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Abstract. The present paper deals with unification of the multiple twisted Euler and Genoc-
chi numbers and polynomials associated with p-adic q-integral on Zp at q = −1. Some
earlier results of Ozden’s papers in terms of unification of the multiple twisted Euler and
Genocchi numbers and polynomials associated with p-adic q-integral on Zp at q =−1 can
be deduced. We apply the method of generating function and p-adic q-integral representa-
tion on Zp, which are exploited to derive further classes of Euler polynomials and Genocchi
polynomials. To be more precise we summarize our results as follows, we obtain some
relations between Ozden’s generating function and fermionic p-adic q-integral on Zp at
q = −1. Furthermore we derive Witt’s type formula for the unification of twisted Euler
and Genocchi polynomials. Also we derive distribution formula (Multiplication Theorem)
for multiple twisted Euler and Genocchi numbers and polynomials associated with p-adic
q-integral on Zp at q = −1 which yields a deeper insight into the effectiveness of this type
of generalizations. Furthermore we define unification of multiple twisted zeta function and
we obtain an interpolation formula between unification of multiple twisted zeta function and
unification of the multiple twisted Euler and Genocchi numbers at negative integers. Our
new generating function possess a number of interesting properties which we state in this
paper.
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1. Introduction, definitions and notations

Bernoulli numbers were introduced by Jacques Bernoulli (1654–1705), in the second part
of his treatise published in 1713, ”Ars con jectandi”, at the time, Bernoulli numbers were
used for writing the infinite series expansions of hyperbolic and trigonometric functions.
Van den berg was the first to discuss finding recurrence formulae for the Bernoulli num-
bers with arbitrary sized gaps (1881). Ramanujan showed how gaps of size 7 could be
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found, and explicitly wrote out the recursion for gaps, of size 6. Lehmer in 1934 extended
these methods to Euler numbers, Genocchi numbers and Lucas numbers (1934) and calcu-
lated the 196-th Bernoulli numbers. The study of generalized Bernoulli, Euler and Genoc-
chi numbers and polynomials and their combinatorial relations has received much atten-
tion [1, 2, 4, 5, 7, 8, 25–29, 40]. Generalized Bernoulli polynomials, generalized Euler poly-
nomials and generalized Genocchi numbers and polynomials are the signs of very strong
bond between elementary number theory, complex analytic number theory, Homotopy the-
ory (stable Homotopy groups of spheres), differential topology (differential structures on
spheres), theory of modular forms (Eisenstein series), p-adic analytic numbers theory (p-
adic L-functions), quantum physics(quantum Groups). p-adic numbers were invented by
Kurt Hensel around the end of the nineteenth century. In spite of their being already one
hundred years old, these numbers are still today enveloped in an aura of mystery within the
scientific community. The p-adic integral was used in mathematical physics, for instance,
the functional equation of the q-zeta function, q-stirling numbers and q-Mahler theory of
integration with respect to the ring Zp together with Iwasawa’s p-adic q-L functions. Also
the p-adic interpolation functions of the Bernoulli and Euler polynomials have been treated
by Tsumura [39] and Young [41]. Kim [10–24] also studied on p-adic interpolation func-
tions of these numbers and polynomials. In [3], Carlitz originally constructed q-Bernoulli
numbers and polynomials. These numbers and polynomials are studied by many authors
(see cf. [6,10–24,30,31,33,35]). In the last decade, a surprising number of papers appeared
proposing new generalizations of the Bernoulli, Euler and Genocchi polynomials to real and
complex variables. In [6, 10–24], Kim studied some families of multiple Bernoulli, Euler
and Genocchi numbers and polynomials. By using the fermionic p-adic invariant integral
on Zp, he constructed p-adic Bernoulli, Euler and Genocchi numbers and polynomials of
higher order. A unification (and generalization) of Bernoulli polynomials and Euler poly-
nomials with a, b and c parameters first was introduced and investigated by Luo [27–29].
After Luo and Srivastava defined unification (and generalization) of Apostol type Bernoulli
polynomials with a, b and c parameters of higher order [29]. After Ozden et al. [31] uni-
fied and extended the generating functions of the generalized Bernoulli polynomials, the
generalized Euler polynomials and the generalized Genocchi polynomials associated with
the positive real parameters a and b and the complex parameter. Also they, by applying
the Mellin transformation to the generating function of the unification of Bernoulli, Euler
and Genocchi polynomials, constructed a unification of the Zeta functions. Actually, their
definition provides a generalization and unification of the Bernoulli, Euler and Genocchi
polynomials and also of the Apostol-Bernoulli, Apostol-Euler and Apostol-Genocchi poly-
nomials, which were considered in many earlier investigations by (among others) Srivastava
et al. [36–38], Karande [9]. Also, they, by using a Dirichlet character, defined unification
of the generating functions of the generalized Bernoulli, Euler and Genocchi polynomials
and numbers. Kim in [20], constructed Apostol-Euler numbers and polynomials by using
fermionic expression of p-adic q-integral at q =−1. In this paper by his method we derive
several properties for unification of the multiple twisted Euler and Genocchi numbers and
polynomials.

