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Abstract

In this paper we study the existence and uniqueness properties of so-
lutions of some nonlinear dispersive equations of evolution. We consider
the equation
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with z € R, T an arbitrary positive time and ¢ € [0,7]. The flux
f = f(u) and the (degenerate) viscosity g = g(\) are given smooth
functions satisfying certain assumptions. This work presents a result a
priori that permits to obtain gain of regularity for equation (1), moti-
vated by the results obtained by Craig, Kappeler and Strauss [3].
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Resumen

En este articulo estudiamos las propiedades de existencia y unici-
dad de las soluciones de algunas ecuaciones de evolucién dispersivas no
lineales. Consideramos la ecuacién
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132 Octavio Paulo Vera Villagran

conz € R, t € [0,7]y T un tiempo positivo arbitrario. El flujo f = f(u)
y la viscosidad (degenerada) g = g(\) son funciones suaves dadas que
satisfacen ciertas condiciones. En este trabajo se presenta un resultado a
priori que permite obtener una ganancia de regularidad para la ecuacién
(1), motivado en los resultados obtenidos por Craig, Kappeler y Strauss
[3].

Palabras y frases clave: Ecuaciones de evolucién, teorema de Lions-
Aubin, Espacios pesados de Sobolev.

1 Introduction

In 1976, J. C. Saut and R. Temam [23] remarked that a solution u of an
equation of Korteweg-de Vries type cannot gain or lose regularity: they showed
that if u(x,0) = ¢(x) € H*(R) for s > 2, then u(-,t) € H*(R) for all ¢ > 0.
The same results were obtained independently by J. Bona and R. Scott [2], by
different methods. For the Korteweg-de Vries (KdV) equation on the line, T.
Kato [16], motivated by work of A. Cohen [6], showed that if u(x,0) = ¢(z) €
L? = H?(R) (N L%(e*®dx) (b > 0) then the solution u(z, ) of the KAV equation
becomes C™ for all ¢t > 0. A main ingredient in the proof was the fact that
formally the semigroup S(t) = e~'7% in L? is equivalent to Sy(t) = e~ H0: =)
in L? when t > 0. One would be inclined to believe this was a special property
of the KdV equation. This is not, however, the case. The effect is due to the
dispersive nature of the linear part of the equation. S. N. Kruzkov and A.
V. Faminskii [20], for u(z,0) = ¢(x) € L? such that x%p(z) € L*((0, +0)),
proved that the weak solution of the KdV equation constructed there has I-
continuous space derivatives for all t > 0 if [ < 2a. The proof of this result is
based on the asymptotic behavior of the Airy function and its derivatives, and
on the smoothing effect of the KdV equation found in [16, 20]. Corresponding
work for some special nonlinear Schrodinger equations was done by Hayashi et
al. [12,13] and G. Ponce [22]. While the proof of T. Kato seems to depend on
special a priori estimates, some of its mystery has been resolved by results of
local gain of finite regularity for various other linear and nonlinear dispersive
equations due to P. Constantin and J. C. Saut [10], P. Sjolin [24], J. Ginibre
and G. Velo [11] and others. However, all of them require growth conditions
on the nonlinear term.

All the physically significant dispersive equations and systems known to us
have linear parts displaying this local smoothing property. To mention only
a few, the KdV, Benjamin-Ono, intermediate long wave, various Boussinesq,
and Schrodinger equations are included.
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Continuing with the idea of W. Craig, T. Kappeler and W. Strauss [9] we
study existence and uniqueness properties of solutions of some nonlinear dis-
persive equations of evolution. We consider the nonlinear dispersive equation

)= |5+ ) = el (3] - 0538
u(z,0) = p(z)

with © € R, T an arbitrary positive time and ¢ € [0,T]. The flux f = f(u)
and the (degenerate) viscosity g = g(\) are given smooth functions satisfying
certain assumptions to be listed shortly.

In section 3 we prove an important a priori estimate.

In section 4 we prove basic local-in-time existence and uniqueness results
for (1). Specifically, we show that for initial p(x) € HY (R), for N > 3, there
exists a unique u € L>([0,T]; HY(R)) where the time of existence depends
of the norm of ¢(z) € H3(R).

In section 5 we develop a series of estimates for solutions of equation (1)
in weighted Sobolev norms. We show that a solution u of (1) also satisfies
a persistence property. Indeed, we prove that if the initial data ¢ lies in a
certain weighted Sobolev space, then the unique solution u of the nonlinear
equation (1) lies in the same Sobolev space.

