Bulletin T.CXXVII de I’Académie Serbe des Sciences et des Arts - 2003
Classe des Sciences mathématiques et naturelles
Sciences mathématiques, No 28

ASYMPTOTICS OF SOME CLASSES OF NONOSCILLATORY SOLUTIONS
OF SECOND-ORDER HALF-LINEAR DIFFERENTIAL EQUATIONS

K. TAKASI, V. MARIC, T. TANIGAWA

(Presented at the 2nd Meeting, held on March 28, 2003)

Abstract The precise asymptotic behaviour at infinity of some
classes of nonoscillatory solutions of the half-linear differential equations is
determined.

AMS Mathematics Subject Classification (2000): 34D05
Key Words: half-linear equations,regular solutions,asymptotics of solu-
tions

0. Introduction

Let o > 0 be a constant and let ¢ : [0,00) — R be a continuous function
which is conditionally integrable in the sense that

00 T
/ q(t)dt = lim q(s)ds exists and is finite.
0 T—oo Jo

We consider the half-linear differential equation

(Y% ') +a@)|yl* 'y =0, t=>0, (A)
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and derive the precise asymptotic behaviour of some classes of its nonoscil-
latory solutions y(¢) meaning, as usual, that we construct a positive, contin-
uous function ¢(t) defined on a positive half-axis such that y(¢)/p(t) — 1
as t — 0o, denoted as y(t) ~ o(t).

In particular, we treat in that respect the nonoscillatory solutuions of
(A) which belong to the class of slowly varying functions in the sense of
Karamata [1], which is of frequent occurrence in various branches of math-
ematical analysis.

For brevity, we use the canonical representation of these as the definition.

Definition 0.1. A positive measurable function L(t) defined on (0, 00)
18 slowly varying if and only if it can be written in the form

L(t) = c(t) exp {/tt E(S)ds} , t>t,

o S
for some tg > 0, where c(t) and (t) are such that fort — oo
c(t) - ce(0,00) and ¢e(t)—0.

If ¢(t) is identically a positive constant, then L(t) is called normalized.

The present work is the first attempt at scrutinizing the asymptotic
behaviour of slowly varying solutions of the half-linear differential eqautions.
Note that the asymptotic analysis of slowly varying solutions for the linear
equation y” + q(t)y = 0, which is a special case of (A) with a = 1, has been
made by several authors; see e.g. [2, 3, 5, 6]

1. Results

The existence of nonoscillatory solutions of (A) is essentially proved (for
c(t) = ¢) in [4, Lemma 2.2], but we present the proof here for the reader’s
benefit. We put

aa

E(a) = W,

which is referred to as the generalized Euler constant with respect to (A),
and make use of the asterisk notation:

& = ]5\7_15 = |¢|"sgné  for £€R and v > 0.
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Theorem 1.1. Put -
Q) = [ ats)ds (L1)

and suppose that there exists a continuous function P : [ty,00) — (0,00), to >
0, such that lim P(t) =0 and
t—o0
QM) < P(t), t=to, (1.2)
> 1+ L
/ P(s)Thds < —c(t)5 P(1), > to, (1.3)
t [0
where c(t) is a continuous nonincreasing function satisfying
0<c(t) <ec< E(a), t>to, (1.4)

for some constant c. Then the equation (A) has a nonoscillatory solution of
the form

vty =e{ [+ QuNEash, 120, (15)

to

where v(t) is a solution of the integral equation

o0
o) =a [T lo(s) + QU £, (1)
t
satisfying
v(t) =O(P(t)) as t— oc. (1.7)
P roof. Consider the function y(¢) defined by (1.5). It is easy to see that
y(t) is a solution of (A) if v(t) is chosen in such a way that u(t) = v(t) +Q(¢t)
satisfies the generalized Riccati equation
W+ aful"TE +q(t) =0,  t>t. (1.8)
This requirement yields the differential equation for v(¢):
v Falu+ Q@) e =0, t>to, (1.9)

from which the equation (1.6) follows via integration over [t,00) under the
additional condition ltlim v(t) = 0.
— 00
We shall show that a unique solution of (1.6) of the desired kind indeed
exists by using the Banach contraction theorem. Let Cp[tg, 00) denote the
set of all continuous functions v(t) on [tg, 00) such that

lvl|p = sup P < . (1.10)
t>t
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It is clear that Cp[tg,c0) is a Banach space with the norm || - || p.
Define the set V' C Cpltp, 00) and the mapping F : V — Cp[tg, 00) by

