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Abstract The spectrum of a graph is the spectrum of its adja-
cency matrix. Cospectral graphs are graphs having the same spectrum. In
this paper we study the phenomenon of cospectrality in graphs by comparing
characterizing properties of spectra of graphs and spectra of their line graphs.
We present some arguments showing that the latter perform better. In this
comparison we use spectra of signless Laplacians of graphs.
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1. Introduction

The spectrum of a graph is the spectrum of its adjacency matrix. Cospec-
tral (or isospectral) graphs are graphs having the same spectrum.

Cospectral graphs have been studied since very beginnings of the devel-
opment of the theory of graph spectra. The subject, although present in the
investigations all the time, has recently attracted special attention. It was
the power of nowadays computers which enabled some investigations which
were not possible in the past [8], [11].

In this paper we study the phenomenon of cospectrality in graphs by
comparing characterizing properties of spectra of graphs and spectra of their
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line graphs. In this comparison we use spectra of signless Laplacians of
graphs.

In the rest of this section we shall introduce some basic notions.

Let G be a simple graph with n vertices. The characteristic polynomial
det(zI — A) of the adjacency matrix A of G is called the characteristic
polynomial of G and denoted by Pg(x). The eigenvalues of A (i.e., the zeros
of det(xzI — A)) and the spectrum of A (which consists of the n eigenvalues)
are also called the eigenvalues and the spectrum of GG, respectively. The
eigenvalues of G are usually denoted by A1, Ag, ..., Ay; they are real because
A is symmetric.

An overview of results on graph spectra is given in [1].

Graphs with the same spectrum are called isospectral or cospectral graphs.
The term ”(unordered) pair of isospectral non—isomorphic graphs” will be
denoted by PING. More generally, a ”set of isospectral non-isomorphic
graphs” is denoted by SING. A two element SING is a PING. A graph
H, cospectral but non—isomorphic to a graph G, is called a cospectral mate
of G.

The matrix L = D — A is known as the Laplacian of G and is very much
studied in the literature (see, e.g., [1]). The matrix A + D is called the
signless Laplacian in [11] and appears very rarely in published papers (see
[1]), the paper [9] being almost unique research paper related to this matrix.

As usual, K, C, and P, denote respectively the complete graph, the cy-
cle and the path on n vertices. Further, K,,,, denotes the complete bipartite
graph on m+ n vertices. The union of (disjoint) graphs G and H is denoted
by G U H, while mG denotes the union of m disjoint copies of G.

In Section 2 we shall discuss some properties of the characteristic polyno-
mial of the signless Laplacian. In Section 3 some evidence is given that this
polynomial, together with the characteristic polynomial of the line graph,
is more useful in studying graphs than the characteristic polynomial of the
graph itself.

2. Signless Laplacians

Together with the spectrum of the adjacency matrix of a graph we shall
consider the spectrum of another matrix associated to the graph.

Let n,m, R be the number of vertices, the number of edges and the
vertex-edge incidence matrix of a graph GG. The following relations are well-
known:
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RRT = A+ D, RTR=A(L(G))+2I, (1)

where D is the diagonal matrix of vertex degrees and A(L(G)) is the adja-
cency matrix of the line graph L(G) of G.
From relations (1) we immediately get

Pray(A) = (A+2)""Qa(A +2), (2)

where Qi(\) is the characteristic polynomial of the signless Laplacian. The
polynomial Q¢ (A) will be called the Q-polynomial of the graph G.

The signless Laplacian is a positive semidefinite matrix, i.e., all its eigen-
values are non-negative. Concerning the least eigenvalue we have the fol-
lowing proposition.

Proposition 1. The least eigenvalue of the signless Laplacan of a con-
nected graph is equal to 0 if and only if the graph is bipartite. In this case 0
s a simple eigenvalue.

P r oo f According to Theorem 2.2.4 of [7] the multiplicity of the
eigenvalue —2 in L(G) is equal to m —n + 1 if G is bipartite and equal
to m — n if G is not bipartite. This together with formula (2) yields the
assertion of the proposition. O

Corollary. In any graph the multiplicity of eigenvalue 0 of the signless
Laplacian is equal to the number of bipartite components.

The least eigenvalue of the signless Laplacan is studied in [9] as a measure
of non-bipartiteness of a graph and Proposition 1 has been obtained as a
corollary of a more general theorem.