2 Preliminaries

We consider the nonlinear dispersive equation

o Lt = g o (5)] - 95 e.)

with 2 € R, t € [0,T] and T is an arbitrary positive time. The flux f = f(u)
and the (degenerate) viscosity g = g(\) are given smooth functions satisfying
certain assumptions. €,6 > 0.

Notation 1. We write 9 = %7 Oy = % = u; and we abbreviate u; = Oy =
du. g9 _
9;

Oz — Ouy°

Example. If Ou/0x = uy then

% [g (gifﬂ _ % lg(un)] = a% [g(u1)] %[ul] = % l9(ur)] uz = (D1g)us

1

The assumptions on f are the following:
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A.1 f:R? x [0,7] — R is C* in all its variables.
A.2 All the derivatives of f = f(u,z,t) are bounded for x € R for ¢t € [0,T]
and v € R in a bounded set.

A.3 zN9I f(0,z,t) is bounded for all N > 0,5 > 0, and =z € R,t € (0,7].
Indeed, VN > 0, V5 > 0, z € R, t € (0,T], there exists ¢ > 0 such that
[zNOLf(0,z,t)| < c.

The assumptions on g are the following:

B.1 g: R? x [0,7] — R is C* in all its variables.

B.2 All the derivatives of g(y, z,t) are bounded for € R,¢ € [0,T] and y in
a bounded set.

B.3 2V97g(0,z,t) is bounded for all N >0, j >0 and 2 € R, t € (0,T].
B.4 There exists ¢ > 0 such that d1g(uy,z,t) > ¢ >0, forall u; € R, 2z € R
and ¢ € [0,7].

Lemma 1. These assumptions imply that f has the form f = uofo +h =
ufo 4+ h where fo = fo(ug, z,t) = fo(u,z,t) and h = h(z,t). fo and h are C*
and each of their derivatives is bounded for u bounded, € R and ¢ € [0, 7.
Proof. Indeed, we define

fO _ f(u(hm’tq)lgf(ov‘r’t) fOr Uug ?é O
0o f(0,2,t) for up =0
and h(z,t) = f(0,x,1).
Remark 1. The same for g.

Definition 2.1. An evolution equation enjoys a gain of reqularity if its
solutions are smoother for all ¢ > 0 than its initial data.

Definition 2.2. A function £(z,t) belong to the weight class Wy if it is
a positive C*° function on R x [0,7], & > 0 and there exists a constant
¢j,0 < j <5 such that

0<c <t Femo%¢(z,t) <cy for z<—1, 0<t<T. (22)
0<cy <t Fomit(z,t)<ecy for z>1, 0<t<T. (2.3)
(tl&l+107¢])/E<cs (2.4)
in R x [0, 7], for all j € N.
Remark 2. We shall always take 0 > 0,7 > 1 and k£ > 0.
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Example 1. Let

5(&0):{ 1+e V% forz>0

1 for x <0

then { € Woio-
Definition 2.3. Fixed £ € W, define the space (for s a positive integer)

H*(Wyir) = {v: R — R; such that the distributional derivatives
ﬁ for 0 <j <s satisfy |[v]? = i:/+oo |07 v(2)|*¢(2, t)dx < o0}
oxl -7~ par U ’

Remark 3. H*(W,;;) depend ¢ ( because £ = &(x,t)).

Lemma 2. For £ € W,;0 and o > 0,7 > 0 there exists a constant ¢ such that,
for u € H! (ngo)

+oo

sup | éu? |< c/ (\u|2—|—|3u|2)§dx.
z€R —oo

Proof. See Lemma 7.3 in [9].

Definition 2.4. Fixed £ € W,;;, define the space

L*([0,T); H*(Woi)) = {v=uv(z,t),v(,t) € H*(Wyix) such that
T
o= [ ot 0P < +oc)
L0, T; H*(Wsi)) = {v=wv(x,t),v(-,t) € H(Wyi) such that

[ v |[lc=ess sup |[lv(-,t) < +oo}
t€[0,T]

Remark 4. The usual Sobolev space is H*(R) = H*(Wygo) without a weight.

Remark 5. We shall derive the a priori estimates assuming that the solution
is C*°, bounded as z — —oo, and rapidly decreasing as * — +o00, together
with all of its derivatives.