Let p be a fixed odd prime number. Throughout this paper we use the following no-
tations, by Zp denotes the ring of p-adic rational integers, Q denotes the field of rational
numbers, Qp denotes the field of p-adic rational numbers and Cp denotes the completion
of algebraic closure of Qp. Let N be the set of natural numbers and N∗ = N∪{0}. The
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p-adic absolute value is defined by |p|p = 1/p. In this paper, we assume |q−1|p < 1 as an
indeterminate. [x]q is a q-extension of x which is defined by [x]q = (1−qx)/(1−q), we note
that limq→1 [x]q = x.

We say that f is a uniformly differentiable function at a point a ∈ Zp, if the difference
quotient

Ff (x,y) =
f (x)− f (y)

x− y
has a limit f´(a) as (x,y)→ (a,a) and denote this by f ∈UD(Zp).

Let UD(Zp) be the set of uniformly differentiable function on Zp. For f ∈UD(Zp), let
us begin with the following expression

1
[pN ] ∑

0≤x<pN

f (x)qx = ∑
0≤x<pN

f (x)µq
(
x+ pNZp

)
,

represents p-adic q-analogue of Riemann sums for f . The integral of f on Zp will be
defined as the limit (N→ ∞) of these sums, when it exists. The p-adic q-integral of function
f ∈UD(Zp) is defined by Kim

(1.1) Iq ( f ) =
∫

Zp

f (x)dµq (x) = lim
N→∞

1
[pN ]q

pN−1

∑
x=0

f (x)qx.

The bosonic integral is considered by Kim as the bosonic limit q → 1,
I1 ( f ) = limq→1 Iq ( f ). Similarly, the fermionic p-adic integral on Zp is considered by Kim
as follows:

I−q ( f ) = lim
q→−q

Iq ( f ) =
∫

Zp

f (x)dµ−q (x) .

Assume that q→ 1, then we have fermionic p-adic fermionic integral on Zp as follows

(1.2) I−1 ( f ) = lim
q→−1

Iq ( f ) = lim
N→∞

pN−1

∑
x=0

f (x)(−1)x .

If we take f1 (x) = f (x+1) in (1.2), then we have

(1.3) I−1 ( f1)+ I−1 ( f ) = 2 f (0) .

Let p be a fixed prime. For a fixed positive integer d with (p,d) = 1, we set

X = Xd = lim
←
N

Z/d pNZ, X1 = Zp, X∗ = ∪
0<a<d p
(a,p)=1

a+d pZp

and
a+d pNZp =

{
x ∈ X | x≡ a

(
mod d pN)},

where a ∈ Z satisfies the condition 0≤ a < d pN .

Definition 1.1. [32] A unification yn,β (x : k,a,b) of the Bernoulli, Euler and Genochhi poly-
nomials is given by the following generating function:

Fa,b (x; t;k,β ) =
2
( t

2

)k

β bet −ab ext =
∞

∑
n=0

yn,β (x : k,a,b)
tn

n!