Remark. In general, the @-polynomial still does not contain informa-
tion on the bipartiteness. It does if the graph is connected but we also
cannot recognize a connected graph by its @)-polynomial. The smallest il-
lustrative example is provided by graphs K; 3 and K3 U K;. These graphs
have isomorphic line graphs (isomorphic to K3) with the characteristic poly-
nomial (A —2)(A+1)? and by (2) the same Q-polynomial A(A —4)(A —1)2.
Looking at this polynomial we can only say that the graph has exactly one
bipartite component but neither that the graph is connected nor bipartite
since the graph can contain one or more non-bipartite components as it re-
ally happens in K3 U K7. It is interesting to notice that the @-polynomial
together with the information on one of the properties in question (connect-
edness and bipartiteness) enables recovering the information on the other
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property: if we know the number of components we can decide whether the
graph is bipartite and if we know whether the graph is bipartite we can find
if it is connected. Note also that in bipartite graphs the @-polynomial is
equal to the characteristic polynomial of the Laplacian and for Laplacian
eigenvalues it is known that the multiplicity of the eigenvalue 0 is equal to
the number of components.

Proposition 2. The number of edges of a graph G on n vertices is equal to
—q1/2 where qy is the coefficient of X! in the Q-polynomial of G.

P r oo f The trace of the signless Laplacian is equal to the sum of
vertex degrees of G. a

Two graphs are said to be Q-cospectral if they have the same polynomial
Qc () while they are called L-cospectral if their line graphs are cospectral.

Proposition 3. If two graphs are QQ-cospectral, then they are L-cospectral.

P roof Q-cospectral graphs have the same number of vertices and the
same number of edges. Then their L-cospectrality follows from formula (2).
O

However, two L-cospectral graphs need not to be ()-cospectral. This is
because two cospectral line graphs need not to have the same number of
vertices in their root graph. Such an example is the PING given in Fig. 1.
Hence we cannot conclude that the graphs are Q)-cospectral.

Fig. 1

Cospectral line graphs of Fig. 1 have the characteristic polynomial A(\2—
A —4)(A = 1)(XA 4+ 1)2. The root graph of the first graph has 7 vertices with
the Q-polynomial A(A—1)(A—2)(A—3)(A2—5A+2) while in the second case
we have 8 vertices and the Q-polynomial A>(A—1)(A—2)(A—3)(A\2 =5\ +2).

The PING of Fig. 1 also shows that we cannot in general decide whether
a graph is bipartite from the spectrum of its line graph while the Q-polynomial
contains more information about that.
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The PING in Fig. 1 is the PING No. 6.3 of the table of [2], [3].

Its least eigenvalue, approximately equal to —1.5616, is the least solution
of the equation A> — A\ —4 = 0. It was proved in [5] that the only PING
with largest least eigenvalue and a minimal number of vertices is the PING
of Fig. 1.

3. The spectral uncertainty of graph sets and comparison
of usefulness of spectra of various graph matrices

Let G be a finite set of graphs. Let G’ be the set of graphs in G which
have a cospectral mate in G. The ratio rg = |G'|/|G] is called the spectral
uncertainty of G (w.r.t. the adjacency matrix).

The papers [8], [11] provide spectral uncertainties r,, of sets of all graphs
on n vertices for n < 11 (for n = 10 see [12] and [10] for n < 9):

n |4 5 6 7 8 9 10 11
rn | 0 0.059 0.064 0.105 0.139 0.186 0.213 0.211

The new value is r11. It is smaller than r1y which perhaps indicates that
rn tends to 0 when n tends to the infinity. This is the first encouraging
result in direction of possibility of using spectra in recognizing graphs since
very beginnings of the study of the phenomenon of cospectrality.

It is well-known that if G and H are connected graphs then L(G) = L(H)
implies G = H unless {G, H} = {K3, K1 3}. This result opens the possibility
of studying graphs in terms of their line graphs, at least in principle. One
could think whether it would be more efficient to consider the spectrum of
L(G) instead of describing a graph G by its own spectrum.

Before discussing this idea we should like to remind the reader on some
basic facts on the set of graphs with least eigenvalue greater than or equal
to —2.

It is an elementary observation that line graphs have the least eigenvalue
greater than or equal to —2. A natural problem arose to characterize the set
L of graphs with such a remarkable property. It appeared that line graphs
(LG) share this property with generalized line graphs (GLG) and with some
exceptional graphs.

