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Abstract.   The  minimax fitting procedure is employed in some robust parameter estimation in the 
normal linear model.  In this paper, we shall reformulate the procedure by using the deviance 
residual measures instead of the usual residual measures for the robust fitting procedure.  This 
extends the range of application from the normal distribution to a more general exponential family of 
distributions.  Special cases of the exact solution for the single parameter case and its algorithm will 
be discussed.  

 
 
1. Introduction 
 
We consider the standard linear regression model 

 
eXβy +=                                                          (1) 

 
where y  is an n -vector of responses,  X  is an pn×  matrix representing  explanatory 

variables with rank )( np < ,  whose i-th row is T
ix , β  is a  p-vector of unknown 

parameters to be estimated, and e is an n-vector of unknown errors with mean, ,0)( =eE  

and variance, Ie 2)(var σ= ,  where  I  is the identity matrix of size n. 
 The most commonly used method in estimating β  is the method of Least Squares 

(LS)  in which  β̂   minimises over  β    the sum of squared residuals,  
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The method of LS has long dominated the literature (see Plackett (1972) and Stigler 
(1981) for some historical discussion) and application of regression techniques.  
However, LS is not a robust procedure in that the estimator is heavily influenced by 
outliers. Because data sets often contain outliers, for example gross errors, which in 
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general will ruin the LS fit, it is important for the data analyst to be able to identify such 
influential observations before proceeding with the LS method.  There are several 
proposed alternatives to the LS method of parameter estimation which are less sensitive 
to outlying observations.  Further discussion on alternatives to the LS method of 
parameter estimation in the presence of outlying observation(s) can be found in Krasker 
and Welsch (1982).    
 In this paper, we will briefly discuss the relationship between a robust parameter 
estimation procedure, namely the Least Median of Squares (LMS), and that of the 
minimax solution (section 3).   In order to understand the above  mentioned relationship, 
we will provide an overview of the minimax residual fit in the linear model in section 2.  
Extension of the use of minimax fit to a more general exponential family of distribution 
will be discussed in section 4. 
 
 
2. An overview of the minimax  residual fit in the normal linear model 
 
Consider a system of linear equations  (1)  
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The classical linear minimax residual problem is to find the solution of ),,1( pjj L=β  
which minimises   
 

p)( ,,1    , )(  max)( >==Δ nnirii Lββ                                (3) 
 

where )(βir   is the  i-th  residual as defined in (2) and β  is a vector of  p (unknown)  
parameters. 
 

Cheney (1966)  showed that if 
 

(i) 1+= pn   and the system of  )1( +p   linear equations  has rank p, then the 
minimax solution is the solution of  the system when all residuals  are equal in 
absolute value, 
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(ii) ,1+> pn  and  every subset of size 1+p  has rank p,  then every minimax 
solution of   (3)  is a minimax solution of an appropriate subsystem comprising  

)1( +p   equations.  That is, if z is a minimum point of the  function,  
 

( )   ,,1    , )(  max)( pnnirii >==Δ Lββ , 
 

then  z  is the minimum point of  )(  max βiJi r∈   when J  is a subset of size 
1+p   chosen from { } ,,2,1 nL .  

 
We now summarise the necessary condition for a minimax  solution. 
 
 We shall refer to the subset, J of size 1+p  chosen at random from the set 
{ } ,,2,1 nL  as a reference set and denote the residual for this set as 
 

   ,   , Jixyr T
iii ∈−= β                                                   (4) 
 

where ),( 1 ipi
T
i xxx L=   is the i-th row of  pp ×+ )1(   submatrix JX . 

 Without loss of generality, let the first  1+p   observations be in the set J.  If JX  

has rank  p, then there exist a vector  ),,,( 121 += p
J λλλλ L    such that 
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where kjx   is the  ),( jk -th element of  JX .   If the reference set  J solves the minimax 
residual problem, then (4)  can be written as 
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where Jh  is the maximum deviation from the minimax fit for observations in  set J and 
.   ,1 Jii ∈±=α   

 Using  (4)  and (5) , Jh  is given  by    
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 where iλ    is the  i-th element of vector  Jλ  . 
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3. The relationship between LMS and minimax fit 
 
The LMS estimate (Stromberg, 1993) minimises the q-th smallest ordered squared 
residual,  2

