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Abstract. An SIR model for dengue disease transmission is discussed here. It

is assumed that two viruses namely strain 1 and strain 2 cause the disease and
long lasting immunity from infection caused by one virus may not be valid with

respect to a secondary infection by the other virus. Our interest here is to derive

and analyse the model taking into account the severe DHF compartment in the
transmission model. The aim would be to find a control measure to reduce the

DHF patients in the population, or to keep the number of patients at an ac-
ceptable level. Analysis of this model reveals that there are four equilibria, one

of them is the disease-free, the other three equilibria correspond to the presence

of single serotype respectively, and the coexistence of two serotypes. Stability
analysis of each equilibria and their relations with type reproductive numbers

are shown. We also discuss the ratio between total number of severe DHF com-

partment with respect to the total number of first infection compartment and
the total number of secondary infection compartment, respectively. This ratio

is needed for practical control measure in order to predict the “real” intensity of

the endemic phenomena since only data of severe DHF compartment is available
in the field.
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1. Introduction

Dengue fever (DF) and Dengue Haemorrhagic Fever (DHF) are increasingly impor-
tant public health problems in the tropic and subtropics areas. Dengue has been
recognized in over 100 countries and 2.5 billion people live in areas where dengue
is endemic [12]. Dengue viruses are transmitted to human by the bite of Aedes
aegypti female mosquitoes, which are known as the principal vectors although some
other species such as Aedes albopictus are also of importance. The infection in the
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mosquito is for life [9]. The spectrum of illness of dengue ranges from unapparent,
mild disease to a severe and occasionally fatal hemorrhagic clinical picture [12]. The
risk factors associated with severe and fatal dengue infections are not well under-
stood. Epidemiological studies in Thailand and Cuba suggest that an important
risk factor for DHF or dengue shock syndrome (DSS) is the presence of preexisting
dengue antibodies at sub-neutralizing levels. DHF and DSS are associated with in-
dividuals with secondary infection, and with primary infections in newborn babies
whose mothers were immune to dengue [9,12]. These facts led to the formulation
of the secondary infection or immune enhancement hypothesis [5]. Dengue disease
caused by four distinct serotypes virus known as DEN 1, DEN 2, DEN 3 and DEN
4 in which only DEN 2 and DEN 3 are mostly identified in tropical country [8].
A person infected by one of the four serotypes will never be infected again by the
same serotype, but he or she could be reinfected by three other serotypes in about
12 weeks and then becomes more susceptible to developing DHF [2].

In this work we develop a mathematical modelling as an interesting tool for the
understanding of these illnesses and for the proposition of strategies. Our interest
here is to derive and analyse the model taking into account the severe DHF compart-
ment in the transmission model. The model is developed from the previous work
with no severe DHF compartment by Feng and Velasco-Hernandez [7] and Esteva
and Vargas [5] for two-strain viruses and Esteva and Vargas [3,4,6] for one strain
virus. Separating the severe DHF individuals from infected population is very im-
portant in the model. This is due to the fact that only data of hospitalized persons
are known and most likely this group being isolated in the hospital, may not infect
mosquitoes and viruses remain in human body for only about seven days [11]. In the
next section we give formulation of the model. In section three we describe about
type reproductive number of this model, the equilibrium points of this system and
its stability. The last two sections give numerical results and conclusion.

2. The mathematical model

Let Nh and Nv be the human host and vector population sizes. We assume that
the host and vector population have constant size. The mathematical model for this
transmission is based on the transmission diagram in Figure 1.

