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Abstract: By using Ahlfors’ theory of covering surface, a fundamental
inequality for the K-quasimeromorphic mapping in the unit disc is estab-
lished. As an application, some results on the Borel radius and the S radius
dealing with multiple values of the K-quasimeromorphic mapping in the unit
disc are obtained.
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1 Introduction

In 1997, the value distribution theory of meromorphic functions due to
Nevanlinna (see [1],[2] and [3] for standard references) has been extended
to the corresponding theory of the K-quasimeromorphic mapping by Sun
and Yang [4]. The K-quasimeromorphic mapping is a more widespread
function than the meromorphic function, but it has no derivative, even the
partial derivative does not exist everywhere. They established a fundamental
inequality on the complex plane and used it to prove the existence theorem of
the Borel direction and the filling disc theorem of the K-quasimeromorphic
mapping. In 1999, Gao [5] established a fundamental inequality dealing with
multiple values on the complex plane and improved some results of [4].

Recently, the singular direction is one of the interesting topics stud-
ied in the theory of value distribution of the K-quasimeromorphic mapping
on the complex plane such as Julia direction, Borel direction, Nevanlinna
direction and S direction, see [6-11]. Their existence theorems and some
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connections between them have also been established, which extends the
relative properties of meromorphic function on the complex plane. In 2004,
Yang and Liu [10] used a fundamental inequality of an angular domain on
the complex plane to confirm the existence of a Borel direction of the K-
quasimeromorphic mappings of the zero order. Later, Wu and Sun [8] proved
the existence of a S direction for the K-quasimeromorphic mapping on the
complex plane, which was inspired by the idea of the T-direction [12] for the
meromorphic function.

Theorem A. Let f(z) be K-quasimeromorphic mapping on the com-

plex plane and satisfy lim ﬁfg{g = 400, then there exists a ray argz = 0
T—00

(namely S direction) such that for any € > 0,

T (O —e,0+¢),ra)

o S, ) >0

holds for all @ € C, := C U oo, except for two possible exceptional values.

It is well known that if f is a transcendental meromorphic function de-
fined in |z| < 1, it will share some properties with the one on the complex
plane, see [2], [13] and [14]. Thus a natural question is: Is there a Borel
radius or a S radius for the K-quasimeromorphic mapping in |z| < 17
However, until now only a few results on the singular radius of the K-
quasimeromorphic mapping have been discussed, see [15] and [16]. So in
this paper, we establish a more precise fundamental inequality for the K-
quasimeromorphic mapping in the unit disc and confirm the existence of
the Borel radius and the S radius (dealing with multiple values) for the K-
quasimeromorphic mapping in the unit disc, which develop some results of
[4], [7] and [11]. To do so, we recall some definitions and notations, which
can be found in [4] and [6].

Definition 1.4 Let f(s) be a homeomorphism from D to D'. If for
any rectangle {z =z +iy;a < x < b,c <y <d} in D,

(i) f(z+1iy) is absolutely continuous of y for almost every fixed x € (a,b)
and f(x +iy) is absolutely continuous of = for almost every fixed y € (¢, d);

(i) there exists a constant K > 1 such that

[f2(2) + 1 f2(2)] < K(|f2(2)] = [fz(2)])

holds almost everywhere in D; then f is named an univalent K-quasimeromorphic
mapping in D.

Definition 2./ Let f be a complex and continuous function in the
region D. For a point zg in D, if there is a neighborhood U(C D) and a



positive integer n depending on zg, such that

F(Z) _ { (f(z))l/na f(zO) = o0
(f(2) = f())/™ + f(20), f(z0) # o0

is an univalent K-quasimeromorphic mapping, then f is named n-valent K-
quasimeromorphic mappings at point zg. If f is n-valent K-quasimeromorphic
at every point of D, then f is called a K-quasimeromorphic mapping in D.

It is obvious that a meromorphic function is a 1-quasimeromorphic map-
ping. The composition function g o f of a meromorphic function ¢ and a
K-quasimeromorphic mapping f is still a K-quasimeromorphic mapping. Let
n(r, a) be the number of zero points of f(z)—a in disc |z| < r. If the multiple
zeros are counted only once, then we use 7(r,a). Let n(Q2(p —e,p+¢),7,a)
be the number of zero points f(z)—ain {¢p—c < argz < p+e}n{|z| < r}. If
the multiple zeros are counted only once, we use T(2(p —e, o +¢),r,a). Let
) (Qp—e, p+e¢),7,a) be the number of distinct roots with the multiplicity
<l of f(z) = a in the same region.