)(qr ,  where 
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Since such an estimate minimises the q-th smallest squared residual for a given set, it 
must minimise the maximum squared residual for some q element subset of the data. 
Thus the data can be divided into two smaller sets - one being the inner set which 
contains q elements with the smallest absolute residuals while the outer set contains  

qn −  elements with the largest absolute residuals.  Hence, the LMS solution is the 
minimax fit to the inner set of the data. 
 For  pn >> , we note that if the minimax solutions to each element subset of size 

1+p  are distinct, then the exact LMS solution will have:  1+p  observations with 

squared residuals equal to 2
)(qr ,  1−− pq  observations with squared residuals less than 

2
)(qr ,  and  qn −   observations with squared residuals greater than 2

)(qr .  This generalizes 
the results of Steele and Stigler (1986) for an LMS fit with a single explanatory variable. 
 By  computing  the minimax solution to all possible subsets of size 1+p ,  

Stromberg's (1993) LMS algorithm considers the solution β
~

  only when q observations 

have squared residuals less than or equal to 2
)(qr .   The LMS solution, LMSβ̂  is that value 

of  β
~

  with minimum 2
)(qr . 

 To set the idea of the LMS estimation, let us first consider the one dimensional, 
location, case.  Let θ  be the LMS estimate of location and  let   
 
   ,,,2,1    ,)( niyr ii L=−= θθ  
 
and 
 

( ) )()(median 222 θθθ qii rym =−=    
 

where   [ ] 12/ += nq ,  from equation (6). 

Note that     0)(2 ≥θir     and attains its minimum at zero when  iy=θ . 
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Let  θ̂   denotes  the value of  θ   which minimises  θm  over  θ .   It is clear that θ̂    must 

satisfy the condition that  ( ) ( ) )ˆ()ˆ(1 θθ qq rr =− ,   for, if  )ˆ()1( θ−qr   and   ( ) )(θqr   are the 
residuals for the  i-th and  j-th  observations respectively, then the value of θ  which 
minimises the  larger of θ−iy    and   θ−jy    is  2/)( ji yy + ,  the midpoint of iy   

and   jy .  Consequently, the only values which are candidates for θ̂   are the midpoints 
of pairs of observations. 
 It is now easy to see that, if  2/)(ˆ

ji yy +=θ  ,  then  exactly 2−q  other 

observations must lie between iy   and jy  and the range ji yy −   is smallest amongst 

all pairs ),( ji yy   with this property.  Thus  θ̂   is the midpoint of the range of the 
shortest half sample. 
 Geometrically, (assuming that the points are in general position) the LMS estimate 

LMSβ̂   for the simple regression with intercept, corresponds to the middle line of the 
narrowest strip containing half of the observations.  In higher dimensions  ,)2( >p  

LMSβ̂  corresponds to the middle hyperplane of the thinnest hyperstrip which is the region 
between two parallel hyperplanes that contain half of the observations.  Finally,  we 
should note that the LMS algorithm proposed earlier assumes that not more than q of the 
observations have zero residuals. 
 Linear models of the form (1) have found widespread applications across a variety of 
disciplines, but this formulation is restrictive because there are many situations in which 
the additive model (1) is not appropriate for a given set of data.  An example of this may 
occur when the response y only take strictly positive values, thus constraining  Xβ  to 
take strictly positive values only. 
 We can extend the range of application from the normal distribution to a more 
general exponential family of distributions. Given X an explanatory variable, the 
response vector,  Y  follows a generalized linear model (GLMs) with likelihood function 
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where  b  and c  are known functions and the linear function, Xβ , is related to  iθ   via the 
relationship, 

 
             )()( iii byE θμ ′== , 
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and  φ  is a scale parameter while g is a link function. 
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 The usual method of parameter estimation in GLMs is the maximum likelihood 
estimation (MLE), in which the parameter MLEβ̂  minimises over β the sum of log 
likelihood function,  
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As in the case of the linear model,  the maximum likelihood estimation is not robust in 
that it is subject to influence by outliers.  We can derive a robust approach by 
reformulating  the criterion of LMS, which now uses the deviance residual,  id ,  given by  
 

{ } )ˆ,( ),(   2)( iiiiii ylyld θθθ −= ,                                        (7) 
 

where 
 

( ) )(; iii xyflnyl =θ  
 
and  iθ̂   is the maximum likelihood estimation based on the i-th observation alone.  The 
robust method of estimation, which uses the deviance residual (7), will be discussed in 
Section 4.  We will look at the special case of the exact solution for the single parameter 
case and its algorithm in section 4.1.  
 