V ={veCplty,00) : |vt)|lp <a, t>to} (1.11)

and

Fo(t) = a/too lv(s) + Q(s)]Héds, t > to, (1.12)

respectively. If v € V| then

Q=

Fu(t)] < a(1+a)1+é/ P(s) T hds < (1 4+ a)Fae()B P(1), ¢ > to,
t

from which it follows, in view of (1.4), that
|Follp < (1+a)Faca < (1+a)taE(a)a = a. (1.13)

This shows that F maps V into itself. If v, vo € V, then, using the mean
value theorem, we have

rfm(t)—m(t)\Sa/f\\m(s)w( 1 = Joa(s) + Q(s)[** 7 | ds

( )/ [(1+ ) P(s)] = v1(s) — va(s)|ds
AR

et — vl

(1+a) Pls)

1
c(t)« P(t)[lvr —vallp, ¢ = to,

Q|+

< (1+ a)Hé
which implies that
1
||f1}1 fUQHP < (1+Oé) acEHm —UQHP. (1.14)

Since 1 (1 4 a)1+ac < 1 (cf. (1.13)), we conclude that F is a contraction
mapping on V.

The contraction mapping principle then guarantees the existence of a
unique element v € V such that v = Fv, which clearly is a solution of the
integral equation (1.6). Then, the function y(¢) given by (1.5) with this v(t)
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gives a solution of (A) on [tg,00). That v(t) satisfies (1.7) is a consequence
of the fact that v € V. This completes the proof.

Corollary 1.1.The equation (A) has a normalized slowly varying solu-
tion if
(e}
lim ta/ q(s)ds = 0. (1.15)
t—o0 t

P r o o f. Here, one can take the function ¢(¢) from Theorem 1.1 to be
[e.9]

sa/ q(r)dr|.
S

Then ¢(t) is nonincreasing and tends to zero as ¢ — oo. Choose ¢ty > 0 so
that

c(t) = sup
s>t

(1.16)

c(t) < E(a) and |Q(¢)] < Ct(z) for t > to.

The second inequality holds due to (1.15). Take in Theorem 1.1 P(t) =
c(t)/t*. Then (1.2) holds and

/too P(s)Héds = /too [Ciz)

Consequently, by Theorem 1.1, (A) has a nonoscillatory solution y(t) of the
form (1.5) on [tg, 00) with v(t) satisfying (1.7). Since

1+1 144
a Hlrs 1
ds < C(Lt - ac(t)iP(t), t > to.

to(t) = O(t*P(t)) = o(1) and t*Q(t) = O(t*P(t)) = o(1)

as t — 00, y(t) can be rewritten as

y(t):exp{/tt E(S)als}, t > to,

0o S

with e(t) = [t*(v(t) + Q(t))]é* = 0(1) as t — oo due to Definition 0.1. This
completes the proof.

Theorem 1.2. Suppose that the hypotheses of Theorem 1.1 are satisfied.
Suppose furthermore that there exists a positive integer n such that

/mc(t)%P(t)édKoo if 0<a<l, (1.17)

/OO c(O)ZP(t)adt < oo if a> 1. (1.18)
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Then, for the solution (1.5) of the equation (A), the following asymptotic
formula holds fort — oo

) ~ e { [ lona(9)+ Qs (1.19)

where A is a positive constant. Here the sequence {v,(t)} of successive
approximations is defined by

vo(t) =0, wn(t) —a/too\vn_l( )+ Q)| hds, n—1, 2. (1.20)