Figure 1. Transmission diagram of two-strain viruses

We have the following states: S for naive individuals (i.e. those susceptible to
both strain one and two), Ii for those infected and infectious for strain i only, Ri for
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those immune to strain i only, Yi for those who are immune to strain j who have
been infected with strain i and are infectious for that strain, R for those who are
immune to both strains. D for those who are immune to strain 1 or strain 2 and
who now become infected with the other strain and develop severe symptoms. V0 for
proportion of susceptible vectors and Vi for proportion of infected vectors strain i.
The flows between compartments are: S to I1 and I2, I1 to R1, I2 to R2. We assume
that a proportion of q individuals from Ri move to compartment D where q is the
probability of severe DHF. The proportion of 1−q individuals move to compartment
Yi. In this model we assume that there is no transmission to the vector from the D
class, but only from the I and Y classes and there is no mortality factor due to the
disease. Because most likely they have been taken care in the hospital and away from
mosquitoes. The aim would be to reduce the DHF patients in the population, or to
keep that at an acceptable level. It implies that for the severity of DHF, it does not
matter whether ones have strain 1 first and then strain 2 or the other way around
then we have the value of q are the same for strain 1 or strain 2. Hence our model
have the capability to predict whether control measures would make things better
or worse. Suppose that the primary rate of infection from vector to host produced
by either of two strains at rates Bi = bβi, i ∈ (1, 2) and from host to vector at rates
Ai = bαi, i ∈ (1, 2). Values of parameters used in the model are given in Table 1.
The dynamical equations for host are

dS̃

dt
= µhNh − (B1V1 + B2V2)S̃ − µhS̃,

dĨ1

dt
= B1V1S̃ − (γ + µh)Ĩ1,

dĨ2

dt
= B2V2S̃ − (γ + µh)Ĩ2,

dR̃1

dt
= γĨ1 − σ2B2V2R̃1 − µhR̃1,

dR̃2

dt
= γĨ2 − σ1B1V1R̃2 − µhR̃2,

dD̃

dt
= q(σ2B2V2R̃1 + σ1B1V1R̃2)− (µh + γ)D̃,(2.1)

dỸ1

dt
= (1− q)σ1B1V1R̃2 − (γ + µh)Ỹ1,

dỸ2

dt
= (1− q)σ2B2V2R̃1 − (γ + µh)Ỹ2,

dR̃

dt
= γ(Ỹ1 + Ỹ2)− µhR̃ + γD,
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and the dynamical equations for vector are as follows

dV0(t)
dt

= µv − [A1(
Ĩ1

Nh
+

Ỹ1

Nh
) + A2(

Ĩ2

Nh
+

Ỹ2

Nh
)]− µvV0,

dV1(t)
dt

= A1(
Ĩ1

Nh
+

Ỹ1

Nh
)V0 − µvV1,(2.2)

dV2(t)
dt

= A2(
Ĩ2

Nh
+

Ỹ2

Nh
)V0 − µvV2.

The equation for R̃ and V0 in (2.1)–(2.2) can be eliminated since at every time t,
we have S̃ + Ĩ1 + Ĩ2 + R̃1 + R̃2 + D̃ + Ỹ1 + Ỹ2 + R̃ = Nh and V0 + V1 + V2 = 1. To
simplify the mathematical analysis of this study, we normalize the model (2.1)–(2.2)
by defining new variables

S =
S̃

Nh
, Ii =

Ĩi

Nh
, Ri =

R̃i

Nh
, Yi =

Ỹi

Nh
, R =

R̃

Nh
, D =

D̃

Nh
, i ∈ (1, 2).

We obtain the equations (2.1)–(2.2) as follows
dS

dt
= (1− µh)S − (B1V1 + B2V2)S,

dIi

dt
= BiViS − (γ + µh)Ii,

dRi

dt
= γIi − σjBjVjRi − µhRi,

dD

dt
= q(σ2B2V2R1 + σ1B1V1R2)− (µh + δ)D,(2.3)

dYi

dt
= (1− q)σiBiViRj − (γ + µh)Yi,

dVi

dt
= Ai(Ii + Yi)(1− V1 − V2)− µvVi, i, j ∈ (1, 2), i 6= j.

Table 1. Parameter values

Symbol Parameter Definition Value
µ−1

h Host life expectancy 70 years
µ−1

v Vector life expectancy 14 days
γ−1 Mean length of infectious period in host 10–15 days
Ai Biting rate x successful transmission from host to vector Variable
Bi Biting rate x successful transmission from vector to host Variable
σi Susceptibility index [0, 5]
q Probability of severe DHF [0, 1]

