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0. Introduction

Let α > 0 be a constant and let q : [0,∞) → R be a continuous function
which is conditionally integrable in the sense that

∫ ∞

0
q(t)dt = lim

T→∞

∫ T

0
q(s)ds exists and is finite.

We consider the half-linear differential equation

(|y′|α−1y′)′ + q(t)|y|α−1y = 0, t ≥ 0, (A)
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and derive the precise asymptotic behaviour of some classes of its nonoscil-
latory solutions y(t) meaning, as usual, that we construct a positive, contin-
uous function ϕ(t) defined on a positive half-axis such that y(t)/ϕ(t) → 1
as t →∞, denoted as y(t) ∼ ϕ(t).

In particular, we treat in that respect the nonoscillatory solutuions of
(A) which belong to the class of slowly varying functions in the sense of
Karamata [1], which is of frequent occurrence in various branches of math-
ematical analysis.

For brevity, we use the canonical representation of these as the definition.

Definition 0.1. A positive measurable function L(t) defined on (0,∞)
is slowly varying if and only if it can be written in the form

L(t) = c(t) exp
{∫ t

t0

ε(s)
s

ds

}
, t ≥ t0,

for some t0 > 0, where c(t) and ε(t) are such that for t →∞

c(t) → c ∈ (0,∞) and ε(t) → 0.

If c(t) is identically a positive constant, then L(t) is called normalized.

The present work is the first attempt at scrutinizing the asymptotic
behaviour of slowly varying solutions of the half-linear differential eqautions.
Note that the asymptotic analysis of slowly varying solutions for the linear
equation y′′ + q(t)y = 0, which is a special case of (A) with α = 1, has been
made by several authors; see e.g. [2, 3, 5, 6]

1. Results

The existence of nonoscillatory solutions of (A) is essentially proved (for
c(t) = c) in [4, Lemma 2.2], but we present the proof here for the reader’s
benefit. We put

E(α) =
αα

(α + 1)α+1
,

which is referred to as the generalized Euler constant with respect to (A),
and make use of the asterisk notation:

ξγ∗ = |ξ|γ−1ξ = |ξ|γsgn ξ for ξ ∈ R and γ > 0.
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Theorem 1.1. Put
Q(t) =

∫ ∞

t
q(s)ds (1.1)

and suppose that there exists a continuous function P : [t0,∞) → (0,∞), t0 ≥
0, such that lim

t→∞P (t) = 0 and

|Q(t)| ≤ P (t), t ≥ t0, (1.2)
∫ ∞

t
P (s)1+ 1

α ds ≤ 1
α

c(t)
1
α P (t), t ≥ t0, (1.3)

where c(t) is a continuous nonincreasing function satisfying

0 < c(t) ≤ c < E(α), t ≥ t0, (1.4)

for some constant c. Then the equation (A) has a nonoscillatory solution of
the form

y(t) = exp
{∫ t

t0
[v(s) + Q(s)]

1
α
∗ds

}
, t ≥ t0, (1.5)

where v(t) is a solution of the integral equation

v(t) = α

∫ ∞

t
|v(s) + Q(s)|1+ 1

α ds, t ≥ t0, (1.6)

satisfying
v(t) = O(P (t)) as t →∞. (1.7)

P r o o f. Consider the function y(t) defined by (1.5). It is easy to see that
y(t) is a solution of (A) if v(t) is chosen in such a way that u(t) = v(t)+Q(t)
satisfies the generalized Riccati equation

u′ + α|u|1+ 1
α + q(t) = 0, t ≥ t0. (1.8)

This requirement yields the differential equation for v(t):

v′ + α|v + Q(t)|1+ 1
α = 0, t ≥ t0, (1.9)

from which the equation (1.6) follows via integration over [t,∞) under the
additional condition lim

t→∞ v(t) = 0.