P r oo f Let y(t) be the solution (1.5) of (A) obtained in Theorem
1.1. Recall that the function v(¢) used in (1.5) has been constructed as the
fixed element in Cp[t, 00) of the contractive mapping F defined by (1.12).
Th e standard proof of the contraction mapping principle shows that the
sequence {v,(t)} defined by (1.20) converges to v(t) uniformly on [tg, 00).
To see how fast v, (t) approaches v(t) we proceed as follows. First, note that
lun ()] < aP(t), t > tg, n=1,2,---. By definition, we have

o1 (£)] = a/oo 1Q(s)| o ds < a/oo P(s) e ds < e(t)% P(1),
t t
and

va(t) — v (?)] < a/too le(s) + Q(s)|1+é _ |Q(s)|1+§ ds

a(142) [0+ @PE) o (s)lds

IN

(a+1)1+é /Ooc(s)aP( )1+ads<(a+ / P(s 1+

t

< L+ ) F)FPO) < Bl >i[0“)]“P<t>

for t > tg. Assuming that

o (£) — o1 (t)] < Ela) [ (t) ] P, t>t  (1.21)

for some n € N, we compute
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ds

|Un+1(t) - Un(t)| < a/too '|Q(S) + 'UWJ(S)PJ'_é - |Q(8) + Un—1(5)|1+é

o <1 4 ;) /too[(l + Q) P(8)]% |on(s) — vn_1(s)|ds

= (a+1)"*a / E(a i[c(s)rP()”adé’

E(a)
= (a+1)*aE(a)a Ct : 7 P(s) Fhds
E(a
t
(t) 31
11+ ;[C } <
<(a+1) z a

()%
1 [ ¢ o
= FE(a)a P(t t>t
@F | F] T Pa. ez
which establishes the truth of (1.21) for all integers n € N.

Now we have
v(t) = vp—1(t) + ru(t)

with

o0

ra(t) =Y [og(t) — ve—1 ()],

k=n

from which, due to (1.21), it follows that

i (E(Ca )k (t) (1.22)

b
Il
o

~ B(a) [ : (a)] a0 = K P)

for t > tg, where K is a constant depending only on « and n.
Using (1.5) and (1.22), we obtain
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y(t)

exp { [106) + -1 (9)]5as |

to

(1.23)
= exp {/t ([Q(s) + v(s)]7" = [Q(s) + vu1(5)]7") ds} .

to

Let 0 < a < 1. Then, by the mean value theorem and (1.22),

é[(l + @) PO ot) — vy (2)]

QM) + v+ = [Q) + vaa ()]

<

1
< Le(t)a P(t)a, t>to, (1.24)

where L is a constant depending on « and n.
Let o > 1. Then, using (1.22) and the inequality |a’ — t?| < 2|a — b|?
holding for # € (0,1) and a, b € R, we see that

QM) + ()] = [Q() + va_1 (D)=

< Mc(t)22P(t), t>to,

1

< 2[o(t) — vna(t)]=

(1.25)

where M is a constant depending on a and n.

Combining (1.23) with (1.24) or (1.25) according as 0 < « < 1l or a > 1,
and using (1.17) or (1.18), we conculde that the right-hand side of (1.23)
tends to a constant A > 0 as t — oo, which implies that y(¢) has the des
ired asymptotic behaviour (1.19). This completes the proof.

Corollary 1.2. Suppose that (1.15) holds and that the function c(t)
defined by (1.16) satisfies

()"

/ ¢ tadt<oo if 0<a<l, (1.26)
n+a

%0 ¢(t) a2

/ c()tdt<oo if a>1. (1.27)

Then the formula (1.19) holds for the slowly varying solution y(t) of (A).

P r o o f. The conclusion follows frorln Theorej? 1.2 combined with
the observation that in this case c(t)a P(t)a = ¢(t) = /t and c(t)=? P(t) =
c(t)na%/t according to whether 0 < a < 1 and v > 1.
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2. Examples

Two examples illustrating our main results will be given below.

Example 2.1. Consider the equation
(1y/[*~ ') + kt? sin(®)y|* ly =0, ¢ >1, (2.1)
where k, «, § and -y are positive constants satisfying
y>1+a+p. (2.2)
Since

o] 1 1 .
/ s8 sin(s7)ds = Z By cos(t?) + &
t

[e.9]
/ $977 cos(s7)ds,
v v t

there exists a positive constant K such that

<KW >, (2.3)

/ ks sin(s7)ds
t

which, in view of (2.2), implies that

oo
lim to‘/ ks® sin(s*)ds = 0.
t—o0 t

Therefore, the equation (2.1) has a slowly varying solution y(¢) by Corollary
1.1.