 
4. On the  theory of minimax estimation for GLMs 
 
The minimax estimation for GLMs problem is to find pjj ,,1, L=β   to minimise the 

maximum of ( ) )(θqd   where )(⋅id   denotes the i-th  deviance residual of observation iy   
from the fitted model. 
 Suppose 1+= pn .  The following theorem shows that the minimax solution is the 
exact solution when ( )θid , 1,,1 += pi L   are all equal. 
 
Theorem.   Suppose that g  and b′  are both strictly  monotone function.  Further 

suppose  that pℜ∈β  and that rank pX =)( .  
Define for 1,,1 += pi L , 
 

{ } ~
)

~
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where 
 

( ))()()( 11 ββθθ iii xgb −−′==  
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and  θ
~

 is the MLE based on the i-th observation alone.   Then 
 
(i) there exists pℜ∈β  such that  )(,),(),( 112211 ++ ppddd θθθ L  are all equal, 

(ii) the value of  pℜ∈β   which minimises   )(  max 11 jjpj d θ+≤≤  is such that 
 

)()()( 112211 ++=== ppddd θθθ L . 
 
The proof of this theorem will be published elsewhere and interested readers may refer to 
the Appendix. 
 Since the above estimate minimises the q-th smallest deviance residual for a given 
set, it must minimise the maximum deviance residual for some q-subset of the data.  
Hence we call this a Least Median of Deviance (LMD)  estimate. 
 
 
4.1.  An exact algorithm for  a single parameter case 
 
In this special case of a single parameter, the process discussed in section 3 can be further 
simplified, thus resulting in an exact algorithm to handle this problem.  To find the LMD 
estimate when ,1=p  we find θ  which minimises the 
 
  nid i ,,1    ),(median      )( L==Δ θθ  
            ( ) )(θqd=   
 
where [ ].1 2

nq +=  
 Suppose that  g  and  b′   are strictly monotone functions.  From the definition of   

)(θid   in the above theorem, we note the following facts: 
 
(1) ( ) ( ) iii yYEybd −=−′=′ θθθ )(   
(2) 0)(var)()( ≥=′′=′′ iYbd θθθ  

(3) the deviance,  0)( ≥θid  and attains its minimum at  0  when )()(
~ 1

iyb −′==θθ    
(4) iθ  is an increasing function of  iy   because  )(θb′    is monotone. 
 
Without loss of generality, assume that 
 

nyyy ≤≤≤ L21 . 

Then we have, 
 

nθθθ ≤≤≤ L21 . 
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For any pair ),( ji ,  ji <    where  1−+= qij , )(θid  and  )(θjd  intersect at the point 
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The LMD estimate,  LMDθ̂ ,   is given  by  1,
ˆ

−+= qhhLMD θθ  which corresponds to  
 

{ })( min)( 1,111, −+
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As an alternative,  ijθ   may be  calculated from 
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whereθ  is the MLE estimate obtained by minimizing  ∑
=

n

i
id

1
)(θ . 

The computation of   LMDθ̂    can be described as follows. 
 
(1) Order  niyi ,,1   , L=   such that  
 

( ) ( ) ( )nyyy ≤≤≤ L21  
 

and let   )(θid   denote the deviance for observation iy   fromθ . 

(2) For each   1,,1 +−= qni L   where [ ]21 nq += ,    let ∗
iθ  be the solution of 

 

( ) )()( 1 θθ −+= qii dd . 
 

(3) Calculate   )( ∗
iid θ     for each   1,,1 +−= qni L  . 

The LMD estimate  LMDθ̂    is that value of  ∗
iθ    which corresponds to 

 

{ } )( min)(
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∗ Δ=Δ iqni
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This algorithm was initially proposed by  Seheult (1986). 
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5. Numerical example:  Multiple linear regression 
 
The data set presented by Brownlee (1965) describes the operation of a plant for 
oxidation of ammonia to nitric acid and consist of  21 observations as listed in Table 1. 
The stackloss (Y) can be explained by the rate of operation )( 1X , the cooling water inlet 
temperature )( 2X  and the acid concentration )( 3X . 
 The results found in most cited literature (see Daniel and Wood (1971), Andrews and 
Pregibon (1978), Atkinson (1982), Carroll and Ruppert (1985) and Rousseeuw (1986)) 
mostly concluded that  observations 1, 3, 4 and 21 were outliers. According to some of 
these results, observation 2 is reported as an outlier too (see Rousseeuw (1986)).  In this 
study, we shall refer to an observation with absolute standardised residual greater than 
2.5 as an outlier. 
 