We shall show that a unique solution of (1.6) of the desired kind indeed
exists by using the Banach contraction theorem. Let CP [t0,∞) denote the
set of all continuous functions v(t) on [t0,∞) such that

‖v‖P = sup
t≥t0

|v(t)|
P (t)

< ∞. (1.10)
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It is clear that CP [t0,∞) is a Banach space with the norm ‖ · ‖P .
Define the set V ⊂ CP [t0,∞) and the mapping F : V → CP [t0,∞) by

V = {v ∈ CP [t0,∞) : ‖v(t)‖P ≤ α, t ≥ t0} (1.11)

and
Fv(t) = α

∫ ∞

t
|v(s) + Q(s)|1+ 1

α ds, t ≥ t0, (1.12)

respectively. If v ∈ V , then

|Fv(t)| ≤ α(1 + α)1+ 1
α

∫ ∞

t
P (s)1+ 1

α ds ≤ (1 + α)1+ 1
α c(t)

1
α P (t), t ≥ t0,

from which it follows, in view of (1.4), that

‖Fv‖P ≤ (1 + α)1+ 1
α c

1
α < (1 + α)1+ 1

α E(α)
1
α = α. (1.13)

This shows that F maps V into itself. If v1, v2 ∈ V , then, using the mean
value theorem, we have

|Fv1(t)−Fv2(t)| ≤ α

∫ ∞

t

∣∣∣|v1(s) + Q(s)|1+ 1
α − |v2(s) + Q(s)|1+ 1

α

∣∣∣ ds

≤ α

(
1 +

1
α

) ∫ ∞

t
[(1 + α)P (s)]

1
α |v1(s)− v2(s)|ds

= (1 + α)1+ 1
α

∫ ∞

t
P (s)1+ 1

α
|v1(s)− v2(s)|

P (s)
ds

≤ (1 + α)1+ 1
α

1
α

c(t)
1
α P (t)‖v1 − v2‖P , t ≥ t0,

which implies that

‖Fv1 −Fv2‖P ≤ 1
α

(1 + α)1+ 1
α c

1
α ‖v1 − v2‖P . (1.14)

Since 1
α(1 + α)1+ 1

α cα < 1 (cf. (1.13)), we conclude that F is a contraction
mapping on V .

The contraction mapping principle then guarantees the existence of a
unique element v ∈ V such that v = Fv, which clearly is a solution of the
integral equation (1.6). Then, the function y(t) given by (1.5) with this v(t)
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gives a solution of (A) on [t0,∞). That v(t) satisfies (1.7) is a consequence
of the fact that v ∈ V . This completes the proof.

Corollary 1.1.The equation (A) has a normalized slowly varying solu-
tion if

lim
t→∞ tα

∫ ∞

t
q(s)ds = 0. (1.15)

P r o o f. Here, one can take the function c(t) from Theorem 1.1 to be

c(t) = sup
s≥t

∣∣∣∣sα
∫ ∞

s
q(r)dr

∣∣∣∣ . (1.16)

Then c(t) is nonincreasing and tends to zero as t → ∞. Choose t0 > 0 so
that

c(t) < E(α) and |Q(t)| ≤ c(t)
tα

for t ≥ t0.

The second inequality holds due to (1.15). Take in Theorem 1.1 P (t) =
c(t)/tα. Then (1.2) holds and

∫ ∞

t
P (s)1+ 1

α ds =
∫ ∞

t

[
c(s)
sα

]1+ 1
α

ds ≤ c(t)1+ 1
α

αt
=

1
α

c(t)
1
α P (t), t ≥ t0.

Consequently, by Theorem 1.1, (A) has a nonoscillatory solution y(t) of the
form (1.5) on [t0,∞) with v(t) satisfying (1.7). Since

tαv(t) = O(tαP (t)) = o(1) and tαQ(t) = O(tαP (t)) = o(1)

as t →∞, y(t) can be rewritten as

y(t) = exp
{∫ t

t0

ε(s)
s

ds

}
, t ≥ t0,

with ε(t) = [tα(v(t) + Q(t))]
1
α
∗ = o(1) as t →∞ due to Definition 0.1. This

completes the proof.