3. Analysis of the model

3.1. Type-reproduction number. Now we are interested in a new threshold pa-
rameter known as a type-reproduction number introduce by Roberts and Heester-
beek [10]. This parameter is defined as the expected number of cases in individual of
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type 1 caused by one infected individual of type 1 in a completely susceptible pop-
ulation, either directly or through chains of infection passing through any sequence
of the other types. This parameter is related to R0, but singles out the control
effort needed when control is targeted at particular host type rather than at the
population as a whole. We refer to the quantity as T when single type is targeted.
When we have n types of epidemiologically distinct host types, we define precisely
the type-reproduction number T as

T = eT K(I − (I − P )K)−1e(3.1)

where Kn×n is the next-generation matrix (see [3] for details), In×n is the identity
matrix, en×1 is the vector (1, 0, ..., 0), eT is transpose e and Pn×n is the projection
matrix on type 1 (i.e. p11 = 1, and pij = 0 for all other entries). The main
property of this parameter T is T < 1 ↔ R0 < 1 (see details in [10]). Let X =
[I1, I2, Y1, Y2, V1, V2] be infection-related compartments vector. The next generation
matrix K = kij for system (2.3) is given by

K =



0 0 0 0 A1
µh+γ 0

0 0 0 0 0 A2
µh+γ

0 0 0 0 A1
µh+γ 0

0 0 0 0 0 A2
µh+γ

β1
µv

0 0 0 0 0
0 β2

µv
0 0 0 0


(3.2)

where kij is the expected number of secondary cases in type i that would arise
from typical primary case in type j in a susceptible population. In this matrix K
the humans cannot infect humans and mosquitoes cannot infect mosquitoes, hence
kij = 0, for i, j ∈ 1, 2, 3, 4 and kmn = 0, for m,n ∈ 5, 6. The entry k15, k26, k35, k46

are defined as the expected number of humans that are infected by a single mosquito,
and k51, k62 are defined as the expected number of mosquitoes infected by a single
human. The other elements of K are zero, which means that there is no secondary
infection in mosquitoes. Using K we determine the expected number of infected
hosts resulting from an infectious host with serotype i, i ∈ 1, 2, Ti = AiBi

µv(µh+γ) .

The value of Ti for primary and secondary infections with serotype i are given in
Table 2 below. Now, we define the type reproductive number for model (2.3) as
Ti = AiBi

µv(µh+γ) , i ∈ 1, 2, here i is the serotype of virus. This parameter will be used
to analyse the stability of equation (2.3) through equilibrium points.

Table 2. The value of type-reproduction number for model (2.3)

Related infection Value of T
First infection of host with serotype 1 (I1) A1B1

µv(µh+γ)

First infection of host with serotype 2 (I2) A2B2
µv(µh+γ)

Secondary infection of host with serotype 1 (Y1) A1B1
µv(µh+γ)

Secondary infection of host with serotype 2 (Y2) A2B2
µv(µh+γ)
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3.2. Equilibrium points. In this section we will find the equilibrium points of
system (2.3) in the region of Ω, with

Ω = {(S, Ii, Ri, Yi, D, Vi) ∈ R10
+ |V1 + V2 ≤ 1, S + Ii + Ri + Yi + D ≤ 1}

where i = 1, 2. We present some result concerning the existence of equilibrium points
of system (2.3).

3.2.1. Non-endemic equilibrium. We can immediately see that the disease free
equilibrium E0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) is a solution of system (2.3). The stability
of E0 is given by the following theorem.

Theorem 3.1. The model formulated in (2.3) has E0 = (1, 0, 0, 0, 0, 0, 0, 0, 0, 0) as a
locally stable disease free equilibrium point if and only if Ti < 1, i = 1, 2. Otherwise
E0 is an unstable disease free equilibrium.

Proof. The local stability of this equilibrium solutions can be examined by linearizing
system (2.3) around E0. This gives the Jacobian matrix DE0 as follow

DE0 =

266666666666664

−µh 0 0 −B1 0 0 −B2 0 0 0
0 −µh − γ 0 −B1 0 0 0 0 0 0
0 γ −µh 0 0 0 0 0 0 0
0 A1 0 −µv 0 0 0 A1 0 0
0 0 0 0 −µh− γ 0 B2 0 0 0
0 0 0 0 γ −µh 0 0 0 0
0 0 0 0 A2 0 −µv 0 A2 0
0 0 0 0 0 0 0 −µh − γ 0 0
0 0 0 0 0 0 0 0 −µh − γ 0
0 0 0 0 0 0 0 0 0 −µh − γ

377777777777775
.

