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ABSTRACT. We provide results on the smoothness of normalisers
in connected reductive algebraic groups G over fields k of positive
characteristic p. Specifically we we give bounds on p which guarantee
that normalisers of subalgebras of g in G are smooth, i.e. so that
the Lie algebras of these normalisers coincide with the infinitesimal
normalisers.

One of our main tools is to exploit cohomology vanishing of small
dimensional modules. Along the way, we obtain complete reducibility
results for small dimensional modules in the spirit of similar results
due to Jantzen, Guralnick, Serre and Bendel-Nakano—Pillen.
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1 INTRODUCTION

Let G be an affine group scheme over an algebraically closed field k. We say
G is smooth if dimLie(G) = dim G. A famous theorem of Cartier states that
every affine group over a field of characteristic zero is smooth. Therefore,
in this situation, the category of smooth group schemes is closed under the
scheme-theoretic constructions of taking centres, centralisers, normalisers and
transporters. However, Cartier’s theorem fails rather comprehensively in pos-
itive characteristic. A classic example of a non-smooth algebraic group is the
group scheme p;, whose points are the pth roots of unity; this is not smooth
over a field of characteristic p—its Lie algebra is 1-dimensional, but its k-points
consist just of the identity element. Furthermore, since p, is also the scheme-
theoretic centre of SL,, the centre of this reductive] group is also not smooth
over a field of characteristic p. This means that the group-theoretic centre of
SL, misses important infinitesimal information about the centre (for instance,
the fact that SL, is not adjoint).

Nonetheless, centralisers are usually smooth. For example, it is a critical result
of Richardson [Ric67, Lem. 6.6], used extensively in the theory of nilpotent
orbits, that the centraliser G, = Cg(e) of an element e of g = Lie(G) is
smooth whenever p is a very good prime for G4 (Note that smoothness of the
centraliser, or what is the same, the separability of the orbit map G — G - e

I'We call a smooth algebraic group G reductive provided that R, (G°) = 1.

2Recall that p is good if the following holds: p is not 2 if G' contains a factor not of type
A, pis not 3 if G contains an exceptional factor and p is not 5 if G contains a factor of type
Eg. The prime p is very good if it is good and it does not divide n + 1 for any factor of G of
type Ap.
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ON THE SMOOTHNESS OF NORMALISERS. . . 3

can be restated as Lie(G.(k)) = c4(e).) In fact the centralisers of subgroup
schemes of a connected reductive group G are usually smooth: work of Bate—
Martin—Rohrle-Tange and the first author (cf. Proposition B]) gives precise
information on the characteristic p of k, depending on the root datum of G, for
centralisers of all subgroup schemes of G to be smooth. It suffices, for instance,
for p to be very good for G. Furthermore, centralisers of all subgroup schemes
of GL,, are smooth.

The situation for normalisers is much less straightforward, which may explain
why results in this direction have been unforthcoming until now. For example,
even when G = GL,,, for any n > 3 and any p > 0 an arbitrary prime, there are
connected smooth subgroups of G with non-smooth normalisers (see Lemma
[[TIT below). In light of this situation, perhaps it is surprising that there are
any general situations in which normalisers of subgroup schemes are smooth.
However, we prove that for sufficiently large p depending on the connected
reductive algebraic group G, (a) all normalisers of height one subgroup schemes
(in fact the normalisers of all subspaces of the Lie algebra of G); and (b) all
normalisers of connected reductive subgroups are indeed smooth. Theorem [3.2]
makes (b) precise and the proof is a straightforward reduction to the case of
centralisers. Our main result follows.

THEOREM A. There exists a constant ¢ = ¢(r) such that if p > ¢ and G is any
connected reductive group of rank r then all normalisers Ng(h) of all subspaces
b of g are smooth.

More precisely, let d be the dimension of a minimal faithful representation of
G. Then all normalisers of subspaces of g are smooth provided that p > 22¢.
In particular, if G = GL,, we may take p > 22",

Remarks 1.1. (a). Clearly, the constant ¢(r) in the theorem may be defined as
224" for d’ the maximal dimension of a minimal faithful module of a connected
reductive group of rank r.

(b). Note that the maximum is finite since there are only a finite number
of isomorphism types of connected reductive groups of a given rank over an
algebraically closed field k. Each of these arises by base change from a split
reductive group defined over the integers, so one can consider the theorem as
a statement that for a fixed group Gz, the conclusion holds for each reduction
modulo p of Gz, whenever p is sufficiently large.

It is natural to ask if lower bounds for the constant ¢ in Theorem A exist.
In §TT] we present a menagerie of examples where smoothness of normalisers
fails; in particular, in Example[[T.4we give a p-subalgebra of gly,, , 1, with non-
smooth normaliser whenever p|F},, the nth Fibonacci number. Since F,, ~ 1.6"
and infinitely many Fibonacci numbers are expected to be prime, we conclude
that ¢(G) should grow exponentially with the rank of G. In other words the
bound on p in the theorem is likely to be of the right order.

The obstruction to finding linear bounds for ¢ comes from the fact that one
cannot, in general, lift the maximal tori of Lie-theoretic normalisers to group-
theoretic normalisers. However, many interesting subalgebras of g have nor-
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4 HERPEL AND STEWART

malisers which are generated by nilpotent elements (such as maximal semisim-
ple subalgebras). Adding in this extra, natural hypothesis gives rise to much
better bounds. In the following theorem let h = h(G) denote the Coxeter
number of (the root system ® of) G. If ® is reducible, then h is taken as the
maximum over all components.

THEOREM B. (i) Let G be a reductive algebraic group and let d be as in The-
orem A. Suppose p > d+1. Then all normalisers Ng(h) of p-subalgebras
b are smooth whenever ng(h) is generated by nilpotent elements. More
precisely, the conclusion holds for normalisers generated by nilpotent el-
ements when G is simple of classical type (that is, the root system of G
is of A-D type) and p > h + 1.

(i) Let p > 2h—2 for the connected reductive group G. Then the normalisers
Ne(h) of all subspaces b of g are smooth whenever ng(h) is generated by
nilpotent elements.

Remarks 1.2. (a). The bounds in Theorem B(i) are tight when G is classical
of type A, B or C: whenever p < h + 1 the smallest irreducible representation
of the first Witt algebra or its adjoint gives rise to a non-smooth normaliser
which satisfies the hypotheses. Theorem B(i) is also tight for G3, as it contains
a copy of the Witt algebra as a maximal subalgebra when p = 7; more generally,
the conclusion of Theorem B(i) fails for all exceptional algebraic groups when
p=h-+1 (see [HS16)).

(b). Suppose that k is not algebraically closed, and that G is a connected
reductive algebraic group defined over k with a closed, k-defined subgroup-
scheme H. Since smoothness is a geometric property, we have that Ng(H)
is smooth if and only if Ng_(Hy) is smooth. Hence Theorems A and B give
sufficient conditions for the smoothness of normalisers over general base fields.

In proving the theorems above we require several auxiliary results which may
be of independent interest. The first is necessary in proving Theorem B(i).

THEOREM C. Let g = Lie(G) for G a simply-connected classical algebraic group
over an algebraically closed field k and let p > 2 be a very good prime for G.
Then any mazimal non-semisimple subalgebra of g is parabolic.

Remark 1.3. An announcement of a full classification of the maximal non-
semisimple subalgebras of the Lie algebras of classical groups is given in [Ten87].
We provide a straightforward proof of the stated part in §7] below.

The proof of Theorem B(i) also uses a number of results on cohomology of
low-dimensional modules. Such results have something of a history: in [Jan97]
Jantzen proved that a module for a connected reductive algebraic group with
p > dim V is completely reducible. Building on this, Guralnick tackled the case
of finite simple groups in [Gur99)]; this time one needs p > dimV + 2 for the
same conclusion. In a different direction, Serre proved in [Ser94] that if two
semisimple modules V7 and V5 for an arbitrary group satisfy dim V; +dim V5 <
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ON THE SMOOTHNESS OF NORMALISERS. . . 5

p + 2 then their tensor product is semisimple. Extending work of Bendel-
Nakano—Pillen, we add analogues of these results for Lie algebras and Frobenius
kernels of reductive algebraic groups tackling the ‘crucial case’ of a question
of Serre [Ser94, Question 1.2] (though see Footnote [B below). We summarise
our results when G is simple into the following. The extensions to the case
G is semisimple or reductive can be found in §8 where also can be found any
unexplained terminology.