According to notation 1, for equation (1) we obtain

up + duz — €(01g)uz + (0o f)us = 0. (2.5)

The equation is considered for —oco < x < 4+00,t € [0,7] and T is an arbitrary
positive time.
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3 An important a priori estimate

In this section we show a fundamental a priori estimate to demonstrate ba-
sic local-in-time existence theorem. We need to construct a mapping T :
L>([0,T]; H*(R)) — L°*([0,T]; H*(R)) with the following property: Given
u™ = T(u™ ) and [[u™ V||, < ¢p then ||u™|, < co, where s and ¢y > 0
are constants. This property tells us, in fact, that T : B.,(0) — B, (0) where
B, (0) = {v(x,t); ||v(z,t)]|s < co} is a ball in space L*([0,T]; H*(R)). To
guarantee this property, we will appeal to an a priori estimate which is the
main object of this section.

Differentiating the equation (2.5) two times leads to

Opuz + dus — €(019)ua + (0o f)us — 2€0(019)us
+20(80 f )ug — €0*(D1g)ug + 0%(0o flur =0 (3.1)
Let u = Av where A = (I — 8%)~!. Then d;us = —v; + u;. Replacing in (3.1)
we have
— v + 0Avs — €(19)Avy + (Do f)Avs — 2€0(D19) Avg + 20(0o f) Ava
— €0%(019)\vg + 0% (Do f)Avy — [0Av3 — €(D1g9)Ava + (Do f)Avy] =0 (3.2)
where g = g(Avy) and f = f(Av).
The equation (3.2) is linearized by substituting a new variable w in each
coefficient;
—vg + IAv5 — €d1g(Aw1)Avg + 0o f (Aw)Avs — 2€0(01g(Awr)) Avs
+20(00 f (Aw)) Avy — €0 (B1g(Awr)) Ava + 82(80f(/\w))/\711
—[0Av3 — €d1g(Aw1)Avy — Do f (Aw)Av] = (3.3)
Lemma 3.1. Let v,w € C*([0,4+00); HY(R)) for all k, N which satisfy (3.3).
Let

& > c¢1 > 0. For each integer a there exist positive nondecreasing functions
E,F and G such that for all ¢ > 0

8t/R§vidx < G(lwl) vl + Edlwl)[wl? + F(lwla)  (3-4)

where || - ||o is the norm in H*(R) and A = max {1, a}.
Proof. Differentiating a-times the equation (3.3) for some o > 0
—OtUa + ONVG 45 — €(019)ANVa1a + ((O0f) — (v + 2)ed(019)) ANVat3
a+2 )
+ Z RN + g(Aw) Awata + p(Awgy,-..) =0 (3.5)
j=2
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where h) is a smooth function depending on AW;t3, ANWiya,... with ¢ =
24+a—7.
We multiply equation (3.5) by 2£v,, integrate over z € R

—2/fvaatvaderZé/fva/\va+5d:z:726/5(8lg)va/\va+4d:c
R R R

+2/ (0o f)varvassdr —2(a + 2)6/ £0(019)va NV y3dx

a+2

—|—2Z/§h] UaAU]d:c+2/§q (AW) VAW o t2dT

+2/ Evap(Awatt, .. .)dx = 0. (3.6)

Each term in (3.6) is treated separately. The first two terms yield

—2/§va8tvadx— —6t/§v dx—i—/ftv dx
and

25/§vaAva+5dx:25/5/\(I782)va/\va+5da¢
R R
:25/5/\va/\va+5dx—25/5/\va+2/\va+5dx
R R
:—6/85£(Ava)2dx+55/83§(Ava+1)2da:
R R

— 56 / O (Avgyo)?da + 6 / D3E(ANvg o) dr — 36 / O (Avg13) da.
R R R

The other terms are treated similarly, integrating by parts once again. Re-
placing over (3.6) we have

/{v dm—/ftv dm—5/85 E(Avy) dm+56/6§/\va+1 dx

56 / OE(Avaro)?dz + 0 / OPE(Nvasa)’ds — 35 / OE(Nvass)2dz
/83 €00 f)(Avg)? /84 € g)(Avy) dm+4e/82 £019)(ANvay1)?da
=2 [ 6@19)(NvarePde ¢ [ O (ED19)(Nvasa) s
R R

9 / £(019)(Avays)?de + 3 / (D S) (Nvayr) i + / (EDf) (Nvasa) da
R R R
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+ (a+ 2)e /R D3(€0(019))(ANva)?dx — 3(a + 2)e /]R D(£0(019)) (Avay1)?dx