The eigenvalues of DE0 are −µh with multiplicity 3, −µh− γ with multiplicity 3,
and the roots of polynomial pi(x) = x2 + ax + bi, i = 1, 2, where

a = µh + µv + γ > 0,

b = (µh + γ)µv(1− Ti), i = 1, 2.

Using the Routh-Hurwitz criteria, the roots of polynomial pi have negative real part
when Ti < 1. We deduce that E0 is a locally asymptotically stable when Ti < 1, and
a saddle point where Ti > 1. This proves Theorem 3.1.

3.2.2. Endemic equilibria. We determine now other equilibrium of system (2.3).
Suppose that only serotype i is present, i = 1, 2. Then we have the following
equilibria

E1 = (S∗1 , I∗1 , 0, R∗1, 0, 0, 0, 0, V ∗
1 , 0),

E1 = (S∗2 , 0, I∗2 , 0, R∗2, 0, 0, 0, 0, V ∗
2 ),

where

S∗i =
µhTi + Bi

Ti(µh + Bi)
, I∗i =

µhBi(Ti − 1)
(µh + γ)(µh + Bi)Ti

,

R∗i =
γI∗i

µh(µh + γ)
, V ∗

i =
µh(Ti − 1)
µhTi + Bi

, i = 1, 2.

The endemic points, Ei exist if and only if Ti > 1, i = 1, 2.
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Theorem 3.2. The equilibria Ei = i = 1, 2 is a locally asymptotically stable endemic
point if and only if Ti > 1 and

(3.3) Tj <
Ti

1 +
γσjBi(1− q)(Ti − 1)
(µhTi + Bi)(µh + γ)2

, i, j = 1, 2, i 6= j.

Otherwise Ei is a non stable endemic equilibrium.

Proof. We study now the stability of Ei, i = 1, 2. The corresponding Jacobian matrix
is

DEi =
[

G1 G2

0 G4

]
where

G1 =


−µh −BiV

∗
i 0 0 −BiS

∗

0 −µh − γ 0 −BiS
∗

0 γ −µh 0
0 Ai(1− V ∗

i ) 0 −µv −AiI
∗
i


and

G4 =


−µh − γ 0 BjS∗ 0 0 0

γ −µh − σiBiV ∗
i 0 0 0 0

Aj(1− V ∗
i ) 0 −µv 0 Aj(1− V ∗

i ) 0
0 (1− q)σiBiV ∗

i 0 −µh − γ 0 0
0 0 (1− q)σjBjR∗

i 0 −µh − γ 0
0 qσiBiV ∗

i qσjBjR∗
i 0 0 −µh − γ

 .

The eigenvalues of DEi
are given by the eigenvalues of G1 and G4. The eigenvalues

of G1 are −µh, and the roots of polynomial p(x) = x3 + aix
2 + bix + ci, i = 1, 2,

where

ai = µh + µv + κ + φi + ϕi,

bi = (µv + γ)µh + µ2
h + φiϕi + (κ + µv)ϕi + (κ + µh)φi,

ci = µhκφi + κµvϕi + κϕiφi,

φi =
Ai(Ti − 1)
λi + TiM

,ϕi =
Biλi(Ti − 1)
Ti(λi + M)

,

λi =
Ai

µv
, κ = µh + γ, M =

κ

µh
, i = 1, 2.

Observe that ai, bi, ci > 0 when Ti > 1. Also it can be seen that

ci < 2µ2
h + µh(µv + γ)φi + (µh + µv + κ)(µh + µv + 2κ)(φi + ϕi),

+(2µh + 2µv + 2κ)ϕiφi,

< aibi.

Therefore by Routh-Hurwitz criteria we deduce that the roots of the polynomial
p(x) have negative real part when Ti > 1. The eigenvalues of G4 are −µh − γ
with multiplicity 3, −µh − σiBiV

∗
i , i = 1, 2, and the roots of polynomial gi(x) =

x2 + pix + qi, i = 1, 2 where

pi = µh + µv + γ > 0,

qi = (µh + γ)µv −AjBj(1− V ∗
i )[S∗ + (1− q)σjR

∗
i ], i = 1, 2, i 6= j.