THEOREM D. Suppose G is a simple algebraic group and let G, be its r-th
Frobenius kernel with g its Lie algebra. LetV be a k-vector space with dimV <
p.
(a) Suppose V is a G.-module. Then V is completely reducible unless
dimV = p, and either G is of type A1 or p =2 and G is of type Cy,. In
the exceptional cases, V is known explicitly.

(b) Suppose g = [g,g] and V is a g-module. Then either V is completely
reducible or dimV = p, G is of type A1 and V is known explicitly.

(¢) Letp> h. Then H%(g, L(1)) = 0, for all u in the lowest alcove Cz, unless
G is of type A1 and p = (p—2); or G is of type Ay and = (p—3,0) or
(0,]7 - 3)

(d) Suppose V and W are semisimple g-modules with dim V +dim W < p+2.
Then V.@ W is semisimple and H?(g,V @ W) = 0. B

We also mention a further tool, used in the proofs of Theorems A and B(i), for
which we need a definition due to Richardson: Suppose that (G’, G) is a pair of
reductive algebraic groups such that G C G’ is a closed subgroup. We say that
(G',G) is a reductive pair provided there is a subspace m C Lie(G’) such that
Lie(G’) decomposes as a G-module into a direct sum Lie(G’) = Lie(G) 4+ m.
Adapting a result from [Herl3| we show

PropPoOSITION E. Let (G',G) be a reductive pair and let H < G be a closed
subgroup scheme. Then if Ng/(H) is smooth, Ng(H) is smooth too.
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6 HERPEL AND STEWART

2 NOTATION AND PRELIMINARIES

Let k be a field of characteristic p > 0 and let G be an algebraic group defined
over k. Unless otherwise noted, k£ will assumed to be algebraically closed.
For all aspects to do with the representation theory of a connected reductive
algebraic group G we keep notation compatible with [Jan03|. In particular, R
is the root system of GG, and h is the associated Coxeter number.

For a closed subgroup H < G, we consider the scheme-theoretic normaliser
N¢(H), respectively centraliser Cq(H) of H in G. We define Ng(H) to be
subfunctor of G which takes a k-algebra A and returns the subgroup of elements

Ng(H)(A) ={g € G(A) : gH(B)g~" = H(B)}
for all A-algebras B. Similarly, the centraliser is defined via
Ca(H)(A) ={g € G(A) : gh = hg for all h € H(B)}.

Since H is closed, Ng(H) and Cg(H) are closed subgroup schemes of G.

By contrast, for any affine algebraic group H over k, we denote by Hieq
the smooth subgroup with k-points Hyeq(k) = H(k). As k is algebraically
closed, the existence and uniqueness of such a subgroup is explained for ex-
ample in [Mil12] Prop. 5.1] and (as we will use in the sequel) we have that
Ne(H)realk') = Nogoy (H(E))(K') (vesp. Co(H)rea (k) = Cagu (H(K))(K)
by [Mil12, §VIL.6].

Let g be a Lie algebra over k. When the characterstic of k is greater than 0, g
is often referred to as a modular Lie algebra, and as such our reference for the
theory is [SE8S|. Recall that a Lie algebra g is semisimple if its solvable radical
is zero, and that in characteristic p > 0 this is not enough to ensure that it is
the direct sum of simple Lie algebras.

Sometimes but not all the time, we will have g = Lie(G) for G an algebraic
group, in which cas we refer to g as algebraic; in this case, g will carry the
structure of a restricted Lie algebra. Bear in mind that Lie(G) may not be
semisimple even when G is. Examples of this sort only occur in not-very-good
characteristic; for instance, sla = Lie(SLg) in characteristic 2 gives a restricted
structure on the solvable Lie algebra sly with 1-dimensional centre.

More generally, all restricted Lie algebras are of the form Lie(H ), where H is
an infinitesimal group scheme of height one over k. Under this correspondence,
the restricted subalgebras of g = Lie(G) correspond to height one subgroup
schemes of G. If the centre Z(g) = 0, then a Lie algebra g has at most one
restricted structure. In particular, if two semisimple restricted Lie algebras are
isomorphic as Lie algebras, they are isomorphic as restricted Lie algebras.

An abelian p-subalgebra b of g consisting of semsimple elements is called a
torus of g. Cartan subalgebras of algebraic Lie algebras are always toral and
in fact the Lie algebras of maximal tori of the associated algebraic group. This
follows from [Hum67, Thm. 13.3].

If g is a restricted Lie algebra, a representation V' is called restricted provided
it is given by a morphism of restricted Lie algebras g — gl(V'). The following
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ON THE SMOOTHNESS OF NORMALISERS. . . 7

fact follows e.g. from the Kac—Weisfeiler conjecture (see [Pre95, Cor. 3.10]): if
G is a simple algebraic group defined in very good characteristic, and if V is
an irreducible g-module with dimV < p, then V is restricted. In particular,
it is well-known that V' is then obtained by differentiating a simple restricted
rational representation of G.

When g is a Lie algebra, Rad(g) is the solvable radical of g and N(g) is the
nilradical of g. If g C gl(V) there is also the radical of V-nilpotent elements
Rady (g). When g is restricted, Rad,(g) is the p-radical of g, defined to be
the biggest p-nilpotent ideal. Further, g is p-reductive if the radical Rad,(g) is
zero. Recall the following properties from [SF88 §2.1]:

LEMMA 2.1. (a) Rad,(g) is contained in the nilradical N(g) and hence in
the solvable radical of g. In particular, semisimple Lie algebras are p-
reductive.

(b) Rady(g) is the mazimal p-nil (that is, consisting of p-nilpotent elements)
ideal of g.

(c) g/ Rad,(g) is p-reductive.

In particular, by part (b), if g C gl(V) is a restricted subalgebra then Rad,(g) =
Rady (g). If g C gl(V) is a restricted Lie subalgebra and Gy is the height one
subgroup scheme of GL(V) associated to g, then g is p-reductive if and only if
(i1 is reductive in the sense that is has no connected normal nontrivial unipotent
subgroup schemes. For the usual notion of reductivity of smooth algebraic
groups only smooth unipotent subgroups are considered. The relation between
these two concepts is as follows:

PROPOSITION 2.2 ([Vas05]). Let G be a connected reductive algebraic group.
Then G has no non-trivial connected normal unipotent subgroup schemes, ez-
cept if both p = 2 and G contains a direct factor isomorphic to SOsyy1 for
somen > 1.

Since there are a number of possible definitions, let us be clear on the following:
We define a Borel subalgebra (resp. parabolic subalgebra, resp. Levi subalgebra)
of g to be Lie(B) (resp. Lie(P), resp. Lie(L)), where B (resp. P, resp. L) is a
Borel (resp. parabolic, resp. Levi subgroup of a parabolic) subgroup of G.

By P = L@ we will denote a parabolic subgroup of G with unipotent radical
Q@ and Levi factor L. We will usually write p = Lie(P) = [+ q. A fact that we
will use continually during this paper, without proof, is that if H (resp. h) is a
subgroup (resp. subalgebra) of P (resp. p), such that the projection to the Levi
is in a proper parabolic of the Levi, then there is a strictly smaller parabolic
P, < P (resp. p1 < p) such that H < P; (resp. h < p1). See [BT63, Prop.
4.4(c)].