Theorem 1.2. Suppose that the hypotheses of Theorem 1.1 are satisfied.
Suppose furthermore that there exists a positive integer n such that

∫ ∞
c(t)

n
α P (t)

1
α dt < ∞ if 0 < α ≤ 1, (1.17)

∫ ∞
c(t)

n
α2 P (t)

1
α dt < ∞ if α > 1. (1.18)
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Then, for the solution (1.5) of the equation (A), the following asymptotic
formula holds for t →∞

y(t) ∼ A exp
{∫ t

t0
[vn−1(s) + Q(s)]

1
α
∗ds

}
, (1.19)

where A is a positive constant. Here the sequence {vn(t)} of successive
approximations is defined by

v0(t) = 0, vn(t) = α

∫ ∞

t
|vn−1(s) + Q(s)|1+ 1

α ds, n = 1, 2, · · · . (1.20)

P r o o f. Let y(t) be the solution (1.5) of (A) obtained in Theorem
1.1. Recall that the function v(t) used in (1.5) has been constructed as the
fixed element in CP [t0,∞) of the contractive mapping F defined by (1.12).
Th e standard proof of the contraction mapping principle shows that the
sequence {vn(t)} defined by (1.20) converges to v(t) uniformly on [t0,∞).
To see how fast vn(t) approaches v(t) we proceed as follows. First, note that
|vn(t)| ≤ αP (t), t ≥ t0, n = 1, 2, · · ·. By definition, we have

|v1(t)| = α

∫ ∞

t
|Q(s)|1+ 1

α ds ≤ α

∫ ∞

t
P (s)1+ 1

α ds ≤ c(t)
1
α P (t),

and

|v2(t)− v1(t)| ≤ α

∫ ∞

t

∣∣∣|v1(s) + Q(s)|1+ 1
α − |Q(s)|1+ 1

α

∣∣∣ ds

≤ α

(
1 +

1
α

) ∫ ∞

t
[(1 + α)P (s)]1+ 1

α |v1(s)|ds

≤ (α + 1)1+ 1
α

∫ ∞

t
c(s)

1
α P (s)1+ 1

α ds ≤ (α + 1)1+ 1
α c(t)

1
α

∫ ∞

t
P (s)1+ 1

α ds

≤ 1
α

(α + 1)1+ 1
α c(t)

2
α P (t) ≤ E(α)

1
α

[
c(t)
E(α)

] 2
α

P (t)

for t ≥ t0. Assuming that

|vn(t)− vn−1(t)| ≤ E(α)
1
α

[
c(t)
E(α)

]n
α

P (t), t ≥ t0 (1.21)

for some n ∈ N, we compute
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|vn+1(t)− vn(t)| ≤ α

∫ ∞

t

∣∣∣|Q(s) + vn(s)|1+ 1
α − |Q(s) + vn−1(s)|1+ 1

α

∣∣∣ ds

≤ α

(
1 +

1
α

) ∫ ∞

t
[(1 + α)P (s)]

1
α |vn(s)− vn−1(s)|ds

= (α + 1)1+ 1
α

∫ ∞

t
E(α)

1
α

[
c(s)
E(α)

]n
α

P (s)1+ 1
α ds

= (α + 1)1+ 1
α E(α)

1
α

[
c(t)
E(α)

]n
α

∫ ∞

t
P (s)1+ 1

α ds

≤ (α + 1)1+ 1
α E(α)

1
α

[
c(t)
E(α)

]n
α 1

α
c(t)

1
α P (t)

= E(α)
1
α

[
c(t)
E(α)

]n+1
α

P (t), t ≥ t0,

which establishes the truth of (1.21) for all integers n ∈ N.
Now we have

v(t) = vn−1(t) + rn(t)

with

rn(t) =
∞∑

k=n

[vk(t)− vk−1(t)],

from which, due to (1.21), it follows that

|v(t)− vn−1(t)| ≤
∞∑

k=n

E(α)
1
α

[
c(t)
E(α)

] k
α

P (t)

≤ E(α)
1
α

[
c(t)
E(α)

]n
α
∞∑

k=0

(
c

E(α)

)k

P (t) (1.22)

= E(α)
[

c(t)
E(α)

]n
α E(α)

E(α)− c
P (t) = Kc(t)

n
α P (t)

for t ≥ t0, where K is a constant depending only on α and n.
Using (1.5) and (1.22), we obtain
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y(t)

exp
{∫ t

t0
[Q(s) + vn−1(s)]

1
α
∗ds

}

(1.23)

= exp
{∫ t

t0

(
[Q(s) + v(s)]

1
α
∗ − [Q(s) + vn−1(s)]

1
α
∗
)

ds

}
.