150 N. Nuraini, E. Soewono and K.A. Sidarto

Applying Routh-Hurwitz criteria to polynomial g(x), the roots of this polynomial
have negative real part when bi > 0, i = 1, 2 and we have the following inequality in
term of type reproductive number,

Tj <
Ti

1 +
γσjBi(1− q)(Ti − 1)
(µhTi + Bi)(µh + γ)2

, i, j = 1, 2, i 6= j.

We can deduce that the equilibria Ei is locally asymptotically stable when

Ti > 1 and Tj <
Ti

1 +
γσjBi(1− q)(Ti − 1)
(µhTi + Bi)(µh + γ)2

, i, j = 1, 2, i 6= j.

This proves Theorem 3.2.

Observe that for T1 > 1 and T2 > 1, the inequalities given by (3.3) for i = 1, 2
cannot be fulfilled simultaneously, therefore E1 and E2 can not be locally stable at
the same time. Figure 2 illustrates the stability diagram of E0, E1 and E2 depending
on the type reproductive numbers for different values of σ1 and σ2 (susceptibility
index of serotype i). We notice that the stability region of E1 and E2 become smaller
as the σ1 and σ2 increases. We obtain Figure 2 from the inequality (3.3) under a
set of fixed parameters. In Figure 2(a), σ1 = σ2 = 0, here we have three regions
for E0, E1 and E2. In Figure 2(b) the values of susceptibility index are σ1 = 0.01
and σ2 = 0.08, respectively. In Figure 2(c) we increase the values of susceptibility
index into σ1 = 0.5 and σ2 = 1.4. Analysing Figure 2, we notice that the results are
similar to those of [5]. But in our model we observe that for σ1 > 1 and σ2 > 1 we
have Figure 2(d) which is not found in [5].

Figure 2. Diagram of existence and stability of equilibria Ei for different value of

σ1 and σ2. Parameter values are γ = 0.1428, A1 = 1.5, A2 = 3, B1 = 2.5, B2 =

1, and q = 0.02.
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3.2.3. Coexistence of endemic equilibrium. We obtain the coexistence of endemic
equilibrium points when we make the left hand side of system (2.3) equal to zero,
that is E3 = {S∗∗, I∗∗i , R∗∗i , Y ∗∗

i , D∗∗, V ∗∗
i } where

S∗∗ =
µh

µh + B1V ∗∗
1

, I∗∗i =
BiV

∗∗
i S∗∗

µh + γ
,

R∗∗i =
γµhI∗∗i

σjBjV ∗∗
j + µh

, Y ∗∗
i =

(1− q)γBjV
∗∗
j σiI

∗∗
i

(µh + γ)(σiBiV ∗∗
i + µh)

,

D∗∗ =
qµhM [µh(σ1 + σ2) + σ1σ2(B1V

∗∗
1 + B2V

∗∗
2 )]R∗∗1 R∗∗2

γ(µh + γ)S∗∗
, i, j = 1, 2, i 6= j.

Substituting the above expressions in system (2.3), we obtain the following equa-
tions for the variables V1 and V2.

F1 =
dV1

dt
= a1V

∗∗2
1 + b1V

∗∗2
2 + c1V

∗∗
1 V ∗∗

2 + d1V
∗∗
1 + e1V

∗∗
2 + f1 = 0,

F2 =
dV2

dt
= a2V

∗∗2
2 + b2V

∗∗2
1 + c2V

∗∗
2 V ∗∗

1 + d2V
∗∗
2 + e2V

∗∗
1 + f2 = 0,(3.4)

where

ai = B2
i σiγM(Aiµh + µvγM),

bi = AiBiBjσiµhγ(1− q),

ci = Biσiµh[AiBiµhM + AiBjγ(1− q) + BjµvµhM2],

di = µ3
hBiMµv[λi + M + σiM(1− Ti)],

ei = µ2
hµvM [Ti(µ2

hM −Bjσiγ(1− q)) + BjµhM ],

fi = µ4
hM2µv(1− Ti),M =

µh + γ

µh
, λi =

Ai

µv
, i, j = 1, 2, i 6= j.