We also use the following fact: If t C gl is a torus, then Cgr,, () is a Levi
subgroup (this follows e.g. from the construction of a torus T' C GL,, in [Die52|
Prop. 2] with Cqr, (t) = Car, (T)).
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8 HERPEL AND STEWART

Let V be an g-module and let A : V' x V' — k be a bilinear form on V. We say
g preserves A if A(z(v),w) = —A(v,z(w)) for all z € g, v,w € V.

We recall definitions of the algebraic simple Lie algebras of classical type: those
with root systems of types A-D. Then o(V) is the set of elements x € gl(V)
preserving the form A(v,w) = v'w. so(V) is the subset of traceless matrices
of o(V). On the other hand when dimV is even, sp(V) is the set of elements
preserving the form A\(v,w) = v*Jw with J = [[0, —1I,,],[I,,0]]. If char k # 2
then sp(V) and so(V') are simple (see below).

We say sp(V) is of type C, with 2n = dimV; so(V) is of type B, when
dimV = 2n + 1, or type D, when dimV = 2n. One fact that we shall use
often in the sequel is that that for types B—D, parabolic subalgebras are the
stabilisers of totally singular subspaces. (See for example, [Kan79].)
Furthermore recall that if G is simple, then g is simple at least whenever p is
very good. See [Hog82, Cor. 2.7] for a more precise statement. This means
in particular that s{(V) is simple unless p|dim V/, in which case the quotient
psl(V) = sl(V)/kI is simple; we refer to such algebras as type A, classical Lie
algebras, where dim V' = n+1. In all cases, we refer to V as the natural module
for the algebra in question.

We make extensive use of the current state of knowledge of cohomology in this
paper, especially in §8 Importantly, recall that the group Ext} (V, W) (with
A either an algebraic group or a Lie algebra) corresponds to the equivalence
classes of extensions E of A-modules 0 - W — E — V — 0, and that
H2(A,V) measures the equivalence classes of central extensions B of V by
A, equivalence classes of exact sequences 0 - V — B — A — 0, where B
is either an algebraic group or a Lie algebra. We remind the reader that for
restricted Lie algebras, two forms of cohomology are available—the ordinary Lie
algebra cohomology, denoted H(g, V) or the restricted Lie algebra cohomology
(where modules respectively morphisms are assumed to be restricted). Since
the latter can always be identified with H'(A, V) for A the height one group
scheme associated to g, we shall always use the associated group scheme when
we wish to discuss restricted cohomology.

Finally, we record the following theorem of Strade which is a central tool in
our study of small-dimensional representations. Let char £k = p > 0 and let
01 = k[X]/XP? be the truncated polynomial algebra. Then the first Witt
algebra Wi is the set of derivations of Oy, with basis {X"0}o<r<p—1, Where
0 acts on O by differentiation of polynomials. For p > 2, W; is simple, and
for p > 3, Wi is not the Lie algebra of any algebraic group. Since there is a
subspace k < O; fixed by Wi, we see that W; has a faithful (p— 1)-dimensional
representation for p > 2.

THEOREM 2.3 ([Str73, Main theorem)]). Let g be a semisimple Lie subalgebra of
gl(V) over an algebraically closed field k of characteristic p > 2 withp > dim V.
Then g is either a direct sum of algebraic Lie algebras or p=dimV 4+ 1 and g
1s the p-dimensional Witt algebra Wi .
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3 SMOOTHNESS OF NORMALISERS OF REDUCTIVE SUBGROUPS

Let G be a connected reductive algebraic group and let T be a maximal torus
in G with associated roots R, coroots RV, characters X (T') and cocharacters
Y (T). We say that a prime p is pretty good for G provided it is good for R and
provided that both X (T")/ZR and Y (T')/ZR" have no p-torsion. We recall the
main result of [Her13].

PROPOSITION 3.1. Let G be as above, and let p = char(k). Then p is pretty
good for G if and only if all centralisers of closed subgroup schemes in G are
smooth.

THEOREM 3.2. Let G be a connected reductive algebraic group. Then the nor-
malisers Ng(H) of all (smooth) connected reductive subgroups are smooth if p
is a pretty good prime for G.

Proof. Let H < G be a closed, connected reductive subgroup of G. We have
an exact sequence of group functors

1 = Cq(H) = Ng(H) 2% Aut(H).

Here the first map is the natural inclusion, the second map maps =z € G to
the automorphism int(z) of H given by conjugation with , and Aut(H) is the
group functor that associates to each k-algebra S the group of automorphisms
of the group scheme Hg. By [DGA70, XXIV, Cor. 1.7], we have that Aut(H)® =
int(H) is smooth, which implies that int(Ng(H)) is smooth. By Proposition
BI Ce(H) is smooth. Thus the outer terms in the exact sequence of affine
group schemes

1—= Cq(H) = Ng(H) = int(Ng(H)) = 1
are smooth, which forces Ng(H) to be smooth. O

Remark 3.3. The implication in the theorem cannot quite be reversed. For
example if G is SLg, p = 2 is not pretty good, but a connected reductive
subgroup is either trivial, or a torus, whose normaliser is smooth. However, we
give examples of non-smooth normalisers of connected reductive subgroups in
bad characteristics in Examples below.

4 ON EXPONENTIATION AND NORMALISING, AND THE PROOF OF THEOREM
B(11)

Let G be a connected reductive group. We recall the existence of exponential

and logarithm maps for p big enough, see [Ser98, Thm. 3] or [Sei00, Prop. 5.2].

We fix a maximal torus 7" and a Borel subgroup B = T x U containing 7.

DOCUMENTA MATHEMATICA 21 (2016) 1-37



10 HERPEL AND STEWART

THEOREM 4.1. Assume that p > h (p > h for G simply connected), where h is
the Coxeter number of G. Then there exists a unique isomorphism of varieties
log : G = gnip, whose inverse we denote by exp : gnap — G“, with the
following properties:

(i) log oo = do olog for all 0 € Aut(G);

(i) the restriction of log to U is an isomorphism of algebraic groups U —
Lie(U), whose tangent map 1is the identity; here the group law on Lie(U)
1s given by the Hausdorff formula;

(iii) log(zs(a)) = aX, for every root o and a € k, where X, = dzq(1).

The uniqueness implies that for G = GL(V), p > dim V, exp and log are the
usual truncated series.

Recall (cf. [Ser98]) that for a G-module V, the number n(V') is defined as
n(V) = supy n(A), where X ranges over all T-weights of V', and where n()\) =
> wcrt (A @), For the adjoint module g, one obtains n(g) = 2h — 2.

PROPOSITION 4.2. Let p : G — GL(V) be a rational representation of G.
Suppose that p > h and p > n(V). Let x € g be a nilpotent element. Then

plexpg x) = expgy, (dp(x)).
In particular, if p > 2h — 2, then Ad(expg x) = expgy,(ad(x)).

Proof. Consider the homomorphism ¢ : G, — GL(V) given by ¢(t) =
plexpg(t.x)). Under our assumptions, it follows from [Ser98, Thm. 5] that
 is a morphism of degree < p, (i.e. the matrix entries of ¢ are polynomials of
degree less than p in t). Moreover, dp(1) = dp(z). By [Ser94l §4], this implies
that dp(x)P = 0 and that ¢ agrees with the homomorphism ¢ — expgy, (t.dp(x)).
The claim follows. O

LEMMA 4.3. Let X € gl(V) be a nilpotent element satisfying X™ = 0 for some
integer n < p. Let l,r € End(gl(V)) be left multiplication with X, respectively
right multiplication with —X. Set W = W,(l,r) € End(gl(V)), where W,(x,y)
is the the image of 1—17((50 +y)P —aP —yP) € Zx,y] in k[x,y]. Let b be a subset
of gl(V') normalised (resp. centralised) by X. Suppose that h C ker(W). Then
exp(X) € GL(V) normalises (resp. centralises) b.

In particular, if p > 2n — 1, then W = 0 and so exp(X) normalises (resp.
centralises) every subspace that is normalised (resp. centralised) by X .