(∣∣∣∣t + log
(

β

a

)∣∣∣∣< 2π; x ∈ R
)

(
k ∈ N∗;a,b ∈ R+;β ∈ C

)
,(1.4)
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where as usual R+, and C denote the sets of positive real numbers and complex numbers,
respectively, R being the set of real numbers.

Observe that, if we put x = 0 in the generating function (1.4), then we obtain the corre-
sponding unification of the generating functions of Bernoulli, Euler and Genocchi numbers.
So, we have

yn,β (0 : k,a,b) = yn,β (k,a,b) .
We are now ready to give a relationship between the Ozden’s generating function and the

fermionic p-adic q-integral on Zp at q =−1 by the following theorem:

Theorem 1.1. The following relationship holds:

(1.5) a−b
( t

2

)k ∫
Zp

(−1)x+1
(

β

a

)bx

etxdµ−1 (x) =
∞

∑
n=0

yn,β (k,a,b)
tn

n!
.

Proof. We set f (x) = a−b
( t

2

)k (−1)x+1
(

β

a

)bx
etx in (1.3), it is easy to show the following

assertion

a−b
( t

2

)k
(
−
(

β

a

)b

et +1

)∫
Zp

(−1)x+1
(

β

a

)bx

etxdµ−1 (x) = −
2
( t

2

)k

ab

a−b
( t

2

)k ∫
Zp

(−1)x+1
(

β

a

)bx

etxdµ−1 (x) =
2
( t

2

)k

β bet −ab .

So, we complete the proof of Theorem.

Theorem 1.2. Then the following identity holds:∫
Zp

(−1)x+1
(

β

a

)bx

xn−kdµ−1 (x) = 2kab (n− k)!
n!

yn,β (k,a,b) .

Proof. From (1.5) and by using the Taylor expansion of etx, we readily see that,
∞

∑
n=0

(
2−ka−b

∫
Zp

(−1)x+1
(

β

a

)bx

xndµ−1 (x)

)
tn+k

n!
=

∞

∑
n=0

yn,β (k,a,b)
tn

n!
.

By comparing coefficients of tn in the both sides of the above equation, we arrive at the
desired result.

Similarly, we obtain the following theorem for unification of the Euler and Genocchi
polynomials as follows:

Theorem 1.3. The following identity holds:

(1.6)
∫

Zp

(−1)y+1
(

β

a

)by

(x+ y)n dµ−1 (y) = 2kab n!
(n+ k)!

yn+k,β (x : k,a,b) .

From the binomial theorem in (1.6), we possess the following theorem:

Theorem 1.4. The following relation holds:

yn+k,β (x : k,a,b)(n+k
k

) =
n

∑
m=0

(n
m

)(m+k
k

)ym+k,β (k,a,b)xn−m.
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Proof. By using (1.6) and binomial theorem, we express the following relation
n

∑
m=0

(
n
m

)(∫
Zp

(−1)y+1
(

β

a

)by

ymdµ−1 (y)

)
xn−m = 2kab n!

(n+ k)!
yn+k,β (x : k,a,b) .

By using p-adic q-integral on Zp at q =−1, we arrive at the desired proof of the theorem.
Now, we consider symmetric properties of this type of polynomials as follows:

Theorem 1.5. The following relation holds:

yn,β−1
(
1− x : k,a−1,b

)
= (−1)k+n+1

β
babyn,β (x : k,a,b) .

Proof. We set x→ 1− x, β → β−1 and a→ a−1 into (1.6). That is∫
Zp

(−1)y+1
(

β−1

a−1

)by

(1− x+ y)n dµ−1 (y)

= (−1)n
∫

Zp

(−1)y+1
(

β

a

)−by

(x−1+ y)n dµ−1 (y) = (−1)k+n+1
β

babyn,β (x : k,a,b) .