Suppose that 0 < V ∗∗
1 , V ∗∗

2 ≤ 1, the existence of E3 is fulfilled if

(3.5) F1(V ∗∗
1 , 0) < F2(V ∗∗

1 , 0), F2(0, V ∗∗
2 ) < F1(0, V ∗∗

2 )

or

(3.6) F1(V ∗∗
1 , 0) > F2(V ∗∗

1 , 0), F2(0, V ∗∗
2 ) > F1(0, V ∗∗

2 )

where F1 and F2 are monotone decrease function of equation (3.4) and

F1(V ∗∗
1 , 0) =

−d1 +
√

d2
1 − 4a1f1

2a1
, F2(V ∗∗

1 , 0) =
−d2 +

√
d2
2 − 4a2f2

2a2
,

F1(0, V ∗∗
2 ) =

−e1 +
√

e2
1 − 4b1f1

2b1
, F2(0, V ∗∗

2 ) =
−e2 +

√
e2
2 − 4b2f2

2b2
.

We illustrate the condition (3.5) in Figure 3 (left). Let

G1 = F1(V ∗∗
1 , 0)− F2(V ∗∗

1 , 0) = G1(T1, T2)

and
G2 = F2(0, V ∗∗

2 )− F1(0, V ∗∗
2 ) = G2(T1, T2).
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We transform the condition (3.5) into the region B in Figure 3 (right). Hence we
have the condition (3.6) for the parameter values of T1 and T2 in region A of Figure
3 (right).

Figure 3. The sketch of equations (3.4) 3 (left) and region of coexistence of two

serotype viruses 3 (right) under a fix parameter values µv = 1
14

, γ = 0.071, β1 =

0.5, β2 = 0.36, µh = 1
70

, α1 = 0.61, α2 = 0.34, q = 0.02, b = 1, σ1 = 0.6, σ2

= 0.8.

The stability of E3 derives from the location of the jacobian eigenvalues of matrix
of system (2.3) evaluated at E3. From Gerschgorin disk Theorem [1] we obtain the
following conditions for stability of this equilibrium.

2λi(1− V ∗∗
1 − V ∗∗

2 )− 1 ≤ 0,

V ∗∗
i + S∗∗ − (1− q)σi(V ∗∗

i + R∗∗j ) ≤ 0,(3.7)

σiBi(R∗∗j − V ∗∗
i ) + γ − µh ≤ 0,

(B1 + B2)S∗∗ − (µh + B1V
∗∗
1 + B2V

∗∗
2 ) ≤ 0, i, j = 1, 2.

Since in general it is not possible to find the exact solution of equations (3.4) in
explicit form, we analyse the special case when the characteristic transmission and
the susceptibility index for both serotype are identical. It means that A1 = A2 =
A,B1 = B2 = B, σ1 = σ2 = σ, T1 = T2 = T. Equation (3.4) becomes

(3.8) aV ∗∗2 + bV ∗∗ + c = 0

where

a = 2B2σ[Aµh(µh + γ + γ(1− q)) + µv(µh + γ)],
b = Bµh[(µh + γ)(2Aµh + µv(µh + γ)(2 + σ))−ABσ(µh + γ + γ(1− q))],
c = µ2

hµv(µh + γ)2(1− T ).

The equation (3.8) will have a unique positive solution V ∗∗ if and only if T > 1
and T = AB

µv(µh+γ) . In this case, the endemic equilibrium E3 is given by

E3a
= (S∗∗, I∗∗i = I∗∗, R∗∗i = R∗∗, Y ∗∗

i = Y ∗∗, D∗∗)
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where

S∗∗ =
µh

µh + 2BV ∗∗ ,

I∗∗i = I∗∗ =
BV ∗∗S∗∗

µh + γ
,

R∗∗i = R∗∗ =
γI∗∗

σBV ∗∗ + µh
,(3.9)

Y ∗∗
i = Y ∗∗ =

(1− q)σBV ∗∗R∗∗

µh + γ
,

D∗∗ =
2q(µh + γ)Y ∗∗

(1− q)(µh + γ)
, i = 1, 2,

where V ∗∗ is the positive solution of equation (3.8). The solution of equation (3.8)
depends on the value of type reproductive number, as a consequence the equilibrium
in (3.9) also depends on this parameter. In order to find the stability of the endemic
equilibrium E3a

in the equations (3.9) we have the following theorem.