Proof. Since the nilpotence degree of X is less than p, the exponential exp(X) =
1+ X+ X?2/2+... gives a well-defined element of GL(V). Moreover, for each
Y € b we have the equality

Ad(exp(X))(Y) = exp(ad(X))(YV) =Y +ad(X) (V) +ad(X)*(Y)/2+- - - € gl(V).
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Indeed, we have ad(X) = [ + r, and Ad(exp(X)) = exp(l)exp(r). Now
by [Ser94l, (4.1.7)], exp(l) exp(r) = exp(l + r — W). Since ! and r commute
with W, we deduce (I +r —W)™(Y) = (I +r)™(Y) for each m > 0. Thus
Ad(exp(X))(Y) = exp(l +7r)(Y) = exp(ad(X))(Y), as claimed. Hence exp(X)
is contained in Ngr(v)(h) whenever X € ngyyy(h) and exp(X) € Cqrv)(h)
whenever X € cqv)(h).

IR . .
Moreover, W,,(l,7) = Y2~ ¢;l"rP~" for certain non-zero coefficients ¢; € k. In

particular, this expression vanishes for p > 2n — 1. o

COROLLARY 4.4. Let p=q+ [ C gl(V) be a parabolic subalgebra, and suppose
that p > dim V. If X € q normalises a subset h C p, then so does exp(X).

Proof. By Lemma [43] it suffices to show that p C ker(W). Let 0 =V, C V5 C
--+ CV,, =V be a flag with the property

p={Yegl(V)|YV; CVi}
a={Y egl(V) [ YV, CVii}.

By assumption, we have p > m, and therefore all products X ... X, with
all X; € p and all but one X; € q vanish on V. In particular I*r?~(Y) = 0 for
all Y € p and hence W(Y) = 0. O

LEMMA 4.5. Suppose g is a subalgebra of gl(V') generated as a k-Lie algebra
by a set of nilpotent elements {X;} of nilpotence degree less than p, and let
G = (exp(t.X;)) be the closed subgroup of GL(V') generated by exp(t.X;) for
each t € k. Then g < Lie(G).

Proof. Since Lie(G) contains the element d/dtexp(t.X;)|:=o it contains each
element X;. Since g is generated by the elements X;, we are done. O

Proof of Theorem B(ii). Let h be a subspace of g and let n = ng(h) be the
Lie-theoretic normaliser of b in g.

Let {x1,...,2,} be a set of nilpotent elements generating n. To show that
Ng(h) is smooth, it suffices to show that each z; belongs to the Lie algebra of
NG(b)red-

But for a nilpotent generator x;, we may consider the smooth closed subgroup
M; = (exp(t.xz;) | t € k) of G. By Proposition L2l M; C Ng(h)rea and hence
x; € Lie(M;) C Lie(Ng(h)rea), as required. O

5 REDUCTIVE PAIRS: PROOF OF PROPOSITION E

The following definition is due to Richardson [Ric67].

DEFINITION 5.1. Suppose that (G',G) is a pair of reductive algebraic groups
such that G C G’ is a closed subgroup. Let g’ = Lie(G), g = Lie(G). We say
that (G', @) is a reductive pair provided there is a subspace m C g’ such that
g’ decomposes as a G-module into a direct sum g’ = g & m.
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12 HERPEL AND STEWART

With p sufficiently large, reductive pairs are easy to find.

LemMMmA 5.2 ([BHMRI11, Thm. 3.1]). Suppose p > 2dimV — 2 and G is a
connected reductive subgroup of GL(V'). Then (GL(V), G) is a reductive pair.

We need a compatibility result for normalisers of subgroup schemes of height
one.

LEMMA 5.3. Let H C G be a closed subgroup scheme of height one, with h =
Lie(H). Then Ng(H) = Ng(h) (scheme-theoretic normalisers).

Proof. We have a commutative diagram

Hom(H,H) —— Hom,_ri(h, h)

l !

Hom(H,G) —— Hom,_ri(h, g),

where the horizontal arrows are given by differentiation and are bijective (cf.
[IDG70L 11, §7, Thm. 3.5]). Now if z € N¢(h), the map Ad(x)y in the bottom
right corner may be lifted via the top right corner to a map in Hom(H, H).
The commutativity of the diagram shows that conjugation by z stabilises H,
and hence © € Ng(H). This works for points « with values in any k-algebra,
and hence proves the containment of subgroup schemes N¢(h) C Ng(H). The
reverse inclusion is clear. O

We show that the smoothness of normalisers descends along reductive pairs.
Let us restate and then prove Propostion E.

PROPOSITION 5.4. Let (G',G) be a reductive pair and let H C G be a closed
subgroup scheme. If Ng:/(H) is smooth, then so is Ng(H).

In particular, if h C g is a restricted subalgebra and if Ng:(h) is smooth, then
s0 is Ng(h).

Proof. The last assertion follows from Lemma 5.3

Let H C G be a closed subgroup scheme. We follow the proof of [Her13, Lem.
3.6]. Let ¢’ = g ® m be a decomposition of G-modules.

By [DGT0, II, §5, Lem. 5.7], we have

dim Lie(Ng/ (H)) = dim h + dim(g’/h)* = dim b 4 dim(g/h)¥ + dimm?
= dim Lie(Ng(H)) + dimm > dim Ng(H) + dimm®.

On the left hand side, as Ng/(H) is smooth by assumption, we have
dim Ng/(H) = dimLie(Ng/(H)). Thus to show that Ng(H) is smooth, it
suffices to show that dim Ng/(H) — dim Ng(H) < dimm?*.

Now as in [Herl3d| Lem. 3.6], one shows that there is a monomorphism of
quotient schemes Ng/(H)/Ng(H) — (G'/G)H, and that the tangent space on
the right hand side identifies as T;(G’/G) = m#. The claim follows. O
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6 LIFTING OF NORMALISING TORI AND THE PROOF OF THEOREM A

In this section we let G = GL(V') and h be a subspace of g. We would like to lift
a normaliser ny(h) to a subgroup N normalising b such that Lie(N) = ng4(h).
It turns out that the hardest part of this is to find a lift of a maximal torus
normalising . This is the content of the next lemma.

LEMMA 6.1. Let G = GL,, with p > 2°" and let h C g be any subspace of
g = Lie(G). Suppose that ¢ C g is a torus normalising h. Then ¢ = Lie(C) for
a torus C C Ng(h).

Proof. Let T be a diagonal maximal torus of GL,, and t = Lie(T). Since ¢
consists of semisimple elements, we may assume ¢ C t.

Since c¢ is restricted, it has a basis defined over I, of elements Z,,..., Z, with
Z; = diag(zi1, . .., zin) and each z;; € F,. By [Die52 Prop. 2] we may assume
that ¢ is a maximal torus of ng(h), which we do from now on.

Since k is algebraically closed, we may take a decomposition of b into weight
spaces for ¢. We have h = ho ® @_ ho where ho is some set of elements
commuting with ¢, a is a non-trivial linear functional ¢ — k£ and each b, is a
subspace of gl,, with [¢, X] = a(c)X for ¢ € ¢ and X € b,.

Let {X;} be a basis for h with each X; € hg or b, for some « as above. Then
¢ =), ne((X3)). Suppose ¢ = diag(ci,...,c,). The condition ¢ € n¢((X;)) puts
a set of conditions on the ¢;. If only one entry of the matrix X; is non-zero
or X; is diagonal, then t normalises X;, hence the set of conditions is empty.
Otherwise, if (X;); % and (X;);,m are non-zero, then ¢ normalising (X;) implies
¢j — ¢k = ¢ — Cm. Letting ¢ = (c1,...,¢,) this condition can be rewritten as
a linear equation rc = 0, where r is an appropriate row vector whose entries
are all 0, except for up to four, where the non-zero entries take the values, up
to signs or permutations, (1,—1),(2,—2),(1,-2,1) or (1,—1,—1,1) according
to the values of j, k,I and m. The collection of these, say m relations, across
¢ and all pairs of non-zero entries in X; gives an m x n integral matrix R so
that ¢ € ¢ if and only if it satisfies the equation Rc = 0 modulo p. Similarly,
if x(t) = diag(t®,...,t%") is a cocharacter with image in T', then one checks
that x(t) normalises b if the integral equation Ra = 0 where a = (aq,...,ap).
If the nullity of R is the same modulo p as it is over the integers then for any
¢ € ny(h), there exists a cocharacter x of Np(h) with d/dt|.=1(x(t)) = ¢ and
we are done. But if the nullity of R modulo p differs from the nullity of R over
the integers, then we must have that p|d; for d; one of the non-zero elementary
divisors of R. Now by the theory of Smith Normal Form, if r € N is taken
maximal so that there exists a non-vanishing r x r minor, then the elementary
divisors of R are all at most the greatest common divisor of all non-zero r x r
minors. Let M be such an r x r minor. We are going to argue by induction
on 7 that |det(M)| < 22". Since r < n, the hypothesis will then show that p is
not a prime factor of det(M), as required.