Let V be a Riemann sphere whose diameter is 1. f(z) = u(z,y)+iv(z,y)
is a K-quasimeromorphic mapping in the angular domain E = Q(p1,p2) N
{]z] <r}. Set

S(B.f) = 8@ pr.a).r) = [l = [ [ me e,

where |F}| is the area of the image of F on V and | V]| is the area of V. If
E ={|z| <r}, then S(E, f) can be replaced by S(r, f).

Definition 3. Let f(z) be a K-quasimeromorphic mapping defined in
the unit disc. If S(r, f) — +o00 as 7 — 17, then we call f(z) transcendental.
The order of the transcendental K-quasimeromorphic mapping in the unit

disc is defined by
—— InS(r, f)
p= lim

r—1-—1In(1—7r)’

Ifp= hm lnls((lr fg then f(z) is of regular growth. Especially, when K = 1,

if S(r, f) is replaced by T'(r, f) = [y S(t, f)/tdt, then p is called the order
of the meromorphic function f(z).

Definition 4. Let f(2) be a transcendental K-quasimeromorphic map-
ping defined in the unit disc. A radius A(p) = {z : argz = ¢, |2| < 1} is
called a Borel radius of the order p € (0,400) for the K-quasimeromorphic




mapping f(z) in the unit disc, provided that for any e € (0, 7),
m lnn(Q(gp —&,p+ 6)1 T, Cl) >

r—1- In %
—r

holds for all a € C,, except for two possible exceptional values.

Note that this definition of Borel radius meaningfully characterizes the
growth of f(z) only when 0 < p < co. Inspired by the idea of [8], we give a
definition of the S radius in the unit disc.

Definition 5. Let f(z) be a transcendental K-quasimeromorphic map-
ping defined in the unit disc. A radius A(yp) is called a S radius of f(z)
dealing with multiple values [(> 3), provided that for any ¢ > 0,

7l _
].lm n (Q(SO 5,90"‘8),7‘,@) >0

r—1- S(T, f)

holds for all a € C,, except for two possible exceptional values. If | — +o0,
A(yp) is called the S radius of f(z) in the unit disc (S direction in the case
of the complex plane).

2 Preliminary lemmas

Lemma 1.°) Let f(2) be a K-quasimeromorphic mapping in |z| < R
and {ai,az, -, a;} be ¢(¢ > 3) distinct points with the mutual spherical
distance no less than ¢ € (0,1/2), then for any r € (0, R), we have

(960 + 2¢qm)? 257K R
6 q——2——% R—1’

9 q
(q_2_7 T’f SZ Rav

Lemma 2.3 Let f(z) be a meromorphic function defined in |z| < 1,
then

T InT(r, ) — p Tm InS(r, f)

—— S 2T .
r—1-—In(l —r) r—1-—In(l —r) Pt

3 Main Results and their proofs

Theoreml. Let f(z) be a K-quasimeromorphic mapping in |z] < 1. A
and Ay are two angular domains with the common vertex on the center of
the unit disc, where

A=Qp—n0+n) CAy:=Qp—mn0,0+m), 0<n<mny, 0<¢ <27



Then,

(q—Q—%)S(A,r)S(l lzhf)zl)(Ao,T,avHO(lnl_ ), (1)
1—r v=1
(q—2)S(A,r) < (1+ lilllf)Zn(Ao,T,av) +O(In 1170)’ (2)

where a1, as - - - a4 are g distinct points in 'V with the mutual spherical dis-
tance not less than § € (0,1/2), rg € (1/2,1) and r € (r, 1).

Proof. Let r; = 1 — 1;0 (i =0,1,--), then r; = 1‘*‘% For any
r € (r1, 1), there exists n € Ny such that r,, <r <r,11. So we set

ri’j:ri+w (j=0,1,---n—1),

then r;0 = r; and r;,, = r;41. For any positive integer i > 2, we set
Ao(rij,rig1+1) = Do N{ri; < |2| < riga s}
So we can easily see that there exists an integer jo € [0,n — 1] such that
q . n+1 q .
STAN (U Ao(Tigos Tijor1) aw) < = D7 (Ao, T2, av),
v=1 =0 v=1

