1 [ (b—a)? a+b b—a\\’
< (b—a) Ql( 48) (8h3—|—1)+(x—(3: h 5 ))
2 2 2
s (At ()
-] 2L (243

Remark. Choosing h =1 in with x = %‘H’ yields

(b—a)?
2V/3

~
—
£
—+
~
=
~
I
—
IS]
~
—~
=
U
S
IN

a(f). (2.44)

3. APPLICATION TO CUMULATIVE DISTRIBUTION FUNCTION

Let X be a random variable taking values in the finite interval [a,b] with the
probability density function f : [a,b] — [0,1] and cumulative distribution function
such that

F(ac):Plr(Xgav):/mf(t)dt7

b

F(b):Pr(ng):/f(t)dt:I.

a

Then the following theorem holds:

Theorem 3.1. Let X and F be as above. Then with the assumption of Theorem
(4), we have

‘;[(12h)F(m)+F(a+bI)]

1
b—a

n <h<x—a>—<b—E<X>>>\

< mian) (725 -0) (3.)
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and
‘;[(12h)F(x)+F(a+bx)]
by (h(o =) - 0= B(X)
< m(x,h) (F— bia)’ (3.2)
Vae [a,“—*b

2] and h € [0,1], where E(X) is the expectation of X.
Proof: By (2.3) and (2.4) on choosing f = F' and taking into account

b b
/ tf(t)dt:b—/ F (t)dt
we can obtain inequality (3.1]) and (3.2]).

Corollary 3.2. Under the assumption of Theorem (7) with x = %rb and h = 1,
we have

’Em—“;bl <b_2a)2(bia—v)

‘E(X)— “;b‘ (b;“)g (F— bia).

Theorem 3.3. Let X and F be as above. Then with the assumption of Theorem
(5), we have

E(X)

IN

and

IA

‘;[(12h)F(x)+F(a+bz)]+b_1a(h(xa)(bE(X)))‘

< (b\;ic;)é [(b;;)z (3h° 4 1) + <x_ <3a+b +hb_a>)2

4 2

o2 (h— a)? a 2
+(1—2h)<(1 2h)48(b )+<x—3:b>>

-2 tar b= 22| 1

N
-

(3.3)
V€ [a, %] and h € [0,1].
Proof: By (2.27)) on choosing f = F' and taking into account
b b
E(X) /tf(t)dt:b—/F(t)dt,

we obtain (3.3)).
Corollary 3.4. Under the assmuption of Theorem (8) with x = %rb and h = 1,
we have

wjw

‘E(X)—CH_b‘ < (b—a)

/
| < S 1
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Theorem 3.5. Let X and F be as above. Then with the assumption of Theorem
(6), we have

‘;[(1—2h)F(x)+F(a+b—a:)]—|—b_la(h(x—a)—(b—E(X)))‘

< (b-a)? [(b;;)Q (8% +1) + (x— (3“:’) +hb;a>)2

(1—2h)°(b—a)’ 3a+0b\>
+(12h)( 15 +(:E 1 >
h? 2 : a(f)
—2(a+b—2x)} o\, (3.4)
where o (f) is defined by
o () = I~ 5=

Proof: By (2.38]) on choosing f = F' and taking into account

b b
E(X):/ tf(t)dt:b—/ F (¢)dt,
we obtain .

Corollary 3.6. Under the assmuption of Theorem (9) with x = ‘%b and h = 1,

we have

(b—a)?
2V3

a+b
2

-5t < (5.

4. APPLICATION TO COMPOSITE QUADRATURE RULES

Let I, :a =29 < 1 < T2 < ... < Tp_1 < T, = b be a partition of the
interval [a,b] and 0; = 2,41 —x; (i = 0,1,.....,n — 1). Consider the following general
quadrature rule:

S(f,1n)
ln_l 3x¢+zi 1 Iz+3I, 1
- 2;[(1—%”(4 + >+f(4 + )
+hf (2i) + f(@i41)] 6 — gi [f (@it1) = f(2:)] 6. (4.1)
i=0

Theorem 4.1. Let f : [a,b] — R be a differentiable mapping in (a,b). If f' €
Lyfa,b] and vy < f'(z) <T, Vz € [a,b], then Vz € [a, “E2]and h € [0,1] we have

b

/f<:c>dz = S(f.1,) + R(f.1.).

a
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where S (f,1,) is defined by by formula (4.1)), and the remainder R (f,1,) sat-
isfies the estimates

R(f, In)
n—1
. [(1+h)+|1—3h|+8|(1+h)—|1—3h||]i_o(si_7)5? (4.2)
and
R(f In)
n—1
. [(1+h)+|1—3h|4;|(1+h)—|1—3h||];(P_Si)gg, (4.3)

where S; = (f(xit1) — f(x))/0:, i =0,1,..c..,m — 1.
Proof: Applying (2.17) and (2.18)) to the interval [x;, z; 1], then, respectively,

we get
1 3T; + Tiy1 T; + 3Ti41
plo-ms () e ()
h
+hUf (@) + f (@)l 6 = o [f (@iea) = f ()] 6
- [ s
< [(1+h)+|1—3h|—;|(1+h)—|1—3h||} (Si — )62
and
1 3x; + Tit1 T; + 3Tip1
o () ()
h
Hh(f (@) + f(@irn)] 0 = 7 [f (@iga) = f (@) 6
— / f()dt
< [(1+h)+|1 —3h|—;|(1+h)— |1—3h||] (T — S5) 62,
for all : = 0,1,.....,n — 1. Now summing over ¢ from 0 to n — 1 and using the

triangle inequality, we get both (4.2]) and (4.3)).

Theorem 4.2. Let f : [a,b] = R be a twice continuously differentiable mapping
in (a,b) with f"" € Ly[a,b]. Then Va € [a, “7“’] and h € [0, 1] we have

b

/f@Mz:SUm»+Rumm

a
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where S (f,1,) is defined by by formula (4.1)), and the remainder R (f,1,) sat-
isfies the estimate

1

9h% — 3h § 5
RUJMS[Vﬁ+W”szZ (4.4

Proof: Applying (2.33) to the interval [x;, z;11], we get

‘; {(1—2h)f <3$iz$i+1) +f <I¢+3z¢+1)

4
h
Hhif (@) + f(@ied)] 0 = 7 [f (@iga) = f ()] 6
Tit1
- [ s
On? — 3h +1]? 5
< o —sh+1)” I1f"1l2 07,
4\/§7r
for all i = 0,1,.....,n — 1. Now summing over i from 0 to n — 1 and using the

triangle inequality, we get (4.4]).

Theorem 4.3. Let [ : [a,b] — R be an absolutely continuous mapping in (a,b)
with f' € Ly[a,b]. Then Vz € [a, “E]and h € [0,1] we have

/f S (1) + R(f, 1)

where S (f, 1) is defined by by formula ({{.1), and the remainder R (f,I,) sat-
isfies the estimate

Rumnsphjiy*rﬁiMmg s o7 (45)

=0

N

where S; = (f(zi+1) — f(2:))/0i, i =0,1,....on — 1.
Proof: Applying (2.40) to the interval [x;, z;11], we get

1 3T; + Tit1 T; + 3xi41
plo-ms (B s ()

PRI (@) + F @) 6 — 2 [ (i) — F (22)] 61

4
Ti41
— / f(t)dt
Zq
1
9h? — 3h +1]? 3 s
R
43
for all : = 0,1,.....,n — 1. Now summing over ¢ from 0 to n — 1 and using the

triangle inequality, we get (4.5]).
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