We must have » < n. If there is a row of M containing only elements of
modulus 2, then at most 2 of these are non-zero and 2 is a prime factor of
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det M; Laplace’s formula implies that the remaining matrix has determinant
at most 2det M’ where M’ is a certain r — 1 X 7 — 1 minor of M, so that
we are done by induction. If there are no entries of modulus 2, then each row
contains at most 4 entries of modulus 1 and Laplace’s formula then implies that
det M < 4det M’ where M’ is a certain 7 — 1 x r — 1 minor of M of the required
form, so that we are done again by induction. Otherwise there is at least
one row with non-zero entries (1,—2) or (1,—2,1). By Laplace’s formula and
induction, it is now easy to see that |det M| < 22n=2 42,2212 4 92n=2 = 92n
and we are done. O

We are now in a position to prove Theorem A.

Proof of Theorem A. First consider the case G = GL,,. Let b be a subspace of
g and let n = ny(h) be the Lie-theoretic normaliser of h in g.

As before, by definition, n is a restricted subalgebra of g. Hence, applying the
Jordan decomposition for restricted Lie algebras, we see that n is generated
by its nilpotent and semisimple elements. Let {x1,...,2y,y1,...,ys} be such
a generating set with x1,...,x, nilpotent and 1, ..., ys semisimple. To show
that Ng(h) is smooth, it suffices to show that all the elements x; and y; belong
to the Lie algebra of Ng(h)red-

For a nilpotent generator x;, of nilpotence degree at most n < p, consider the
smooth closed subgroup M; = (exp(t.z;) |t € k) of G. Since p > 2h — 2, we
may apply Proposition[d.2] to obtain M; C Ng(h)red and hence x; € Lie(M;) C
Lie(Ng(h)red), as required.

It remains to consider the semisimple generators y;. Let t; := (y;), < n be
the torus generated by the p-powers of y;. By hypothesis, p > 22" and so we
may apply Lemma to find a torus T; < Ng(h) such that Lie(T;) = t;. In
particular y; € Lie(Ng(h)reda). This finishes the proof in the case G = GL(V).
If G is a reductive algebraic group suppose G — GL(V) = GL,4 is a minimal
faithful module for G. Now since p > 229™V e have that normalisers of
all subspaces of GL(V') are smooth. But now, by Lemma (2 (GL(V),G) is
a reductive pair, so that invoking Proposition [5.4] we obtain that Ng(h) is
smooth. This completes the proof. O

7 NON-SEMISIMPLE SUBALGEBRAS OF CLASSICAL LIE ALGEBRAS. PROOF
OF THEOREM C

Suppose char k > 2 for this section.
This section provides proofs for some of the claims made in [Ten87]. Here we
tackle the proof of Theorem C.

PROPOSITION 7.1 (see [SF88| §5.8, Exercise 1]). Let g < gl(V') be a Lie algebra
acting trreducibly on an g-module V' such that g preserves a non-zero bilinear
form. Then g is semisimple.
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Proof. Assume otherwise. Then Rad(g) # 0 and we can find an abelian ideal
0# Jag. Take z € J. As [zP,y] = ad(x)Py € JM) = 0, 2P centralises g and
we have that v — zPv is a g-homomorphism V' — V. Since k is algebraically
closed and V is irreducible, Schur’s lemma implies that zPv = a(x)v for some
map o :J — k.

Since A # 0 there are v,w with A(v,w) = 1. Now a(z) = AaPv,w) =
A, 2Pw) = —a(r) so a(x) = 0. Thus 2Pv = 0 for all z € J. Hence J
acts nilpotently on V and so Engel’s theorem gives an element 0 # v € V an-
nihilated by J. Since V is irreducible, it follows that JV = J(gv) < gJv = 0.
Thus J = 0 and g is semisimple. O

Since any subalgebra of a classical simple Lie algebra of type B, C or D pre-
serves the associated (non-degenerate) form we get

COROLLARY 7.2. If § is a non-semisimple subalgebra of a classical simple Lie
algebra g of type B, C or D then h acts reducibly on the natural module V' for
g.

Remark 7.3. If g = go (resp. f4, ¢7, eg) then a subalgebra acting irreducibly
on the self-dual modules V7 (resp. Vag, or Va5 if p = 3, Vi, Vaug = ¢g) is
semisimple. Here V,, refers to the usual irreducible module of dimension n.

A subalgebra is maximal rank if it is proper and contains a Cartan subalgebra
(CSA) of g. (Note that CSAs of simple algebraic Lie algebras are tori.) Call a
subalgebra § of g an R-subalgebra if b is contained in a maximal rank subalgebra
of g.

For the following, notice that if p|dimV then sl(V) is not simple, though
provided sl(V') # sl in characteristic 2, the central quotient psl(V') is simple.
Now, a subalgebra h of psl(V) is an R-subalgebra of psl(V) if and only if its
preimage 7~ 'h under 7 : sl(V) — psl(V) is an R-subalgebra. We say b acts
reducibly on V if 771h does.

PROPOSITION 7.4. Let g be a simple algebraic Lie algebra of classical type and
let h < g act reducibly on the natural module V' for g. Then by is an R-subalgebra
unless g = so(V) with dimV = 2n with h < so(W) x so(W') stabilising a
decomposition of V into two odd-dimensional, non-degenerate subspaces W and

W' of V.

Proof. Let V be the natural module for g and let W < V be a minimal §-
submodule, so that h < Stabg(W). If g is of type A then Stabg (W) is Lie(P)
for a (maximal) parabolic P of SL(V'). Hence b is an R-subalgebra of g.

If g is of type B, C or D, then consider U = W N W this is the subspace of
W whose elements v satisfy A(v,w) = 0 for every w € W. Since M preserves
A, this is a submodule of W, hence we have either U = 0 or U = W by
minimality of W. If the latter, W is totally singular. Thus StabyW is Lie(P)
for a parabolic subgroup P of the associated algebraic group.

On the other hand, U = 0 implies that W is non-degenerate. Then V =
W @ W+ is a direct sum of h-modules and we see that StabgW is isomorphic
to
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16 HERPEL AND STEWART

(i) $pgy, X 8Py, in case L is of type C, dim W = 2s and 2r 4+ 2s = dim V
(ii) so, X s0s in case L is of type B or D, dimW = s and r + s = dim V.

Note that by [Bou05, VII, §2, No. 1, Prop. 2] the dimensions of the CSA of a
direct product is the sum of the dimensions of the CSAs of the factors. In case
(i), the subalgebra described has the (r + s)-dimensional CSA arising from the
two factors. In case (ii), if dimV = 2n + 1 is odd then one of r and s is odd.
If r is odd then so, has a CSA of dimension (r — 1)/2, and so, has a CSA of
dimension s/2, so that the two together give a CSA of dimension s/2 + (r —
1)/2 = n. (Similarly if s is odd.) Otherwise dim V' = 2n is even. If dim W is
even then StabyW contains a CSA of dimension r/2 + s/2 = n. If dimW is
odd then we are in the exceptional case described in the proposition. O

Remark 7.5. In the exceptional case, note that §09,11 X §02541 contains a CSA
of dimension r+ s, whereas $09,, 12 contains a CSA of dimension n+1 = r+s+1.