~ (a2 [ 20019 (vasaVde + [ PEN) (rva) s

a+1
-2 / RO (Avgqr)2da — 2 / RO (Nvgs2)dr +2) / ERD o Nvjda
R R =2 JR

+ 2/ Eq(AW)vo AW yodT + 2 / Evap(ANwat1, ... )dx,
R R

then we have

5,5/R§U§dx: —/R(S(W{Jr265(81g))(/\va+3)2dx+/Rﬁtvidz
48 [ 06(vasade =55 [ 06(hvasa e+ [ 0 (E019) (Nvara)ds

R R R
726/5(819)(/\va+2)2dx+/8({(80f))(/\1)a+2)2dx

R R
—(a+ 2)6/ 9(£0(019))(Nvata) de — 2/ EhF (Avaya) de

R R

+5§/835(/\va+1)2dx+46/82(581g)(/\va+1)2dx

R R
+3/a(ﬁaof)(/\vaH)de—3(a+2)6/3(58(819))(/\va+1)2dx

R R
—2/R§h(a+2)(/\va+1)2d:c—5/}Ra5§(Ava)2dx—e/}R@4(§6lg)(Ava)2dx

_ / 03 (€00 f) (Ave)2da + (a + 2)e / 0 (€0(D1g)) (Ava)2da
R R
a+1

+/82(£h(a+2))(/\va)2dl.+22/gh(j)va/\vjdx
R =2 R

+ 2/ Eq(AW) V4 AW odx + 2/ Evap(AMWg 1, ... )da.
R R

The first term in the righthand side is nonpositive, hence
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8,5/Rgvgdm < /thvidx—i—é/Ra?’{(/\vaH)de—56/D§8§(Ava+2)2dx
+€Aa2(§319)(Ava+2)2dw—2€/R§(319)(/\Ua+2)2d33
+ [ D001 (Nvare)de — (a-+ 2)e [ D(0(019))(Nvas2)da

R R
-2 /R RO (Avgyo)2da + 56 /R DPE(Avag1)?da
e / 0%(£019) (Nvas1)2da + 3 / O(E00f) (Nvms) e

R R
30+ 2)e / D(E0(019))(Avas1 )2 —2 / ER(H) (Avg 41 )2
R R

—5/]1&85{(/\110()2dx—e/R@‘l(galg)(/\vafdx
_ / 03 (00 f) (Ava)2dz + (o + 2)e / D3 (£0(0n9)) (Ava)2d

R R

a+1

—I—/32(fh(o‘+2))(/\va)2dx+22/fh(j)va/\vjdx
R =2 R

+ 2/ Eq(ANW)vo ANwgrodx + 2/ EVap(AWat1, - - - )dx.
R R
In the last term we have

2/f(q/\wa+2 +p)vadz| < 2
R

+2

)

/ Epvadx
R

<2 ‘/ Equa(ANwy, — wy)dz| + 2 ’/ Epvgdx
R R

1/2 1/2
2 2
/quwavadl‘ +2 (/pr dl‘) (/Rfvadflj)

/é“qwavadx —&—/fpzdx—i—/é“vidx
R R R

and since p = p(Awqa1,-..) then

/ EqAw 42V dT
R

but Awg42 = Aw, — w, then

2/ E(gAwat2 + D)vade
R

<2 +2

/ EqNw v dx
R

<2 /fq/\wavadx +2
R

< r(llwll)llwlz + [v12] + [vlla + s(lwla)

’2 / & (M w2 + p) vadx
R
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in the same form, using that Av, = Av,_s — v,_2. By standard estimates,
the Lemma now follows.
We define a sequence of approximations to equation (3.3) as

—o{™ + 50l — e(B19) (" + (Do f) Aol — 2e0(D1g) A0S
—5rl” + oA A" ) =0 (3.7)

where g = g(/\vinil))7 f = f(Av(» D) and where the initial condition is
given by v (x,0) = p(z) — 0%p(z). The first approximation is given by
v (z,0) = p(z)—d%p(z). Equation (3.7) is a linear equation at each iteration
which can be solved in any interval of time in which the coefficients are defined.
This equation has the form

v = 6Avs — eAvg 4+ b Avg + b©) (3.8)

Lemma 3.2. Given initial data in ¢ € H®(R) = (x> H" (R) there exists a
unique solution of (3.8). The solution is defined in any time interval in which
the coefficients are defined.