where Ag(7ijo, Tijo+1) = Do N {75, < |2| < 7ijot+1}. Then, we set

A7, i) = AN{r; <zl < iy} © Ao(Figes Tit1,jot1),

where
r_ Tigo T Tigo+l  , Titlgo T Titljo+1
= » Vi1 = :
2 2
Without loss of generality, we suppose that ¢ = 0. Since
1—17g 1— 70 1—17g 270+ 1
Ti+1,50+1 = Tijo — 9i+2 (2 + n )a Té-&-l - 7‘; = 9i+2 (2 - om )a

then Ag(7ijo, Ti41,jo+1) (¢ = 2,3,--+) can map mutually by some transforms

such that their sub domains A(rj, 7}, ;) and whose centers (Tﬁ#, 0) map
each other, respectively. Through the Riemann mapping theorem, for any
fixed ¢, we can map the Ag(r; jo, ri+1,jo+1) on [€| < 1 by a conformal mapping

g such that the point (rﬁ#, 0) of Ag(7ijo,Ti+1,jo+1) becomes & = 0, then



the image of A(rj,rj, ;) is contained in [¢| < ¢ < 1, where ¢(> 0) is a
constant defined by 7,7y and rg, independent of i. Hence by Lemma 1, we
have

2 _ I _ H
(¢-2-7)8(e.fog ™) <3 (L fogt =a) + 17—,
v=1
where H is a constant. Then,
2 I H
(q—2—7)S(A(T1,T2+1 Z (Ao(Tijos Tit1,jo+1) av)+1 —o ' 0,1,---,n

Adding two sides of the above expression from ¢ = 0 to n, we obtain

2, & & H
(q—2—7)ZS(A(TM”z+1 ZZ (Bo(rigos Tit1jo+1)s av)+ﬁ(n+l).
1=0 =0 v=1

Since r, < r < rpy1, then

34r, 34+r 1—7r 1 1 1 ontl
= < <1-— < < = .
Tn+2 4 =1 4 S ot 1T ST 1-n
Hence
2" < +1<1+11 ! 1<2h12 ( 17)
—,, n —n , — < r—
—1—-r 2" 1-7" n~ In{

When r is sufficiently close to 17, we have

(0-2- DA < (g-2-) 5 SAELrE). )+ (a-2- S

n q
< 20 Zlﬁl)(AO(rl}joari+17j0+1)7av) Bt (g -2 - 2)S(A, 1)

g n g N
< ZJO zlﬁl)(AO(rl}jmTi,jo-l—l)aav) + ZO ;n (Do(Ti o1 Tt jor1), @) + 2L
S ( ) Z n (A07Tn+27a’u) + %

(1+21“12)é (Ao, H,a,) + O(In 1).

So (1) follows, the second inequality (2) can be obtained by the similar proof.

Remark 1. Theorem 1 gives a fundamental inequality for the K-quasimeromorphic

mapping in an angular domain of the unit disc, which is more precise than



that of [15]. If K = 1, it is also better than Theorem VII.14 of [2, P.291]
and Lemma 3 of [13].

Theorem 2. Let f(z) be a K-quasimeromorphic mapping in the unit
disc with the order p € (0,+00), then f(z) has a Borel radius of the order
p.

Proof. Otherwise, for any ¢ € [0,27), there exists ¢, > 0 and three
distinct complex numbers a1, as, a3 € Cy, such that

m lnﬁ(Q(go —Epy P + Etp)v r, ai)

r—1- ln%
—r

= po < p, Z:1a233 (3)

It is obvious that the open sets {(¢ — 5, ¢ + <£)|¢ € [0,27)} cover the
unit disc. From the finite covering theorem, there exists a subsequence

_87 Y1 _E<Pn E@n
(¢1 4,so+4) , (o 4,<pn+4)

lying in (¢ — €4y, 0k + €¢,,) (K =1,---,n), such that for any ¢ > 0 and
each k

3
S p — e+ ep) ar) <37 )M
i=1
By (2) of Theorem 1, it follows that
" €
S(r, f) < ZS(Q(S% - T » Pkt Zk)
k=1
2In2 € r+3 1
<( _ Eoi Pk ; 1 )
n”kZ“ZI (ok ,s0+2) @) +O0(n —)
Then, there is a positive constant C' such that
21n2 1 1
<O+ —= pote 1
S(T‘,f)_C( +h’lﬁ)(1_’r) +O(n1_r)7

This is in contradiction to that f(z) is of the order p. Hence we complete
the proof.
Corollary 1. Let f(z) be a meromorphic function in the unit disc with
the order p € (0,4+00), then f(z) has a Borel radius of the order p + 1.
Remark 2. Why the Borel radius is of the order p 4+ 17 In fact, from
Lemma 2

n(r,a) = O(S(r, f)) = 0(1 1 TT(T’ f)> - O<(117‘)1+p+€>




in general comes into existence when r — 17. Hence for some ray to be a
Borel radius for a function f, it means that the function f has a maximal
number (relative to its growth) of a-points in an e—neighborhood of that ray.