COROLLARY 7.6. Let g be of type B, C' or D. If§ is a mazimal non-semisimple
subalgebra of g, then b is Lie(P) for P a mazimal parabolic of G. In particular,
if b is any non-semisimple subalgebra of g, it is an R-subalgebra.

Proof. Assume otherwise. Then b fixes no singular subspace on V. Suppose h
preserves a decomposition V=V, L V5 L --- 1L V,, on V with n as large as
possible, with the V; all non-degenerate. Then h < g1 = s0(V7) x -+ x s0(V},)
orh < gy =sp(Vi)x---xsp(V,). Since b is non-semisimple, the projection h;
of h in so(V4) or sp(V1), say, is non-semisimple. Then Proposition [l shows
that b acts reducibly on V. Since h stabilises no singular subspace, the proof
of Proposition [ shows that § stabilises a decomposition of V; into two non-
degenerate subspaces, a contradiction of the maximality of n. O

Let h be a restricted Lie algebra, I < § an abelian ideal and V' an h-module. Let
A € I*. Recall from [SF88| §5.7] that b = {x € h|\([z,y]) = 0 for all y € I}
and V* = {v € V]z.v = A(z)v for all z € T}.

PROPOSITION 7.7. Let b be a non-semisimple subalgebra of s\(V') with V' irre-
ducible for . Then p|dim V.

Proof. Let b be as described and let I be a nonzero abelian ideal of . If b,
denotes the closure of h under the p-mapping, then by [SESS| 2.1.3(2),(4)], I,
is an abelian p-ideal of b,. Thus Rad b, # 0 and b, is non-semisimple. Hence
we may assume from the outset that h = b, is restricted with nonzero abelian
ideal 1.

Since b acts irreducibly on V', by [SF88l Corollary 5.7.6(2)] there exist S € h*,
A € I* such that

= Indzk (VA 8).

If X is identically 0 on I then V?* is an h-submodule. We cannot have V* = 0
(or else V = 0) so V* = V and I acts trivially on V, a contradiction since
I <sl(V).

DOCUMENTA MATHEMATICA 21 (2016) 1-37



ON THE SMOOTHNESS OF NORMALISERS. . . 17

Hence \(x) # 0 for some x € I. Suppose V* = V. Then as = € sl(V), we have
try(z) = dimV - AM(z) = 0 and thus p|dim V and we are done. If dim V* <
dim V', then by [SF88, Prop. 5.6.2] we have dimV = pdimL/LA -dim V*. Thus
again p|dim V, proving the theorem. O

COROLLARY 7.8. If p{ dimV then any non-semisimple subalgebra b of s((V)
acts reducibly on V. Hence it is contained in Lie(P) for P a maximal parabolic
of SL(V). In particular b is an R-subalgebra.

Putting together Corollaries and [Z.8], this completes the proof of Theorem
C.

As a first application, the following lemma uses Theorem C to show that p-
reductive implies strongly p-reductive. Recall that a restricted Lie algebra is
strongly p-reductive if it is the direct sum of a central torus and a semisimple

ideal.

LEMMA 7.9. Let h C gl, be a subalgebra and let p > n. If b is p-reductive, it
is strongly p-reductive.

Proof. Take p = [+ q a minimal parabolic subalgebra with h < p. Set b
to be the image of h under the projection 7 : p — [. Since p > n, we have
[ gl(Wy) x -+ x gl(Wy) & sl(Wy) x ...s[(Wy) X 3, where 3 is a torus. Let
s; be the projection of h; to sl(WW;), and let 3’ be the projection of by to 3. If
the projection of Rad(hy) to sl(W;) is non-trivial, then s; is not semisimple.
By Theorem C, W; is not irreducible for s;. Thus p is not minimal subject to
containing b, a contradiction, proving that all the s; are semisimple. Moreover,
3 = Z(bi), as the projection of 3 to each sl(W;) must vanish. This forces
by C 51 X -+ X 55 X Z(by) to be strongly p-reductive. As h is p-reductive, we
have that 7 is injective on b, and hence h = b; is strongly p-reductive. O

8 COMPLETE REDUCIBILITY AND LOW-DEGREE COHOMOLOGY FOR CLASSI-
CAL LIE ALGEBRAS: PROOF OF THEOREM D

Let G be a connected reductive algebraic group with root system R and let
G, <4 G be the rth Frobenius kernel for any r > 1. It is well-known that the
representation theory of G; and g are very closely related. In this section we re-
call results on the cohomology of small G,.-modules and use a number of results
of Bendel, Nakano and Pillen to prove that small G,-modules are completely
reducible with essentially one class of exceptions. We do this by examining
Extg (L(N), L(p)) for two simple modules L(A) and L(u) of bounded dimen-
sion or weight. While we are at it, we also get information about H2(G1, L()\)).
In a further subsection, we then go on to use this to prove the analogous
statements for g-modules. One crucial difference we notice is with central ex-
tensions: H2(g, k) tends to be zero, whereas H2(G1, k) is almost always not;
c.f. Corollary and Theorem [0

All the notation in this section is as in [Jan03| List of Notations, p. 569]: In
particular, for a fixed maximal torus T' < GG, we denote by R the corresponding
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root system, by BT a choice of positive roots with corresponding simple roots
S C R*, by X(T)4+ C X(T) the dominant weights inside the character lattice,
by L()\) the simple G-module of highest weight A\ € X (T4, by H°(\) the
module induced from A with socle L()\), by C7 (resp. C7) the dominant weights
inside the lowest alcove (respectively, in the closure of the lowest alcove). If
G is simply connected, we write w; € X(T')4 for the fundamental dominant
weight corresponding to o; € S = {a1,...,qq}.

Let us recall some results from [McN02] which show the interplay between the
conditions that, relative to p, (i) modules are of small dimension; (ii) their high
weights are small; and (iii) the Coxeter number is small.

PrOPOSITION 8.1 ([McNO02, Prop. 5.1]). Let G be simple and simply connected,
let L be a simple non-trivial restricted G-module with highest weight A € X (T) 4+
and suppose that dim L < p. Then

(i) We have X\ € Cy,.
(i) We have X € Cy if and only if dim L < p.
(iii) We have p > h. If moreover dim L < p then p > h.

(iv) If R is not of type A and dim L = p then p > h. If p=h and dimL =p
then R=A,_1 and A = w; withi € {1,p—1}.

8.1 COHOMOLOGY AND COMPLETE REDUCIBILITY FOR SMALL (G1-MODULES

We need values of H!(Gy, H°(u)) for p € Cz and i = 1 or 2. Thus H®(u) =
L(p).

PROPOSITION 8.2. Let G be simple and simply connected and suppose L = L(u)
with p € Cz, and p > 3. Then:

(i) we have HY(G1, L) = 0 unless G is of type A1, L = L(p — 2) and in that
case H' (G, )71 = L(1);

(ii) suppose p > h. Then we have H?(G1,L) = 0 unless: L = k and
H2(Gy, k)= = g*; or G = SL3, with H2(Gy, L(p — 3,0))71 = L(0,1) and
H2(Gy, L(0,p — 3))71 = L(1,0).