 

Table 1.  Stackloss Data 
 

Index Rate Temperature 
Acid 

Concentration 
 

Stackloss 

( i ) 1X  X2 X3 (y) 

1.  80 27 89 42 
2.  80 27 88 37 
3.  75 25 90 37 
4.  62 24 87 28 
5.  62 22 87 18 
6.  62 23 87 18 
7.  62 24 93 19 
8.  62 24 93 20 
9.  58 23 87 15 
10.  58 18 80 14 
11.  58 18 89 14 
12.  58 17 88 13 
13.  58 18 82 11 
14.  58 19 93 12 
15.  50 18 89 8 
16.  50 18 86 7 
17.  50 19 72 8 
18.  50 19 79 8 
19.  50 20 80 9 
20.  56 20 82 15 
21.  70 20 91 15 
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Table 2.  Summary of fitting procedures Stackloss Data 
 

Variable LS exact LMS 

Intercept −38.1242898 −37.2197214 

X1 0.7757662 0.7350743 

X2 1.1050111 0.4108615 

X3 −0.1707237 0.0107184 

 
 
Predicted values ( ŷ )  
 

Index (i) y LS Exact LMS 

1 42 40.9347 33.8653 

2 37 37.5596 33.6755 

3 37 35.6582 29.3454 

4 28 26.0845 19.5464 

5 18 18.5574 18.5702 

6 18 18.5754 18.4259 

7 19 19.6983 19.6763 

8 20 20.3567 19.3237 

9 15 15.8217 15.6763 

10 14 13.5219 13.3237 

11 14 13.3867 13.7285 

12 13 12.4566 13.6361 

13 11 11.6674 13.9139 

14 12 12.0526 14.2380 

15 8 7.2266 7.7870 

16 7 6.6225 7.6763 

17 8 8.5059 8.3583 

18 8 8.1549 8.2679 

19 9 9.0467 8.6062 

20 15 14.7238 13.4771 

21 15 17.3881 23.4420 
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Table 2 displays the estimates of the parameters and the predicted responses ŷ  obtained 
via the LS and LMS procedure.  Fitting the data using the LS criterion (the equivalent of 
MLE in the normal distribution case) yields the equation 
 

321 171.0105.1776.0124.38ˆ XXXy −++−=  
 
Figure 1(a) displays the residual plot from the LS fit. The standardised residuals were 
calculated by dividing the raw residuals by the scale estimate of the corresponding fit. 
Since all standardised residuals lie within 5.2±  standard error, we conclude that none of 
the observations could be classified as deviant. 
 The exact LMS fit to the stackloss data is given by 
 

321 0107.04109.07351.02197.37ˆ XXXy +++−=  
 
Figure 1(b) displays the residual plot associated with the exact LMS fit. The standardised 
residuals were obtained by dividing the raw residuals by a robust scale estimate. This plot 
does reveal the presence of anomalous points mentioned by the previous authors. From 
this residual plot, it becomes apparent that observations 1, 3, 4 and 21 are the most 
outlying while observation 2 is intermediate because it is on the edge of the region 
containing the outliers. 
 
 
6. Concluding remarks 
 
In the normal linear regression, the LS method, as theory predicted, is clearly the best 
method of parameter estimation when no contamination (outliers) in the data is 
suspected. However, in the presence of some contamination, the LS is subjected to 
influence by this contamination. The minimax estimation, in particular LMS, offer 
alternative methods of estimation  which aim to provide methods of fitting reliable 
models in the presence of some anomalous data points.  Similar phenomenon can be 
observed with the MLE method of estimation in GLMs. 
 The difficulty of LMS and hence minimax LMD is that, it is computationally  
expensive. The added complexity is due to the number of iterations required for 
convergence for each subset of observation of size 1+p .  For this, the adaptation of the 
feasible subset algorithm (Hawkins,1993) certainly offers great help when exhaustive 
enumeration is intractable. With further development on the aspects of computational 
programming, this difficulty may be overcome in the near future. 
 In this paper, we are assuming that the model is correctly specified. However, it is 
possible that the model is incorrectly specified in which the data appears to be 
contaminated. This should be borne in mind and more work will be needed to investigate 
this possibility. 
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Appendix 
 
 
Proof of Theorem 1 

(i)    The function   0)( ≥iid θ  attains its minimum  0)( =iid θ   at  ii θθ
~

=  . 

Now  for any  pℜ∈β , let  
 
 1,,1        ),()( 1 +==′= − pixgb T

iii Lβθμ   
    
For fixed  pθθ ,,1 L    suppose  β   be the solution of 
 

  ( ))()( 11 βθ T
ii xgb −−′=       and    ( ))( ii bgc θ′= . 