Theorem 3. Let f(2) be a K-quasimeromorphic mapping defined in
|z| <1 and satisfy

ms(n f)
r—1- ln 11—

= 400, (4)

then f(z) can take any complex number infinite times, except for two pos-
sible exceptional values.

Proof. Otherwise, for any ¢ € [0,27) and r € (0,1), there exists g9 > 0
and three distinct complex numbers a1, a9, ag € C such that

3
(Q( — 2e0, ¢ + 2¢0),7,a5) < Zn(T, a;) = O(1).
1 j=1

3
Jj=

By (2) of Theorem 1, we have

2In2 1
S(Q(w—50,¢+eo),r)§0<1+ = >—|—O(ln
In — 1—1r

).

Since @ is arbitrary, from the similar proof of Theorem 2, we have

2In2 1
S(r, f) < 0(1 + lnl> +0(In -

nq— -

),

where C' is a positive constant. This is in contradiction to the hypothesis
(4). Hence we complete the proof.

Corollary 2. Let f(z) be a meromorphic function defined in |z| < 1
and satisfy (4), then f(z) can take any complex number infinite times with
at most two exceptional values.

Theorem 4. Let f(z) be a K-quasimeromorphic mapping defined in
|z| < 1. If f(2) satisfies (4) and

——SCE. 1)
T R (5)
then f(z) has a S radius (dealing with multiple values [(> 3)).
Proof. From the condition of (4), there exists an increasing sequence

{rn} 11 (n — o) such that lim M = +o00.

n—oo M T




Using the finite covering theorem on [0, 27), there must be some ¢y €
[0,27) such that for any € € (0,7/4),

T S((¢o—€,90 +¢€),70)

> 0.
n—00 S(’l”n,f)

Now we can predicatively say that the radius A(yg) = {z : argz =
©o, |z| < 1} is a S radius of f(z) dealing with multiple values .

Otherwise, there are three distinct complex numbers a1, as, ag € Cy, and
a positive § such that

- Y2 (o — 6,00 +6),7n, a5) _
=00 S(Tnaf)

By (1) of Theorem 1, when ¢ = 3, for any 0 < € < d, we have

(1-— —)S(Q(wo —&,%0+€),7n)
< (14 22 >z 1) (o — 8,00 + ), =, aj) + OIn 7).

1—rn ‘77
Hence
T S(Q(po—¢,p0+e),rn)
S A (A po—b,p00+6), 252 a;)
< lim (1+ 2In2 )j:l ! ’ S(Stlrnvf) —+ 11 — n)
— n—oo In l—lrn S(?’Jr#,f) S(rn,f) n—00 S( Tn, f) ’

It follows from (4) and (5) that 1 — # < 0, we get a contradiction. Hence
the radius A(yg) is a S radius of f(z) dealing with multiple values . By
the similar proof, the radius A(yo) is also a S radius.

Corollary 3. Let f(z) be a meromorphic function defined in |z| < 1
and satisfy the conditions of (4) and (5), then f(z) has a S radius (dealing
with multiple values [(> 3)).

Theorem 5. Let f(z) be a K-quasimeromorphic mapping in the unit
disc with order p € [0,400) and of regular growth, then every S radius
(dealing with multiple values) is a Borel radius of the order p.

Proof. Let A(yg) = {z : argz = ¢o,|2| < 1} be a S radius dealing
with multiple values for f(z) in the unit disc, then for any € € (0,7/2) and
each a (except for two possible exceptional values), we have

mﬁ“(ﬁ(ﬁpo —e,p0+¢),1,a)

r—1- S(’I“, f)

> > 0.

9



Then, there exist {r,} for a sufficiently large n we have

1)
ﬁl)(Q(SOO —&,%0 + 5)7 Tn, CL) > 55(7“7“ f)

Since f(z) is of regular growth, it follows that

—1) . =) _
T In7" (Q(po e,lcpo +e¢),ra) > Tm In 7" (Q(po E,lgoo +¢),rn,a) >
r—1- hl —r n—oo ln i—r,

holds for all a € C,, except for two possible exceptional values.

Hence every S radius (dealing with multiple values) is a Borel radius of
the order p.
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