Proof. Part (i) is immediate from [BNP02, Corollary 5.4 B(i)]. The A; result
is well known. Part (ii) requires some argument. If H%(G1, H%(i)) # 0 then
since p > h we may assume pu € Cz. Now, the values of H*(Gy, H(u))=1 are
known from [BNPO7, Theorem 6.2]. It suffices to find those that are non-zero
for which u € Cz \ {0}. All of these have the form p = w.0 + pA for l(w) = 2
and A € X(T)4+. Now, if l(w) = 2, we have —w.0 = a + S for two distinct
roots a, 3 € RT (cf. [BNPO7, p. 166]). To have w.0 + pA in the lowest alcove,
one needs (w.0 + pA + p,ay) < p. Now (p\, o) > p so (w.0 + p, o)) < 0.
Thus m := (o + B,y ) > h — 1. Now one simply considers the various cases.
If G is simply-laced, then the biggest value of (a, ) is 2, when o = «p and
1 otherwise, thus m > h — 1 implies h < 3. Thus we get G = SL3, and this
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case is calculated in [Stel2] Prop. 2.5]. If G = G2 we have m at most 5, giving
h at most 5, a contradiction. If G is type B, C or F, then m is at most 4, so
G = Spy, p > 5 and this is calculated in [Ibr12] Prop. 4.1]. One checks that all
p such that H?(G1, L(u)) # 0 have u ¢ Cy. O

Remark 8.3. All the values of H2(G,., H°()\))[=! are known for all A by [BNPQ7]
Theorem 6.2] (p > 3) and [Wrill] (p = 2). For example, H?(Gy, k)71 = g*
also when G is of type A; and p = 2. Even for A = 0 there are quite a
few exceptional cases when p = 2: see [Wrilll C.1.4]. There are also two
exceptional cases for p = 3, for A2 and Ga, see [BNP07, Theorem 6.2].

One can go further in the case of 1-cohomology to include extensions between
simple modules:

LEMMA 8.4 ([BNPO02, Corollary 5.4 B(i)]). Let G be a simple, simply connected
algebraic group not of type A1. If p > 2 then ExtéT (L(N), L()) = 0 for all
PNTRS Cz.

We will use the above result to show that small G,-modules are completely
reducible, but we must first slightly soup it up before we use it.

LEMMA 8.5. Let G be a simple, simply connected algebraic group not of type
Ay and p > 2.

(i) We have Extg; (LN, L()®) =0 for all A\, u € Cy, and s,t > 0.

(it) For A, € X (T), let X = Xo+phi+ - +p ' Aesy and p = po + ppa +
<o+ "y be their p-adic expansions. Suppose we have \;, p; € Cz for
each i. Then Extg, (L(X), L(p)) = 0.

Proof. (i) Clearly we may assume s,t < r. When r = 1 the result follows from
Lemmal84l So assume r > 1. Without loss of generality (dualising if necessary)
we may assume s < t. Suppose s > 0 and consider the following subsequence
of the five-term exact sequence of the LHS spectral sequence applied to G5 <G,
(see [Jan03), 1.6.10]):

0 — Extg, _(L(A), L(w)!"™) = Extg, (L) L))
— Homg, _,(L(\), Extg,_(k, k)™ @ L(p)!"=*) — 0.

Since Extés (k, k) =0, we have
Extg;,_ (L(A), L(1)!"~*)) 2 Extg (L(V)P), L(1)"),

and the left-hand side vanishes by induction, so we may assume s = 0. There
is another exact sequence

0 — Extg_, (k, Home, (L(\), L(p)!™) ™) — Extg (L(V), L()™)
— Homg, _, (k, Extg, (L(A), L)) =) = o,
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where the last term vanishes by induction. If ¢ = 0 then as A # p, the first
term of the sequence vanishes and we are done. So we may assume ¢t > 0. Now
we can rewrite the first term as Exty, _ (k, Homeg, (L(\), k)" @ L(p)t—1). If
this expression is non-trivial we have A = 0 and Ext¢; _ (k, L(1)~1) vanishes
by induction, which completes the proof.

(ii) Suppose i is the first time either A\;_; or u;—1 is non-zero. Without loss of
generality, \;_1; # 0. Write A = A\? + p’)\ and take a similar expression for p.
Then there is an exact sequence

0 — Extl, (L(N), Homg, (L(N), L(u)=" @ L()) = Extly (L(N), L(n))
— Home, ,(L(N), Exts, (L), L(u) =) @ ().

We have L(\") = L(X\i—1)"" and L(p*) = L(pi—1)~ Y. Hence the right-hand
term vanishes by part (i). The left-hand term is non-zero only if \* = pu’
and then we get Exty,  (L(N),L(1')) = Extg, (L(A), L(u)). Thus the result
follows by induction on 7. O

We put these results together to arrive at an analogue of Jantzen’s well-known
result [Jan97] that G-modules for which dim V' < p are completely reducible.

PROPOSITION 8.6. Let G be a simple, simply connected algebraic group and let
dimV < p be a G.-module. Then exactly one of the following holds:

(1) V is a semisimple G,.-module;

(i) G is of type A1, p > 2, r = 1, dimV = p and V is uniserial, with
composition factors L(p — 2 — s) and L(s) with 0 < s <p—2;

(iii) G is of type C,, withm > 1, p = 2 and V is uniserial with two trivial
composition factors.

Proof. Assume V has only trivial composition factors. We have Extér (k,k) #0
if and only if p = 2 and G is of type C,,, in which case Extér(k, k)=l > L(w);
[Jan03l, 11.12.2]. This is case (iii).

Otherwise, p > 2 and Extg, (L(A),L(X)) = 0 for all A € X,(T) by [Jan03]
11.12.9].

Assume G is not of type A;. By assumption, V' has a non-trivial composition
factor with dimV < p. Then p > 2 and the hypotheses of Lemma [84] hold.
Since dim V' < p, by Proposition Bl any G,-composition factor L(A) of V has
a p-adic expansion A = A\g + --- + p" '\, with each \; € Cy. If there were
a non-split extension 0 — L(\) — V — V/L(A) — 0 then there would be a
non-split extension of L(A) by L(u) for L(x) a composition factor of V, also of
the same form. But by Lemma BH(ii) we have Extg, (L()), L(u)) = 0, hence
this is impossible and L(\) splits off as a direct summand. Induction on the
direct complement completes the proof in this case.

If G is of type A; then the G,-extensions of simple modules are well known. If
r > 1 with A\, g € X,(T) then dimExt (L(\), L(u)) = dimExtg (L(A), L())
and this must vanish whenever dim L(\)+dim L(u) < p. If r = 1, then the only
pairs of G1-linked weights are s and p — 2 — s with Ex‘cé1 (L(s),L(p—2—3s)) =
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L(1)1 as G-modules. Here we have dim L(s) + dim L(p — s — 2) = p giving
case (ii). O

The following two corollaries are immediate, in the first case, the passage from
G being simple to being reductive is trivial (consider the cover of G by the
product of the radical and the simply connected cover of the derived group).

COROLLARY 8.7. Let G be a connected reductive algebraic group and let V' be
a Gr-module with p > dim V. Then V is semisimple.

COROLLARY 8.8. Let G be connected reductive and G, < GL(V') with dimV <
p. Then either G, is completely reducible on V or dim'V = p, G is of type A1,
r =1 and G, is in a mazimal parabolic of GL(V') acting indecomposably on V
as described in case (i) of Proposition [8.4.

Moreover, if g is a p-reductive subalgebra of GL(V') with dimV < p then g acts
semisimply on V.

Proof. If GG is not simple, it can be written as HK with H and K non-trivial
mutually centralising connected reductive subgroups with maximal tori S and
T say. The Frobenius kernels H1, K1 < Gy < G, are also mutually centralising,
so that H; is in the centraliser of T7. Now the centraliser of T; is a proper
Levi subgroup of GL(V'), hence restriction of V' to H, has at least one trivial
direct factor, with direct complement W say, dim W < p. Thus by Corollary
BT W is completely reducible for H, and by symmetry, for K,.. Thus W is
completely reducible for K,.H, = G,..

Otherwise, G is simple and Proposition .0l gives the result (note that case (iii)
does not occur due to dimension restrictions).