In this case the function c¢(t) defined by (1.16) can be taken to be ¢(t) =
Kt1To+0=7 Since ¢(t) satisfies both (1.26) and (1.27) for any n € N because
of (2.2), from Corollary 1.2 for n = 1 we conclude that th e slowly varying
solution y(t) of (2.1) has the asymptotic behaviour

y(t) ~ Aexp {/t;5 </oo kr® sin(r”)dr) " ds} as t — oo, (2.4)

S

which is equivalent to y(t) ~ Ao (constant), since the integral in the braces
in (2.4) converges as t — oo because of (2.3).

Example 2.2. Consider the equation

a-+bsint

a—1, _
W’Z/\ y=0, t=>e, (2.5)

ﬂyl‘a—lyl)/ +
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where the constants appearing in (2.5) are positive except for a, and satisfy
B>a+1and |a] <b.
I) We first suppose that a # 0. Note that, for § > 1,

Q@p:lw;%giﬁdyzﬁflﬂﬂ@@w“ﬂ1+o(1ﬂ. (2.6)

Let f > a+ 1. Then, (Q(t))é* is absolutely integrable on [e, c0) and
t*Q(t) — 0 as t — oo. Corollary 1.1 then implies that (2.5) possesses a
slowly varying solution y(t).

The function c(t) = (2|al/(8 — 1))t} P(logt)~7 defined by (1.16) sat-
isfies the conditions (1.26) and (1.27) for any n € N, so that, by Corollary
1.2 with n = 1, y(t) enjoys the asymptotic property

y(t) ~ Aexp{/t(Q(s))i*ds} ~ Ay as t— oo.

to

Let B = o+ 1. We see that t*Q(t) — 0 as t — oo also in this case, so
that (2.5) has a slowly varying solution y(t). As easily verified, the function
c(t) = (2|al/a)(logt)~7 satisfies the conditi ons (1.26) and (1.27) become,
respectively,

/ 1 logt) " dt <00 (0<a<1) (2.7)
and
o 1 _ (nta)y
/ t " (logt)” o dt<oo (a>1), (2.8)
which are fulfilled if one determines n to satify

T gca or ns =1,
n > 5 0<a<1l) > 5 (a>1). (2.9)

For practical use write (2.9) as

> 0<a<l) > o (a>1)
Q@ or Q@
LR - T nta ’
which is equivalent to
1 «
> _ . 2.10
" amax{n+1, n+a} ( )

1+«

Obviously, the range v > amax{%, e } is such that (2.10) i.e., (2.9)
holds for n = 1, so that Corollary 1.2 can be applied with n = 1, leading to
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o) ~ e { [ (@Gs)#as |

to

(2.11)

/ a ot -1 -X
~ A’ exp o / s (logs) ads as t — oo,
to

from which it readily follows that

y(t) ~ Ag if y>a

and
y(t) ~ Ap(logt)®, 6= (a) ’ it y=o.
e
Arguing in the same way, we conclude that (2.9) holds for n = 2 in the
range
{1 a }< < {1 a } (2.12)
m = — m - — 7. .
max 32+ a v < amax T+ a

Then, the conclusion of Corollary 1.2 holds with n = 2, that is,

y(t) ~ Aexp {/t[vl(s) + Q(s)]i*ds} as t — 00, (2.13)

to

where vy (t) = a [} ]Q(s)|1+éds. Using (2.6), we have

®la 1\
vi(t) = a/ ‘sa(log s)7 [1 +0 () ds
e s
(2.14)
altta \ 1
=2 "t ogt) () [14+ 0 ()]
’a (log ) + logt
Putting
a I+ 1
wi(t) = |= t=(logt)Y(1+3), (2.15)
we claim that
t
y(t) ~ A exp {/ [wi(s) + Q(s)]i*ds} as t — oo. (2.16)
to