Theorem 3.3. The equilibrium E3a
in equations (3.9) is a locally asymptotically

stable endemic point if and only if

(3.10) 1 < T <
B(Bσµv + 2Aµ2

h + Λ(2 + σ))
2µhΛ

+ 1,Λ = µhµv(µh + γ).

Proof. The jacobian matrix of system (2.3) at the equilibrium E3a
is given by

DE3a
=

266666666666664

−µh − 2V̌ 0 0 −Š 0 0 −Š 0 0 0
−V̌ χ 0 −Š 0 0 0 0 0 0
0 γ −µh− σV̌ 0 0 0 −Ř 0 0 0
0 ∆ 0 −µv − Γ 0 0 −Γ ∆ 0 0
Π 0 0 0 χ 0 Š 0 0 0
0 0 0 Ř γ −µh − σV̌ 0 0 0 0
0 0 0 −Γ ∆ 0 −µv − Γ 0 ∆ 0
0 0 0 (1− q)Ř 0 (1− q)σV̌ 0 χ 0 0
0 0 (1− q)σV̌ 0 0 0 (1− q)Ř 0 χ 0
0 0 qσV̌ qŘ 0 qσV̌ qŘ 0 0 χ

377777777777775
where Γ = A(I∗∗ + Y ∗∗), ∆ = A(1 − 2V ∗∗), V̌ = BV ∗∗, Ř = σBR∗∗, Š = BS∗∗,

χ = −µh − γ.

The eigenvalues of DE3a
are −µh − γ and the roots of polynomial

q1 = s4 + c1s
3 + c2s

2 + c3s + c4

and
q2 = s5 + k1s

4 + k2s
3 + k3s

2 + k4s + k5,

where ci, i = (1, 2, 3, 4) and kj , j = 1, 2, 3, 4, 5 are functions of the parameters shown
in Table 1 (we omit the details). Using Descartes rule of sign [1] for the coefficient
of polynomials q1 and q2 we have that all the eigenvalues have negative real part if
and only if 2V ∗∗ − 1 < 0 ⇐⇒ V ∗∗ < 1

2 , where V ∗∗ is a positive solution of equation
(3.8). This condition is satisfied if

V ∗∗ =
−b +

√
b2 − 4ac

2a
<

1
2

⇐⇒ −a− b− 4c < 0,

⇐⇒ −4c < a + 2b,
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⇐⇒ −4µhΛ(1− T ) < a + 2b,

⇐⇒ 0 < T − 1 <
a + 2b

4µhΛ
,

⇐⇒ 1 < T <
B(Bσµv + 2Aµ2

h + Λ(2 + σ))
2µhΛ

+ 1,

Λ = µhµv(µh + γ).

where a, b, and c are coefficients of equation (3.8). This proves Theorem 3.3.
Now, we are interested in ratio between severe DHF compartment over first infec-

tion compartment and secondary infection compartment. Those ratios explain the
evidence for “ice-berg” phenomena of dengue fever cases [8]. Moreover, they can
be used for practical control measure in order to predict the “real” intensity of the
endemic phenomena using data of severe DHF given in the hospital. From equation
(3.9) we have

I∗∗

D∗∗ =
λ(σBV ∗∗ + µh)

2σγqTV ∗∗ ,

where V ∗∗ is a positive solution of equation (3.8) and
Y ∗∗

D∗∗ =
(1− q)

2q
.

In Figure 4(a), we show that the ratio of severe DHF compartment will decrease
as the type reproductive number increase, and in Figure 4(b) we have that if the
probability of severe DHF is greater than 1

3 then the ratio of secondary infection
compartment over severe DHF compartment will be less than one. Analytically that
the ratios tend to infinity as q tends to 0, it means that there is no infection host
move to severe DHF compartment.