An exceptional graph is a connected graph with least eigenvalue greater
than or equal to —2 which is not a generalized line graph. An exceptional
graph has at most 36 vertices and each vertex has degree at most 28.
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The situation is complicated by the existence of exceptional graphs which
could be cospectral to line graphs and to generalized line graphs. Indeed,
the uncertainty indices for £L-graphs with a given number of vertices get high
values as the following table (we are obliged to M. Lepovié¢ for computing
these data) shows.

n | 6 | 7 | 8 | 9 10
c 0.093 | 0.153 | 0.214 | 0.232 | 0.280
GLG | 0.091 | 0.152 | 0.184 | 0.150 | 0.143
LG | 0.032 | 0.084 | 0.115 | 0.1037 | 0.1044

However, values for generalized line graphs and for line graphs, although
not significant in this form, were an indication that it is worthwhile to extend
this statistics to higher values of n.

It is reasonable to compare uncertainty indices for some (finite) sets & of
graphs with given number of edges (and vertices) and for the corresponding
sets of line graphs. Equivalently, we could consider spectral uncertainties
of £ w.r.t. adjacency matrix of the line graph. Since we know that graphs
in £ are L-cospectral if and only if they are Q)-cospectral, the mentioned
uncertainties are roughly equal to uncertainities g, of & w.r.t. the signless
Laplacian matrix A + D. The last uncertainities are given in [11] and we
reproduce them here for n < 11.

n | 4 5 6 7 8 9 10 11
gn | 0.182 0.118 0.103 0.098 0.097 0.069 0.053 0.038

We see that numbers ¢, are much smaller than the numbers r,. In
addition, the sequence ¢, is decreasing for n < 10 while the sequence r, is
increasing for n < 9. This is a strong basis to believe that studying graphs
by the spectra of their line graphs is more efficient than studying them by
their own spectra.

Let us still note that values of g, differ to some extent from the corre-
sponding uncertainty indices for line graphs of the type considered in the
above table. First, this is because cospectral line graphs distinguishable by
@-polynomials of their root graphs are not taken into account when calcu-
lating g,. In other direction, some graphs with the same () polynomial can
have isomorphic line graphs hence being not relevant for the other index.
But we can assume that these differences are not essential.

Having in mind the above facts one can think that the use of the poly-
nomial Qg (A) would be even more useful than studying Pr(zy(A). On the
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other hand, very few relations between Qg () and the structure of G are
known. Since we have just the opposite situation with eigenvalues of the
adjacency matrix, we would like still to use P ()) in spite of the fact that
L(G) usually has more vertices than G.

However, we have seen in Section 2 that Pr(g)(\) contains less informa-
tion on the structure of G than Q¢ (\). This disadvantage can be eliminated
if, in addition to Pp(g)()), we know the number of vertices of G. Then we
know about G just the same as if we knew Qg(\) since Qg(\) can be cal-
culated by formula (2) and any of the two polynomials can be considered.

In this way we can eliminate another uncertainty. Namely, by Theorem
4.3.1. of [7] a regular line graph could be cospectral to another line graph
with the root having a different number of vertices and this fact would cause
additional problems if (only) the polynomial P ¢)(\) would be given.

Example. The graph L(Kg) has the Q-polynomial (A—16)(A—10)5(A—
6)Y while the graph Kjg ¢ has the Q-polynomial (A — 16)(A — 10)°>(A — 6)?\.
The line graph of either of these two graphs has the characteristic polynomial
(A —14) (A — 8)>(A — 4)2(\ + 2)%.

Now, for a graph G we should have either Qg (\) or Pr(g)()) plus the
number n = n(G) of vertices (of G); these two are equivalent and either can
be used as appropriate.

However, having in mind the remark in Section 2, for a graph G it
seems reasonable to require its (J-polynomial and, in addition, the number
of components of G to be known. (Normally, in majority of cases we would
consider connected graphs). Then we can decide (by Proposition 1) whether
G is bipartite and go on to calculate Prg)()).

Note that in regular graphs it is not necessary to give explicitly the
number of components since it can be calculated from Qg (\). In addition,
regular graphs can be recognized and their degree and the number of com-
ponents calculated from Qg (M) (cf. [8] or [1], Theorems 3.22 and 3.23).

Of course, in regular graphs we can calculate the characteristic polyno-
mial of the adjacency matrix and of the Laplacian and use them to study
the graph.

The arguments given in this paper support the idea expressed in [8] that,
among matrices associated to a graph (generalized adjacency matrices), the
signless Laplacian seems to be most convenient to be used in studying graph
properties.
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