Thus, we complete proof of the theorem.
Ozden has obtained distribution formula for yn,β (x : k,a,b). We will also obtain distri-

bution formula by using p-adic q-integral on Zp at q =−1.

Theorem 1.6. The following identity holds:

yn,β (x : k,a,b) = ab(d−1)dn−k
d−1

∑
j=0

(
β

a

)b j

yn,β d

(
x+ j

d
: k,ad ,b

)
.

Proof. By using definition of the p-adic integral on Zp, we compute

2kab n!
(n+ k)!

yn+k,β (x : k,a,b)

=
∫

Zp

(−1)y+1
(

β

a

)by

(x+ y)n dµ−1 (y) = lim
N→∞

d pN−1

∑
y=0

(−1)y+1
(

β

a

)by

(x+ y)n (−1)y

= dn
d−1

∑
j=0

(
β

a

)b j

lim
N→∞

pN−1

∑
y=0

(−1)y+1
(

β

a

)bdy(x+ j
d

+ y
)n

(−1)y

= dn
d−1

∑
j=0

(
β

a

)b j ∫
Zp

(−1)y+1
(

β d

ad

)by(x+ j
d

+ y
)n

dµ−1 (y)

= dn
d−1

∑
j=0

(
β

a

)b j

2kadb n!
(n+ k)!

yn+k,β d

(
x+ j

d
: k,ad ,b

)
.

Substituting n by n− k, we obtain the desired result and so proof is complete.

Remark 1.1. This distribution for yn,β (x : k,a,b) is also introduced by Ozden cf. [32].

Definition 1.2. [31] Let χ be a Dirichlet character with conductor d ∈ N. The generating
functions of the generalized Bernoulli, Euler and Genocchi polynomials with parameters a,
b, β and k have been defined by Ozden, Simsek and Srivastava as follows:

Fχ,β (t,k,a,b)
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= 2
( t

2

)k d

∑
j=1

χ ( j)
(

β

a

) j
e jt

β bdedt −abd

=
∞

∑
n=0

yn,χ,β (x : k,a,b)
tn

n!
,

(∣∣∣∣t +b log
(

β

a

)∣∣∣∣< 2π; d,k ∈ N; a,b ∈ R+; β ∈ C
)

.

By using p-adic integral on Zp, we can obtain Definition 1.2 in terms of p-adic q-integral
on Zp at q =−1, as follows:

Theorem 1.7. Let χ be a Dirichlet’s character with conductor d ∈ N. Then the following
relation holds

(1.7) ab(1−d)
( t

2

)k ∫
Zp

χ (x)(−1)x+1
(

β

a

)bx

etxdµ−1 (x) = 21−ktk
d

∑
j=1

χ ( j)
(

β

a

)b j
et j

β dbedt −adb .

Proof. From the definition of p-adic q-integral on Zp at q =−1, we compute

ab(1−d)
( t

2

)k ∫
Zp

χ (x)(−1)x+1
(

β

a

)bx

etxdµ−1 (x)

= ab(1−d)
( t

2

)k
lim

N→∞

d pN−1

∑
x=0

χ (x)(−1)x+1
(

β

a

)bx

etx (−1)x

=
1
dk

d

∑
j=1

χ ( j)
(

β

a

)b j

et j

(
1

adb

(
td
2

)k

lim
N→∞

pN−1

∑
x=0

(−1)x+1
(

β d

ad

)bx

etdx (−1)x

)

=
1
dk

d

∑
j=1

χ ( j)
(

β

a

)b j

et j

(
2
( td

2

)k

β dbedt −adb

)
= 21−ktk

d

∑
j=1

χ ( j)
(

β

a

)b j
et j

β dbedt −adb .

Thus, we arrive at the desired result.
By expression of (1.7), we get the following equation

(1.8) ab(1−d)
( t

2

)k ∫
Zp

χ (x)(−1)x+1
(

β

a

)bx

etxdµ−1 (x) =
∞

∑
n=0

yn,χ,β (x : k,a,b)
tn

n!
.