Figure 4. The diagram of ratio between first infection over severe DHF com-
partment as the parameter T decreases in Figure 5(a) and the ratio between
secondary infection over severe DHF compartment for under fix parameter
γ = 0.071, β1 = 0.35, β2 = 0.37, α1 = 0.17, α2 = 0.15, b = 1, σ1 = 1.5, σ2 = 2.5.

4. Numerical simulation

In order to illustrate the dynamics of each epidemic, numerical simulation are carried
out using MATLAB routines with different values of the parameters implied in
this model. We have generated simulations of system (2.3) for different values of
parameters. The typical behaviour or solutions is illustrated in Figures 5 and 6.
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Figures 5 and 6 show some sensitivity analysis of the dynamics by varying the
susceptibility index and type reproductive number, respectively. The results in Table
3 indicate that the susceptibility index (σ) increases as well as the dynamics of I,
Y , and D increase with respect to time. In Table 4, we observe that the type
reproductive number increase have an impact to the dynamics of I, Y , and D. In
all of the simulations the total population Nh = 1000, and the initial number of
infected host for each serotype equal to one.

Table 3. Numerical result for dynamic of host and outbreaks time in Figure 6

Fig. no I∗∗ Y ∗∗ D∗∗ tI tY tD σ
6(a) 0.0623 0.0045 0.002 51.85 66.81 66.81 0.5
6(b) 0.065 0.0157 0.0071 54.18 68.84 68.84 1.5
6(c) 0.0679 0.0304 0.0139 52.63 68.76 68.76 2.5
6(d) 0.0708 0.0496 0.0226 53.72 69.01 71.18 3.5

Figure 5. Numerical simulation of system (3) with parameter values γ =

0.071, β1 = 0.1, β2 = 0.1, α1 = 0.2, α2 = 0.2, b = 3, and different values of
σ.
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Figure 6. Numerical simulation of system (3) with parameter values γ =
0.071, β1 = 0.1, β2 = 0.1, α1 = 0.2, α2 = 0.2, b = 3, and different values of

σ.

Table 4. Numerical result for dynamic of host and outbreaks time in Figure 7

Fig. no I∗∗ Y ∗∗ D∗∗ tI tY tD T
7(a) and 7(b) 0.01 2.3× 10−6 1.1× 10−6 - 16.85 16.85 0.48
7(c) and 7(d) 0.01 9.3× 10−5 4.2× 10−5 - 62.02 57.77 4.33
7(e) and 7(f) 0.01 4.7× 10−4 2.1× 10−4 61.7 78.92 78.92 5.89
7(g) and 7(h) 0.044 0.0066 0.003 60.5 77.01 74.28 9.75

5. Conclusion

We obtain the value of type reproductive number for the model (2.3) as

Ti =
AiBi

µv(µh + γ)
, i ∈ 1, 2,

where T1 for serotype one, and T2 for serotype two. Analysis of this model reveals
the existence of four equilibrium points. One is the disease-free equilibrium and it is
locally asymptotically stable if and only if Ti < 1. The other two equilibria for one
serotype only, are locally asymptotically stable when

Ti > 1 and Tj <
Ti

1 +
γσjBi(1− q)(Ti − 1)
(µhTi + Bi)(µh + γ)2

, i, j = 1, 2, i 6= j.

The fourth equilibrium is the coexistence of two serotype viruses, we propose the
same characteristic of transmission virus for serotype one and serotype two and this
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equilibrium will be a locally asymptotically stable endemic point if and only if

1 < T <
B(Bσµv + 2Aµ2

h + Λ(2 + σ))
2µhΛ

+ 1,Λ = µhµv(µh + γ).

We obtain the ratio between the total number of severe DHF compartment and
the total number of first infection compartment given as

I∗∗

D∗∗ =
λ(σBV ∗∗ + µh)

2σγqTV ∗∗ ,

where V ∗∗ is a positive solution of equation (3.8). The ratio between the total
number of severe DHF compartment and the total number of secondary infection
compartment is

Y ∗∗

D∗∗ =
(1− q)

2q
.

The numerical simulation indicates that the dynamic of infection host will increase
until it reaches a maximum number in outbreaks time, after some time the cases
exponentially decay approaching the disease-free equilibrium.
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