Let 0 < α ≤ 1. Then, by the mean value theorem and (1.22),
∣∣∣[Q(t) + v(t)]

1
α
∗ − [Q(t) + vn−1(t)]

1
α
∗
∣∣∣ ≤ 1

α
[(1 + α)P (t)]

1
α
−1|v(t)− vn−1(t)|

(1.24)≤ Lc(t)
n
α P (t)

1
α , t ≥ t0,

where L is a constant depending on α and n.
Let α > 1. Then, using (1.22) and the inequality |aθ − bθ| ≤ 2|a − b|θ

holding for θ ∈ (0, 1) and a, b ∈ R, we see that
∣∣∣[Q(t) + v(t)]

1
α
∗ − [Q(t) + vn−1(t)]

1
α
∗
∣∣∣ ≤ 2|v(t)− vn−1(t)|

1
α

(1.25)≤ Mc(t)
n

α2 P (t)
1
α , t ≥ t0,

where M is a constant depending on α and n.
Combining (1.23) with (1.24) or (1.25) according as 0 < α ≤ 1 or α > 1,

and using (1.17) or (1.18), we conculde that the right-hand side of (1.23)
tends to a constant A > 0 as t → ∞, which implies that y(t) has the des
ired asymptotic behaviour (1.19). This completes the proof.

Corollary 1.2. Suppose that (1.15) holds and that the function c(t)
defined by (1.16) satisfies

∫ ∞ c(t)
n+1

α

t
dt < ∞ if 0 < α ≤ 1, (1.26)

∫ ∞ c(t)
n+α

α2

t
dt < ∞ if α > 1. (1.27)

Then the formula (1.19) holds for the slowly varying solution y(t) of (A).

P r o o f. The conclusion follows from Theorem 1.2 combined with
the observation that in this case c(t)

n
α P (t)

1
α = c(t)

n+1
α /t and c(t)

n
α2 P (t) =

c(t)
n+α

α2 /t according to whether 0 < α ≤ 1 and α > 1.
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2. Examples

Two examples illustrating our main results will be given below.

Example 2.1. Consider the equation

(|y′|α−1y′)′ + ktβ sin(tγ)|y|α−1y = 0, t ≥ 1, (2.1)

where k, α, β and γ are positive constants satisfying

γ > 1 + α + β. (2.2)

Since
∫ ∞

t
sβ sin(sγ)ds =

1
γ

t1+β−γ cos(tγ) +
1 + β − γ

γ

∫ ∞

t
sβ−γ cos(sγ)ds,

there exists a positive constant K such that
∣∣∣∣
∫ ∞

t
ksβ sin(sγ)ds

∣∣∣∣ ≤ Kt1+β−γ , t ≥ 1, (2.3)

which, in view of (2.2), implies that

lim
t→∞ tα

∫ ∞

t
ksβ sin(sα)ds = 0.

Therefore, the equation (2.1) has a slowly varying solution y(t) by Corollary
1.1.

In this case the function c(t) defined by (1.16) can be taken to be c(t) =
Kt1+α+β−γ . Since c(t) satisfies both (1.26) and (1.27) for any n ∈ N because
of (2.2), from Corollary 1.2 for n = 1 we conclude that th e slowly varying
solution y(t) of (2.1) has the asymptotic behaviour

y(t) ∼ A exp

{∫ t

t0

(∫ ∞

s
krβ sin(rγ)dr

) 1
α
∗
ds

}
as t →∞, (2.4)

which is equivalent to y(t) ∼ A0 (constant), since the integral in the braces
in (2.4) converges as t →∞ because of (2.3).

Example 2.2. Consider the equation

(|y′|α−1y′)′ +
a + b sin t

tβ(log t)γ
|y|α−1y = 0, t ≥ e, (2.5)
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where the constants appearing in (2.5) are positive except for a, and satisfy
β ≥ α + 1 and |a| < b.

I) We first suppose that a 6= 0. Note that, for β > 1,

Q(t) =
∫ ∞

t

a + b sin s

sβ(log s)γ
ds =

a

β − 1
t1−β(log t)−γ

[
1 + O

(
1
t

)]
. (2.6)

Let β > α + 1. Then, (Q(t))
1
α
∗ is absolutely integrable on [e,∞) and

tαQ(t) → 0 as t → ∞. Corollary 1.1 then implies that (2.5) possesses a
slowly varying solution y(t).