Proof. See [26].

4 Uniqueness and existence theorem

In this section, we study uniqueness and local existence of strong solutions for
problem (2.5). Specifically, we show that for initial p(z) € HN (R), for N > 3,
there exists a unique u € L°°([0,T]; HY (R)) where the time of existence
depends of the norm of p(z) € H?(R). First we address the question of
uniqueness.

Theorem 4.1. (Uniqueness). Let ¢ € H3(R) and 0 < T < +oco. Assume f
satisfies A.1-A.3. and g satisfies B.1-B.4, then there is at most one solution
u € L>®([0,T); H3(R)) of (2.5) with initial data u(z,0) = ¢(z).
Proof. Assume u,v € L*®([0,T]; H3(R)) are two solutions of (2.5) with
ug, vy € L°([0,T]; L>(R)) and with the same initial data. Then

(u =)t +0(u—v)s —€elg(ur) — g(vi)r + [f(u) = f(V)h =0 (4.1)
with (v — v)(2,0) = 0. Using the Mean Value Theorem there are smooth
functions dV) and d® depending smoothly on uy,z, t;v1, z,t and u, x, t;v, x, t
respectively such that (4.1) has the form

(u—0) +0(u—0)3 —eldV]y (u— ) —ed® (u — )y

+ [ dP) 1 (u—v) +dP(u—v); =0 (4.2)
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We multiply equation (4.2) by 2£(u — v), integrate over € R
2/R§(u —v)(u —v)dx + 25/R§(u —v)(u — v)sdx
- 26/ E[dD)y (uw — v)(u — v)1dx — 26/ £dD (u—v)(u — v)oda (4.3)
R R

+2/R£[d(2)]1(u—U)Qda:—|—2/R§d(2)(u—v)(u—v)1dx:0.

Each term is treated separately. In the first term we have

Q/R§(u —v)(u — v)¢dr = 0 /R E(u —v)?de — /th(u —v)?%dx

The second term, integrating by parts, yields
2 /R £(u—v)(u — v)gder
_ 25 /]R D€ (u — v) (1 — v)ada — 25/}1{5@ o)1t — v)ada
_ 25/]1%525(16 ) (u — v)rda + 26 /R O(u — v)2dz + 5/ﬂ{agm )2z
= — 5/ ¢(u—v)?dx + 35/ AE(u —v)3d. (4.4)

Replacing over (4.3) we have
/fufv dxf/ft u—v)2dr — 6 /63 u—v)
+35/R(9£(u—v)1dx+e/R§(£[d 1) (u — v)?dz
—e/ﬂ@(‘?z({d(l))(u—U)Qd:v—f-?e/Réd(l)(u—v)fdw

+2 /R E[dP]1 (v — v)2dx — /Ra(gd@))(u —v)%dz = 0.
Then
O /R E(u—v)idr + /R(3(56§ + 2e6dM) (u — v)2dx

= ’LL—’U2$ 3 U—UQl'—é (1)1 u—v2x
/Rst( )d+6/Ra§< )2d /Ra@[d])( )2d

. 2(edMY (0 — v)2da — @1, (4 — v)%dz @) (y — v)2dz.
+e [ 0eau—vde =2 [ D= pdo+ [ )=
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Using B-4, the assumptions on f and g and for a suitably chosen constant c,
we have

8t/R£(u - U)2dx + /R(?,aag + 26§d(1))(u - v)?dm < c/Rf(u — v)2d:r.

By Gronwall’s inequality and the fact that (u —v) vanishes at ¢t = 0 it follows
that v = v. This proves uniqueness.

We construct the mapping T : L*°([0,T]; H*(R)) — L*=([0,T]; H*(R)) by
defining that

L)
u™ = T(u) n>1

where u("~1 is in the position of w in equation (3.3) and u(™ is in the position
of v which is the solution of equation (3.3). By to Lemma 3.2., (™ exists and
is unique in C((0,+00); HY(R)). A choice of ¢y and the use of the a priori
estimate in §3 show that T : B.,(0) — B, (0) with B,,(0) a bounded ball in
Le([0, TT; H*(R)).

Theorem 4.2. (Local existence). Assume f satisfies A.1- A4, and g satisfies
B.1- B.4. Let N be an integers > 3. If ¢ € HV(R), then there is 7' > 0 and
u such that u is a strong solution of (2.5). u € L>([0,T]; HY (R)) with initial
data u(z,0) = ¢(x).