In fact, if a > 1, then
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/t: [1(s) + Q(s)]7* — [wi(s) + Q(s)]7*| ds
(2.17)
<2 [ Ju(s) —wi(o)F*ds < K [ 57 (log ) F04E)~Fas,

where K is a constant depending on v and a. Since v > «o/(a+2) by (2.12),

~ 1\ 1 P
Th+)+ =14 —>1,
« a « ala+2)

which implies that the last integral in (2.17) converges as t — oo. If 0 <
a < 1, then, using the inequality |vq(¢)|, |wi(t)| < aP(t) = 2|alt~*(logt) ™"
already known, we obtain

/t
to

s M / (5 (log 5) 75 un(s) — wa (s)|ds

to

[w1(s) + Q(s)]3* — [wi(s) + Q(s)]"| ds

(2.18)

t
< My [ 57" (log )]s~ logs) (4 3) s

to

t
:Mg/ s_l(logs)_%_lds,

to
the last integral of which clearly converges as t — oco. Here M;, i =1, 2, 3,

are constants depending only on « and a. Combining (2.16) with (2.15)
establishes the asymptotic formula for ¢ — oo

1
t 141 ¥
y(t) ~ A" exp {/ l a s~ %(log s)‘”(”i) + gS_C“(log s)_“’] ds} .
to (0%

(2.19)

Observe that when specialized to the case a = 1, (2.19) reduces to the
following formulas obtained in [3], cf. [5, p.67],

1
y(t) ~ Ai(logt)” exp {2a(logt)z} it = 5

(t) ~ A ex{ a (lo t)l_v}ex o (logt)' =27 if 1< <1
y rexp 7 (log Py 7oy lo8 3<71<3



Asymptotics of some classes of nonoscillatory solutions . .. 73

Let a = %, for example. Then, (2.19) implies

¢ 1
y(t) ~ Ao(log ) exp {8a*(l0g 1) 2} if 4=

32|al*a 14 4a? 1o L1 1
t)~ A log t)! =47 logt)' =27 f - =,
y(t) zmp{l_&ﬁog) exp 1_2#0g) if &<v<jy

IT) Next we consider the equation (2.5) with a = 0, that is,

bsint
(ly'1* 1) + Ty =0, t>e, (2.:20)

oz )"
where b > 0 is a constant. We suppose that G > «. In this case we have
Q(t) = bt P(logt) Y cost + Ot P logt)™) as t — oo,

and t*Q(t) — 0 as ¢ — oo, which implies that (2.20) possesses a slowly
varying solution y(t).

If 8 > a, then, by taking c(t) = 20t P(logt) ™7, we see that (1.26) and
(1.27) are satisfied for all n € N, and so from Corollary 1.2 with n = 1 it
follows that y(t) ~ Ap as t — oo since [Q(t)]é* is integrable on [e, 00).

If B = «, then c¢(t) = 2b(logt)~" satisfies (1.26) and (1.27) if and only
if (2.10) holds. Consequently, if v > amax{%, IJ%}, then Corollary 1.2
is applicable to the c ase n = 1 and, using the conditional integrability
of [Q(t)]é* which is implied by that of t~!(log t)f% cost, we conclude that
y(t) ~ Ay as t — oo. Furthermore, if v satisfies (2.12), then from Corollary
1.2 with n = 2 we obtain (2.13), which, with the use of the fact

v (t)=a /tTQ(anids = b et (logt) V(1HE) | cost|1Ha <1+0 <1>>

logt
as t — 00, yields the following asymptotic formula for y(t):
t 1+1 —~(1+L 141
y(t) ~ A exp / 6]+ 57 (log ) (1+2) | cos s[4 (2.21)
to

|—

+bs *(log s)™7 cos 8] “ *ds}.

When specialized to the case a = 1, (2.21) reduces to
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2 . 1

y(t) ~ Al(log t) 2 if = 5
(t) ~Aje 72(10 t)1—2’y n 1 cn < 1
) 1 €Xp 2(1_27) g 1 3 vy 5

which have been obtained in [5, p. 68]. Letting a = £ in (2.21), an elemen-
tary calculation shows that

[1]
2]

8]

[4]

[5]

[6]

1
y(t) ~ Aa(log )3 it =
1< <1
9°7%%

y(t) ~ Agexp { (log t)1_67} if

8(1— 67)
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