We are now ready to give distribution formula for generalized Euler and Genocchi poly-
nomials by using p-adic q-integral on Zp at q =−1 by means of theorem.

Theorem 1.8. For any n,k,d ∈ N a,b ∈ R+; β ∈ C, we have

yn,χ,β (x : k,a,b) = dn−k
d−1

∑
j=0

χ ( j)
(

β

a

)b j

yn,β d

(
x+ j

d
: k,ad ,b

)
.

Proof. By expression of (1.8), we compute as follows assertion
∞

∑
n=0

yn,χ,β (x : k,a,b)
tn

n!

= ab(1−d)
( t

2

)k ∫
Zp

χ (y)(−1)y+1
(

β

a

)by

et(x+y)dµ−1 (y)
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= ab(1−d)
( t

2

)k
lim

N→∞

d pN−1

∑
y=0

χ (y)(−1)y+1
(

β

a

)by

et(x+y) (−1)y

=
1
dk

d−1

∑
j=0

χ ( j)
(

β

a

)b j
(

1
adb

(
dt
2

)k

lim
N→∞

pN−1

∑
y=0

(−1)y+1
(

β d

ad

)by

edt
(

x+ j
d +y

)
(−1)y

)

=
1
dk

d−1

∑
j=0

χ ( j)
(

β

a

)b j
(

1
adb

(
dt
2

)k ∫
Zp

(−1)y+1
(

β d

ad

)by

edt
(

x+ j
d +y

)
dµ−1 (y)

)

=
1
dk

d−1

∑
j=0

χ ( j)
(

β

a

)b j
(

∞

∑
n=0

dnyn,β d

(
x+ j

d
: k,ad ,b

)
tn

n!

)

=
∞

∑
n=0

(
dn−k

d−1

∑
j=0

χ ( j)
(

β

a

)b j

yn,β d

(
x+ j

d
: k,ad ,b

))
tn

n!
.

So, we complete the proof of theorem.

2. New properties on the unification of multiple twisted Euler and Genocchi polyno-
mials

In this section, we introduce a unification of the twisted Euler and Genocchi polynomials.
We assume that q ∈Cp with |1−q|p < 1. For n ∈N, by the definition of the p-adic integral
on Zp, we have

(2.1) I−1 ( fn)+(−1)n−1 I−1 ( f ) = 2
n−1

∑
x=0

f (x)(−1)n−1−x

where fn (x) = f (x+n).
Let Tp = ∪n≥1Cpn = limn→∞ Cpn = Cp∞ be the locally constant space, where Cpn = {w |

wpn
= 1} is the cylic group of order pn. For w ∈ Tp, we denote the locally constant function

by

(2.2) φw : Zp→ Cp, x→ wx,

If we set f (x) = φw (x)a−b (t/2)k (−1)x+1 (β/a)bx etx, then we have

(2.3) a−b
( t

2

)k ∫
Zp

φw (x)(−1)x+1
(

β

a

)bx

etxdµ−1 (x) =
2
( t

2

)k

wβ bet −ab .

We now define unification of twisted Euler and Genocchi polynomials as follows:

2
( t

2

)k

wβ bet −ab =
∞

∑
n=0

yn,w,β (k,a,b)
tn

n!
.

We note that by substituting w = 1, we obtain Ozden’s generating function (1.4). From
(2.2) and (2.3), we obtain Witt’s type formula for a unification of twisted Euler and Genocchi
polynomials as follows:

(2.4) a−b2−k
∫

Zp

φw (x)(−1)x+1
(

β

a

)bx

xndµ−1 (x) =
yn+k,w,β (k,a,b)

k!
(n+k

k

)
for each w ∈ Tp and n ∈ N.
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We now establish Witt’s type formula for the unification of multiple twisted Euler and
Genocchi polynomials by the following theorem.