 
Let    pX    be the   pp×    matrix whose   i-th row is  T

ix ,  .,,1 pi L=    
Then, 
 

  cp =βX     (8) 
 

and   since rank pX p =)(  ,  equation (8) has a unique solution for β . 

 Now choose 0>k    and  put   .,,1    ,)( pikd k
ii L==θ   

Since for each  i ,      )( ∞→iid θ  as  ±∞→iθ  ,   such a k
iθ   always exists. 

Put      pibgc k
i

k
i ,,1   ,  ))(( L=′= θ   and  define 

 
  , k

ik
T
i cx =β pi ,,1 L= . 

 
Then   kβ   is the unique solution of   k

p cX =β . 
Now let 
 

k
T
p

k
p xc β11 ++ =     and    ( ))()( 1

11
1

k
p

k
p cgb +

−−
+ ′=θ   

 
Then either 
 

kd k
pp <++ )( 11 θ    or    kd k

pp >++ )( 11 θ     or    kd k
pp =++ )( 11 θ . 

 
We consider each of these cases separately. 

 
 



Minimax Fit in Linear Model and its Extension 

 

43

Case I.  Suppose that   kd k
pp <++ )( 11 θ  . 

Then reduce k  until  kd k
pp =++ )( 11 θ .  To see that this is possible, note that 

)( 11
k
ppd ++ θ  is continuous as a function of  k   and that choosing  0=k   gives 

 
piygc ii ,,1   , )( L==   and    .,,1   , 0 pidi L==  

 
However, 
 

( ) 0))(()()( 01
11

1
0

11 >′= +
−−

+++ βθ T
pppp xgbdd  

   
since  )(1 ⋅+pd  has a unique minimum at )()(

~
1

1
1 +

−
+ ′= pp ybθ and the  minimum 

is 0. 
 

Case II.  Suppose   kd k
pp >++ )( 11 θ  . 

This is a special case of the general situation where 11 ,, +pdd L  are not all 
equal. 
Since  b′   and   g   are strictly monotone, )(1 ⋅+pd   does not attain  its minimum 

unless )( 11 ++ = pk
T
p ygx β .   

Since   0)( 11 >++
k
ppd θ ,  this is not the case for   kβ .   

 β defines a hyperplane in  1+p   dimensional space.  The hyperplane is 
horizontal with probability 0.  Hence there is a direction in which  β  can move 
which will be in the direction of reducing  .1+pd   Choose the steepest such 

direction and move β  until  jp dd =+1 ,  for some  .pj ≤    
 

We can now change the value of β   in such a way that  ))(( 11 βθ ++ ppd  is 

reduced; this is  certainly possible, since for any   ,0>∗k  the equation 
 

( ) ∗
+

−−
+ =′ kxgbd T

pp ))(()( 1
11

1 β                                         (9) 
 

has a   1−p   dimensional solution set. 
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Choosing progressively smaller ∗k  and arbitrary corresponding ∗β  values in 
the solution set of equation   (9)   will eventually lead to a position where 

 

( ) ∗∗−−

=
=′ kxgbd T

ii
pi

))(()(   max 11

,,1
β

L
 

   
Suppose, without loss of generality, that 

 
( ) ( )))(()())(()(   max 1

11
1

11

,,1

∗−−∗−−

=
′=′ ββ TT

ii
pi

xgbdxgbd
L

 

 
Now, impose the restriction that   11 += pdd  .  This imposes a linear  constraint 

on ∗β    and,  subject to this  constraint,  the solution set of equation (9) is now 
2−p   dimensional. 

 Now continue to choose progressively smaller values of  ∗k , and  values of  
∗β , subject to the constraint  that   ∗

+ == kdd p 11  , until 
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Continue this process until 1+= pi dd  for all but one of the pidi ,,1   , L= .  
This case then reduces to case I. 

 
Case III.  Suppose   kd k

pp =++ )( 11 θ  .  

Since   ,)(  )(  1111 ++== ppdd θθ L  β   is a minimax solution and this 

procedure stops. 
 

(ii) Suppose that the value of   β   which minimises   )(  max
1,,1

jj
pj

d θ
+= L

   is such that  

  
.,,1   ,  )()( 11 pjdd jjpp L=>++ θθ  

 
Then, applying the procedure for Case (II) will always reduce the maximum 
deviance. 
 
 
 