Proof. We prove that for ¢ € H*(R) = (5, H"(R) there exists a solution
u € L>=([0,T); HN(R)) with initial data u(z,0) = ¢(z) and which a time of
existence T" > 0 which only depends ¢.

We define a sequence of approximations to equation (3.2) as

— 0, 4 5A05™ — €(019)Avs ™ + (8o f) Avs™ — 2e8(D1g) Avs™
+20(do f) Ava ™ — €d%(D1g9) Ava™ + 9%(d f) Avy ™) (4.5)
— [6Avs — e(B1g)AvS + (Do f)r{™] =0

where g = g(A{" ™) and £ = f(Av(»D) and whith initial data v (z,0) =

p(x) — 0%p().

The first approximation is given by v(9) (x, 0) = ¢(z) —8%¢p(z). Equation (4.4)
is a linear equation at each iteration which can be solved in any interval of
time in which the coefficients are defined.

By Lemma 3.1. it follows that

0t/£[vé")]2d:v < G VI3 + B ) oA
R

+ F(Jo" ). (4.6)
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Choose a = 1. Let ¢ > [l — 9?¢||1 > ||¢|l3. For each iterate n, |[v(™ (-, )| is
continuous in t € [0, 7], and [[v™ (-, 0)||; < ¢o. Define c3 = —co+1 Let 7(")
be the maximum time such that ||v®) (-, t)[|s < ¢z for 0 <t < T( ), 0<k<n.
Integrating (4.5) over [0,1], we have for 0 <t < T and j =0,1,...

t t
[ (o [ ras)as < [ 6o s
0 0

t t
+/zmw“WmmW“ww+/fwM“Wm@
0 0

and it follows that

(n) 2 (n) 2 ! (n—1) (n))2
Awmm<amws4&wmjmwmwécm BITRIGE

t t
+ [ B DD s + [ (0 )
0 0

hence

C1 U(n) X 2 X xT 'U(n) X 2 X
Au<,Md < /a,m]<¢ﬂd

IN

/§x 0l (z,0) dx+/ G0V 1) [0 2ds
+/zmM“WmmW”mw+/sz“me
0 0

In this way,

t

Jrar < 2 [0 opar + S,y B, , Tl
R C1 JRr Cq Cc1 cq

and we obtain for j =0, 1.

G(Cg) E C3
it +

[o™ ]y < 22+
C1

Claim. T 4 0.

Proof. We suppose T — 0. Since |[v(™ (-, t)|| is continuous in ¢ > 0, there
exists 7 € [0,7T] such that |0 (-, 7)||; = ez for 0 < 7 < TM, 0 <k < n.
Then

C2
c% < —c% + —
C1 C1 1 C1
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we do n — +oo follows

thus

c
472%0(2) +1<0 (contradiction)

this way T -4 0. Choosing T = T'(cy) sufficiently small, but 7" not depend-
ing on n, one concludes that

lo™ |y < e (4.7)

for 0 <t < T. This shows that 7" > T..
Hence of (4.6) there exists a subsequence v(") 4 () such that

o™ Sy weakly in - L°([0,T]; HY(R)) (4.8)

Claim. u = Av is the solution we are looking for.
Proof. In the linearized equation (4.4) we have

Mg = AT (I - 0%))ol"
= /\vén) — vgn)

= (nolY) - 8% ()

€L2(R) €H—2(R)

since A = (I — 8%)7! is bounded in H'(R) then /\vén) belong to H2(R),
so still v(™ is bounded in L*°([0,T]; H(R)) — L2([0,T); H'(R)) and since
A L?(R) — H?(R) is a bounded operator, ||/\v§n)||Hz(R) < c\|v§n)HLz(R) <
e ||v§n) || 1 () hence /\vgn) is bounded in L2([0, T]; H*(R)) — L?([0,T]; L*(R)),
follows 82(/\1)&")) is bounded in L%([0,7]; H~2(R)). This way

Ao™ s bounded in  L2([0, T); H2(R)) (4.9)
Similarly all other terms are bounded. By equation (4.4), v§”) is a sum of
terms each of which is the product of a coefficient, bounded uniformly in n

and a function in L2?([0,7]; H=2(R)) bounded uniformly n such that v,gn) is
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c

bounded in L?([0, T]; H~2(R)) for on the other hand H} (R) — Hllo/f(]R) —
H~2(R). By Lions-Aubin’s compactness Theorem there is a subsequence

o) € 4™ guch that v™ — v strongly in L2([0,T7; H1/2(R)). Hence for

loc

a subsequence v(") < p() we have v — v a. e. in L3([0,T7; Hllo/cz(R)).