Definition 2.1. Let be w ∈ Tp, n,h,k ∈ N a,b ∈ R+; β ∈ C, we define

a−hb2−hk
∫

Zp

...
∫

Zp︸ ︷︷ ︸
h−times

φw (x1 + ...+ xh)(−1)x1+...+xh+h

×
(

β

a

)b(x1+...+xh)

(x1 + ...+ xh)
n dµ−1 (x1) ...dµ−1 (xh) =

y(h)
n+kh,w,β (k,a,b)

(kh)!
(n+kh

kh

) .

(2.5)

Remark 2.1. Taking h = 1 into (2.5), we get the unification of the twisted Euler and Genoc-
chi polynomials yn,w,β (k,a,b).

Remark 2.2. By substituting h = 1 and w = 1, we obtain a special case of the unification
of Euler and Genocchi polynomials yn,β (k,a,b).

Theorem 2.1. For any w ∈ Tp, n,h,k ∈ N a,b ∈ R+; β ∈ C,

y(h)
n+kh,w,β (k,a,b)

(kh)!
(n+kh

kh

) = ∑
l1+...+lh=n

l1 ,...,lh≥0

n!
l1!...lh!

h

∏
i=1

y(h)
li+kh,w,β (k,a,b)

(kh)!
(li+kh

kh

) .

Proof. By using definition of the multiple twisted a unification of Euler and Genocchi num-
bers and polynomials, and, definition of

(x1 + x2 + ...+ xh)
n = ∑

l1+...+lh=n
l1 ,...,lh≥0

n!
l1!...lh!

xl1
1 xl2

2 ...xlh
h ,

we see that

a−hb2−hk
∫

Zp

...
∫

Zp︸ ︷︷ ︸
h−times

{
φw (x1 + ...+ xh)(−1)x1+...+xh+h

(
β

a

)b(x1+...+xh)

×(x+ x1 + ...+ xh)
n

}
dµ−1 (x1) ...dµ−1 (xh)

= ∑
l1+...+lh=n

l1 ,...,lh≥0

n!
l1!...lh!

(
a−b2−k

∫
Zp

wx1

(
β

a

)bx1

xl1
1 dµ−1 (x1)

)
×

...×

(
a−b2−k

∫
Zp

wxh

(
β

a

)bxh

xlh
h dµ−1 (xh)

)

= ∑
l1+...+lh=n

l1 ,...,lh≥0

n!
l1!...lh!

h

∏
j=1

y(h)
li+kh,w,β

(k,a,b)

(kh)!
(li+kh

kh
) .

Thus, we arrive at the desired result.
From these formulas, we can define the unification of the twisted Euler and Genocchi

polynomials as follows:

(2.6)

(
2
( t

2

)k

wβ bet −ab

)h

ext =
∞

∑
n=0

y(h)
n,w,β (x : k,a,b)

tn

n!
,
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So from the above, we get the Witt’s type formula for y(h)
n,w,β (x : k,a,b) as follows.

Theorem 2.2. For any w ∈ Tp, n,h,k ∈ N a,b ∈ R+; β ∈ C, we get

a−hb2−hk
∫

Zp

...
∫

Zp︸ ︷︷ ︸
h−times

{
φw (x1 + ...+ xh)(−1)x1+...+xh+h

(
β

a

)b(x1+...+xh)

×(x+ x1 + ...+ xh)
n

}
dµ−1 (x1) ...dµ−1 (xh)

=
y(h)

n+kh,w,β
(x : k,a,b)

(kh)!
(n+kh

kh
) .

Note that

(2.7) (x+ x1 + x2 + ...+ xh)
n = ∑

l1+...+lh=n
l1 ,...,lh≥0

n!
l1!...lh!

xl1
1 xl2

2 ...(x+ xh)
lh .

We obtain the sum of powers of consecutive a unification of multiple twisted Euler and
Genocchi polynomials as follows:

Theorem 2.3. For any w ∈ Tp, n,h,k ∈ N a,b ∈ R+; β ∈ C, we get

y(h)
n+kh,w,β (x : k,a,b)

(kh)!
(n+kh

kh

) = ∑
l1+...+lh=n

l1 ,...,lh≥0

n!
l1!...lh!

y(h)
lh+kh,w,β (x : k,a,b)

(kh)!
(lh+kh

kh

) h−1

∏
j=1

y(h)
li+kh,w,β (k,a,b)

(kh)!
(li+kh

kh

) .