The function c(t) = (2|a|/(β − 1))t1+α−β(log t)−γ defined by (1.16) sat-
isfies the conditions (1.26) and (1.27) for any n ∈ N, so that, by Corollary
1.2 with n = 1, y(t) enjoys the asymptotic property

y(t) ∼ A exp
{∫ t

t0
(Q(s))

1
α
∗ds

}
∼ A0 as t →∞.

Let β = α + 1. We see that tαQ(t) → 0 as t → ∞ also in this case, so
that (2.5) has a slowly varying solution y(t). As easily verified, the function
c(t) = (2|a|/α)(log t)−γ satisfies the conditi ons (1.26) and (1.27) become,
respectively,

∫ ∞
t−1(log t)−

(n+1)γ
α dt < ∞ (0 < α ≤ 1) (2.7)

and ∫ ∞
t−1(log t)−

(n+α)γ

α2 dt < ∞ (α > 1), (2.8)

which are fulfilled if one determines n to satify

n >
α− γ

γ
(0 < α ≤ 1) or n >

α(α− γ)
γ

(α > 1). (2.9)

For practical use write (2.9) as

γ >
α

n + 1
(0 < α ≤ 1) or γ >

α2

n + α
(α > 1),

which is equivalent to

γ > α max
{

1
n + 1

,
α

n + α

}
. (2.10)

Obviously, the range γ > α max
{

1
2 , α

1+α

}
is such that (2.10) i.e., (2.9)

holds for n = 1, so that Corollary 1.2 can be applied with n = 1, leading to
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y(t) ∼ A exp
{∫ t

t0
(Q(s))

1
α
∗ds

}

(2.11)

∼ A′ exp

{(
a

α

) 1
α
∗ ∫ t

t0
s−1(log s)−

γ
α ds

}
as t →∞,

from which it readily follows that

y(t) ∼ A0 if γ > α

and

y(t) ∼ A0(log t)δ, δ =
(

a

α

) 1
α
∗

if γ = α.

Arguing in the same way, we conclude that (2.9) holds for n = 2 in the
range

α max
{

1
3
,

α

2 + α

}
< γ ≤ α max

{
1
2
,

α

1 + α

}
. (2.12)

Then, the conclusion of Corollary 1.2 holds with n = 2, that is,

y(t) ∼ A exp
{∫ t

t0
[v1(s) + Q(s)]

1
α
∗ds

}
as t →∞, (2.13)

where v1(t) = α
∫∞
t |Q(s)|1+ 1

α ds. Using (2.6), we have

v1(t) = α

∫ ∞

t

∣∣∣∣
a

α
s−α(log s)−γ

[
1 + O

(
1
s

)]∣∣∣∣
1+ 1

α

ds

(2.14)

=
∣∣∣∣
a

α

∣∣∣∣
1+ 1

α

t−α(log t)−γ(1+ 1
α)

[
1 + O

(
1

log t

)]
.

Putting

w1(t) =
∣∣∣∣
a

α

∣∣∣∣
1+ 1

α

t−α(log t)−γ(1+ 1
α), (2.15)

we claim that

y(t) ∼ A′ exp
{∫ t

t0
[w1(s) + Q(s)]

1
α
∗ds

}
as t →∞. (2.16)

In fact, if α > 1, then
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∫ t

t0

∣∣∣[v1(s) + Q(s)]
1
α
∗ − [w1(s) + Q(s)]

1
α
∗
∣∣∣ ds

(2.17)

≤ 2
∫ t

t0
|v1(s)− w1(s)|

1
α
∗ds ≤ K

∫ t

t0
s−1(log s)−

γ
α(1+ 1

α)− 1
α ds,

where K is a constant depending on α and a. Since γ > α/(α+2) by (2.12),

γ

α

(
1 +

1
α

)
+

1
α

> 1 +
2

α(α + 2)
> 1,

which implies that the last integral in (2.17) converges as t → ∞. If 0 <
α ≤ 1, then, using the inequality |v1(t)|, |w1(t)| ≤ αP (t) = 2|a|t−α(log t)−γ

already known, we obtain
∫ t

t0

∣∣∣[v1(s) + Q(s)]
1
α
∗ − [w1(s) + Q(s)]