Moreover from (4.8) /\Uén) — Avs weakly in L2([0,T]; H%(R)). Similarly
Ao = Avy weakly in L2([0, T); H=2(R)). Since | Av™ || gy < o™ ||
<e U(n)HH1/2(R) and v (™ — v strongly in L2([0, T7; Hl/Q(R)), then Av(™)

loc
— Aw strongly in L2([0,T); Hi (R)), thus d(Av(™) — 9(Av) strongly

in L2([0,7]; H} .(R)) — L*([0,T); H?.(R)), then /\’Ugn) — Awvy strongly
in L2((0, T Hj\,(R) < L2([0,T]; H (R)). In this way dig(nvy”) —

d19(Av1) strongly in L2([0,T]; H} (R)) — L*([0,T); H?.(R)). Thus the
third term on the right hand side of (4.4), dg(Av\" " )Av(” = dg(Av1)Avy
weakly in L2([0,T]; LL (R))as Av{” — Avy weakly in L2([0,T]; H-2(R)),
and 8g(/\vgn_1)) — Og(Avq) strongly in L2([0,T]); H2 .(R)). Similarly all
other terms in (4.4) converge to their correct limits, implying vt(n) — v weakly
in L2([0,T]; L}, .(R)). Passing to limits,

loc

vy = O0Avs — 6619(/\'01)/\1)4 + 8of(/\v)/\v3 — 268(319(/\1)1))/\’03
+ O(Avg, Avy, . ..) — [6Avg — €D1g(Av1)Avg + 0o f (AV) Avy],

then

82(5/\’03 — 6819(/\’[)1)/\’02 + aof(/\’U)/\’Ul)
— (0Avz — €d1g(Avy)Ave + 0o f(Av)AvY)
= —(I—-0%)(6Av3 — €d1g(Avi)Ava + Do f(AV)Avy).

Ut

Thus vy + (I — 9%)(6Av3 — €d1g(Av1)Avy + o f (Av)Avy) = 0. This way we
have (2.5) for u = Av.

We prove that there exists a solution of equation (2.5), u € L>([0, T]; H (R)),
with N > 4, where T depends only on ¢. We already know that there
is a solution (previously) u € L*([0,T]; H3(R)). It suffices to prove that
the approximating sequence v(™) is bounded in L>°([0,T]; HN~2(R)). Take
a = N—2 and consider (4.5) for @ > 2. By the same arguments as for « = 1 we
conclude that there exists 7' depending on the norm of ¢ but independent
n such that [|v(|, < cfor all 0 < ¢t < T, Thus v € L=([0, T™]; H*(R)).
Now denote by 0 < T*(@) < 400 the maximal number such that for all
0< T <T* y=Ave L>(0,T]; HN(R)) with TW < 7% for all a > 2.
Thus T can be chosen depending only on norm of ¢. Approximating ¢ by
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{ej} € C§°(R) such that |lo — o]l gn (w) T80, Let u; be a solution of
(2.5) with u;(x,0) = p;(x). According to the above argument, there exists T
which is independent of n but depending only sup; |¢;|| such that u; exists on

[0,T] and a subsequence u; T2E yin L>([0,T); HN(R)). As a consequence
of Theorem 4.1 and Theorem 4.2 and its proof one gets

Corollary 4.3. Let ¢ € HY(R) with N > 3 such that () — ¢ in HY (R).
Let u and u(?) be the corresponding unique solutions given by Theorems 4.1
and 4.2 in L>([0,T]; HY (R)) with 7" depending only on sup,, 0 || g5 () then

u™ Sy weakly in - L([0, T]; HY (R))
and
u — u strongly in  L2([0, T); HYT1(R)).
Theorem 4.4. (Persistence) Let ¢ > 1 and L > 3 be non-negative integers,

0 < T < +00. Assume that u is the solution to (2.5) in L*°([0,T]; H3(R))
with initial data ¢(z) = u(z,0) € H3(R). If p(z) € HEX(Wpi0) then

we 1[0, T} H3(R) ( HE (Woro)) (4.10)

where o is arbitrary, n € W, ;1,0 for ¢ > 1.
Proof. Similar to Theorem 4.2.
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