Proof. By Theorem 2.2 and (2.7), we see that,

a−hb2−hk
∫

Zp

...
∫

Zp︸ ︷︷ ︸
h−times

{
φw (x1 + ...+ xh)(−1)x1+...+xh+h

(
β

a

)b(x1+...+xh)

×(x+ x1 + ...+ xh)
n

}
dµ−1 (x1) ...dµ−1 (xh)

= ∑
l1+...+lh=n

l1 ,...,lh≥0

n!
l1!...lh!

(
a−b2−k

∫
Zp

wx1

(
β

a

)bx1

xl1
1 dµ−1 (x1)

)
×

...×

(
a−b2−k

∫
Zp

wxh

(
β

a

)bxh

(x+ xh)
lh dµ−1 (xh)

)

= ∑
l1+...+lh=n

l1 ,...,lh≥0

n!
l1!...lh!

y(h)
lh+kh,w,β

(x : k,a,b)

(kh)!
(lh+kh

kh
) h−1

∏
j=1

y(h)
li+kh,w,β

(k,a,b)

(kh)!
(li+kh

kh
) .

So, we complete the proof of the theorem.

3. Unification of multiple twisted Zeta functions

Our goal in this section is to establish a unification of multiple twisted zeta functions which
interpolates of unification of multiple twisted Euler and Genocchi polynomials at negative
integers. For q ∈ C, |q| < 1 and w ∈ Tp, the unification of multiple twisted Euler and
Genocchi polynomials are considered as follows:

(3.1)

(
2
( t

2

)k

wβ bet −ab

)h

=
∞

∑
n=0

y(h)
n,w,β (k,a,b)

tn

n!
,

∣∣∣∣∣t + log

(
w
(

β

a

)b
)∣∣∣∣∣< 2π .



552 S. Aracı, M. Acikgoz, K.-H. Park and H. Jolany

By (3.1), we easily see that,
∞

∑
n=0

y(h)
n,w,β (k,a,b)

tn

n!
= 2h

( t
2

)kh
(

1
wβ bet −ab

)
...

(
1

wβ bet −ab

)
= 2h

( t
2

)kh
(−1)h

∞

∑
n1=0

wn1

(
β

a

)bn1

en1t ...
∞

∑
nh=0

wnh

(
β

a

)bnh

enht

= 2h
( t

2

)kh
(−1)h

∞

∑
n1,...,nh=0

φw (n1 + ...+nh)
(

β

a

)b(n1+...+nh)

e(n1+...+nh)t .

By using the Taylor expansion of e(n1+...+nh)t and by comparing the coefficients of tn in
the both sides of the above equation, we obtain that
(3.2)
y(h)

n+kh,w,β (k,a,b)

(kh)!
(n+kh

kh

) = 2h(1−k) (−1)h
∞

∑
n1,...,nh≥0
n1+...+nh 6=0

φw (n1 + ...+nh)
(

β

a

)b(n1+...+nh)

(n1 +...+nh)n.

From (3.2), we can define unification of multiple twisted zeta functions as follows:

ζ
(h)
β ,w (s : k,a,b) = 2h(1−k) (−1)h

∞

∑
n1,...,nh=0
n1+...+nh 6=0

φw (n1 + ...+nh)
(

β

a

)b(n1+...+nh)

(n1 + ...+nh)s

for all s ∈ C. We also obtain the following theorem in which the unification of multiple
twisted zeta functions interpolate the unification of multiple twisted Euler and Genocchi
polynomials at negative integers.

Theorem 3.1. For any w ∈ Tp, n,h,k ∈ N a,b ∈ R+; β ∈ C, we obtain

ζ
(h)
β ,w (−n : k,a,b) =

y(h)
n+kh,w,β (k,a,b)

(kh)!
(n+kh

kh

) .
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