1
α
∗
∣∣∣ ds

≤ M1

∫ t

t0
[s−α(log s)−γ ]

1
α
−1|v1(s)− w1(s)|ds

(2.18)

≤ M2

∫ t

t0
[s−α(log s)−γ ]

1
α
−1s−α(log s)−γ(1+ 1

α)−1ds

= M3

∫ t

t0
s−1(log s)−

2γ
α
−1ds,

the last integral of which clearly converges as t →∞. Here Mi, i = 1, 2, 3,
are constants depending only on α and a. Combining (2.16) with (2.15)
establishes the asymptotic formula for t →∞

y(t) ∼ A′′ exp





∫ t

t0

[∣∣∣∣
a

α

∣∣∣∣
1+ 1

α

s−α(log s)−γ(1+ 1
α) +

a

α
s−α(log s)−γ

] 1
α
∗
ds



 .

(2.19)

Observe that when specialized to the case α = 1, (2.19) reduces to the
following formulas obtained in [3], cf. [5, p.67],

y(t) ∼ A1(log t)a2
exp

{
2a(log t)

1
2

}
if γ =

1
2
,

y(t) ∼ A1 exp
{

a

1− γ
(log t)1−γ

}
exp

{
a2

1− 2γ
(log t)1−2γ

}
if

1
3

< γ <
1
2
.
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Let α = 1
2 , for example. Then, (2.19) implies

y(t) ∼ A2(log t)32|a|3a exp
{
8a2(log t)

1
2

}
if γ =

1
4
,

y(t) ∼ A2 exp

{
32|a|3a
1− 4γ

(log t)1−4γ

}
exp

{
4a2

1− 2γ
(log t)1−2γ

}
if

1
6

< γ <
1
4
.

II) Next we consider the equation (2.5) with a = 0, that is,

(|y′|α−1y′)′ +
b sin t

tβ(log t)γ
|y|α−1y = 0, t ≥ e, (2.20)

where b > 0 is a constant. We suppose that β ≥ α. In this case we have

Q(t) = bt−β(log t)−γ cos t + O(t−β−1(log t)−γ) as t →∞,

and tαQ(t) → 0 as t → ∞, which implies that (2.20) possesses a slowly
varying solution y(t).

If β > α, then, by taking c(t) = 2btα−β(log t)−γ , we see that (1.26) and
(1.27) are satisfied for all n ∈ N, and so from Corollary 1.2 with n = 1 it
follows that y(t) ∼ A0 as t →∞ since [Q(t)]

1
α
∗ is integrable on [e,∞).

If β = α, then c(t) = 2b(log t)−γ satisfies (1.26) and (1.27) if and only
if (2.10) holds. Consequently, if γ > α max

{
1
2 , α

1+α

}
, then Corollary 1.2

is applicable to the c ase n = 1 and, using the conditional integrability
of [Q(t)]

1
α
∗ which is implied by that of t−1(log t)−

α
γ cos t, we conclude that

y(t) ∼ A0 as t →∞. Furthermore, if γ satisfies (2.12), then from Corollary
1.2 with n = 2 we obtain (2.13), which, with the use of the fact

v1(t)=α

∫ ∞

t
|Q(s)|1+ 1

α ds = |b|1+ 1
α t−α(log t)−γ(1+ 1

α)| cos t|1+ 1
α

(
1+O

(
1

log t

))

as t →∞, yields the following asymptotic formula for y(t):

y(t) ∼ A′ exp

{ ∫ t

t0

[
|b|1+ 1

α s−α(log s)−γ(1+ 1
α)| cos s|1+ 1

α (2.21)

+ bs−α(log s)−γ cos s
] 1

α
∗
ds

}
.

When specialized to the case α = 1, (2.21) reduces to
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y(t) ∼ A1(log t)
b2

2 if γ =
1
2

y(t) ∼ A1 exp

{
b2

2(1− 2γ)
(log t)1−2γ

}
if

1
3

< γ <
1
2
,

which have been obtained in [5, p. 68]. Letting α = 1
3 in (2.21), an elemen-

tary calculation shows that

y(t) ∼ A2(log t)
3
8
b6 if γ =

1
6

y(t) ∼ A2 exp

{
3b2

8(1− 6γ)
(log t)1−6γ

}
if

1
9

< γ <
1
6
.
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