For the last part, Lemma [[.9 implies that g is the direct sum of a semisimple
ideal and a torus, and we may hence assume that g is a semisimple restricted
subalgebra of gl(V'). If g is not irreducible on V, then by Theorem 23] there
exists a semisimple group G with g = Lie(G). Now the result follows from the
case (1 above. O

8.2 COHOMOLOGY AND COMPLETE REDUCIBILITY FOR SMALL g-MODULES

We now transfer our results to the ordinary Lie algebra cohomology for g.
Recall the exact sequence [Jan03| 1.9.19(1)]:

0 — H'(G1,L) — H'(g, L) — Hom"(g, L?)
— H?*(G1, L) — H*(g, L) — Hom®(g,H' (g, L)) (1)
The following theorem is the major result of this section.
THEOREM 8.9. Let g = Lie(G) be semisimple. Then:

(a) If p > h with p € Cz then either H?(g, L(1)) = 0, or one of the following
holds: (i) g contains a factor slz and L(u) contains a tensor factor of
L(p—3,0) or L(0,p—3) for this sl3; (i) g contains a factor slo and L(p)
has a tensor factor L(p — 2) for this sls.
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(b) If p > 2 is very good for G then H?(g, k) = 0.

(¢) If p> 2 is very good for G and X\, pu € Cz we have Exté(L()\),L(,u)) =0,
or G contains a factor of type A1, L(N\) and L(u) are simple mod-
ules for that factor, A = s < p—1, u = p— 2 — s and we have
Bxt (L), L)Y = 1(1).

Proof. We may assume that G is simply connected, since the condition on p
implies that g = g1 X g2--- X gs. Now one can reduce to the case that G is
simple using a Kiinneth formula. To begin with, any simple module L()\) for
g = g1 X g2 X - Xgs is a tensor product of simple modules L(A\) ® -+ ®
L(\s) for the factors. Then by the Kiinneth formula dim Exté (L(A),L(p)) £ 0
implies that A; = p; for all ¢ # j, some 1 < j < s and Exté(L()\),L(,u)) =
Extéj (L(Xj), L(i;)). This means we may assume G to be simple in (c). For
H?(g, L(\)) to be non-zero one must have all \; = 0 for all i # j,k some
1 <j <k < sand then

H?(g, L(\)) = H?(g;, L(X;)) ® HO (g, L(A)) @ H' (g5, L(X;)) @ H' (g, L(Ax))
& H(g;, L(A;)) @ H(gr, L(Ar)).

Now first suppose that both A; and A, are non-trivial. Then only the second
direct summand in H?(g, L()\)) survives, and by () it coincides with the tensor
product of the 1-cohomology groups of the corresponding Frobenius kernels. By
Proposition B2] non-vanishing would force \; = p —2 = A, and g; = gi = sl
giving one exceptional case.

Next we treat the case Ay, = 0 and \; non-trivial. Again by (IJ) and Proposition
B2 we obtain H?(g, L(\)) = H?(g;, L()\;)), and we are in the case where G is
simple and L(A) non-trivial. In case g = sla, the result follows from [Dzh92].
So suppose g # sly. Setting L = L(u) in () we see that if u # 0 we have
H'(g, L) = H'(G1, L) and the right-hand side is zero by Lemma B4l Thus we
also have H?(g, L) = H?(G1, L) and the latter is zero by Proposition B2l unless
g = sl3 and the exception is as in the statement of the Theorem, since we have
excluded the A; case.

Finally, the case A\; = A = 0 reduces by the above to the case G simple, L = &
and the claim that H2(g, k) = 0. Here we have H!(g, k) = (g/[g,0])* and this is
zero since p is very good and g is semisimple. We also have H?(G1, k)[fll = g*.
The injective map Hom®(g, L?) — H2(G1, L) is hence an isomorphism, which
forces H?(g, k) = 0 in the sequence (). This also proves (b).

Now we prove the statement (c) under the assumption that G is simple. We
have an isomorphism Exté(L()\), L(p)) 2 HY(g, L(p)®L(\)*). Let M = L(p)®
L(\)*. If X # p, then applying the exact sequence () to M yields H!(g, M) =
H(G1, M) and the latter is zero by Lemma B4 if G is not of type A; and
well-known if G is of type A;. Hence we may assume A\ = pu. The assignation
of L to the sequence () is functorial, thus, associated to the G-map k — M =
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Homy (L, L), there is a commutative diagram

0 — H(g,k) =0 —— Hom®(g, k%) = (g")) —=— H2(Gy,k)

| | o

0 —— H'Y(g,M) —— Hom®(g, M?) = (g)l —— H2(Gy, M)
where the natural isomorphism k9 — M9 induces the middle isomorphism and
the top right isomorphism has been discussed already. We want to show that ¢
is injective, since then it would follow that H!(g, M) = 0. To do this it suffices
to show that @ is an injection (g*)! — H?(G1, M) and for this, it suffices
to show that the simple G-module (g*)["] does not appear as a submodule of
HY(G1, M/k). Now since A € Cz we have L(\) = H°(\) and so by [Jan03]
11.4.21], M has a good filtration. The socle of any module H° () with € X+
is simple. Thus the submodule k¥ < M constitutes a section of this good
filtration, with M/k also having a good filtration.
The G-modules H!(G1, H%(1)) have been well-studied by Jantzen [Jan91] and
others. In order to have (g*)!! a composition factor of H'(Gy, H’(u)), we
would need g = g* = H’(w,) where i = pw, — @ and « is a simple root
with w the corresponding fundamental dominant weight; [BNP04, Theorem
3.1(A,B)]. Now for type A,, with p fn + 1, we have g = L(2w;) if n = 1 and
g = L(w1 + wy) else; and for type Ba, we have g = L(2ws), ruling these cases
out. For the remaining types, we have

Type Bn,Cw D, Es Er Eg Fy G
g2 L(wy) for we = | wa wy Wy w1 wg w1 wa
(pwe — @, ag ) 2p 2p 2p—1 2p—1 2p—1 2p 3p

On the other hand, since A € Cy it satisfies (A + p, o) < p, i.e. (N, ) <
p—h+1. Hence any high weight u of M = L® L* satisfies (u, o) < 2p—2h+2.
Looking at the above table, it is easily seen that this is a contradiction. Thus
(g*)" is not a composition factor of H'(Gy, M/k) and the result follows. [

Remarks 8.10. (i) When A # p in the proof of the above proposition, one also
sees that there is an isomorphism ExtQGI(L()\), Lp)) = Extﬁ(L(A), L(u)) but
we do not use this fact in the sequel.

(ii) The conclusion of the theorem is incorrect if G is reductive but not semisim-
ple. For example, if G is a torus, then g is an abelian Lie algebra, and H! (g, k)
is non-trivial. For instance the two-dimensional non-abelian Lie algebra is a
non-direct extension of k by k. One also has H*(k x k, k) # 0 by the Kiinneth
formula: for example the Heisenberg Lie algebra is a non-split extension of k
by k x k.

(iii) When p = 3 and G = SLs, then H?(Gy, k)" = g* @ L(w) & L(w,),
by [BNPO7, Theorem 6.2]. Thus the same argument shows that H?(g, k) =
L(wy) ® L(wz). It follows from the Kiinneth formula that if G is a direct
product of n copies of SL3 then H?(g, k) = [L(w1) @ L(w2)]®™.
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(iv) In part (a) of the theorem, one can be more specific. If g = sly then

[Dzh92] shows that H?(g, L(p — 2)) is isomorphic to L(1)[ as a G-module. If

g = sly x -+ X sly xb then one can show moreover that H?(g, L(x)) is non-zero
—_———

n times

only if
L(p) = L(p1) @ -+ @ L(pn) @ L(ptnt1)

with each p; € {0,p—2} and pi,+1 = 0. Let r be the number of times pu; = p—2.
Then, the Kiinneth formula shows that

0if r =0;
2ifr=1;
dim H?(g, L = ’
G DTS

0 otherwise.

We use the theorem above to get analogues of Corollary BF for Lie algebra
representations.

PROPOSITION 8.11. Let G be a simple algebraic group with g = [g,g] and let
dimV < p be a g-module. Then exactly one of the following holds:

(i) V is a semisimple g-module;

(i1) G is of type A1, dimV = p and V is uniserial, with composition factors
L(p—2—3s) and L(s).

Proof. The proof is similar to Proposition Since dim V' < p, any com-
position factor of V' is a restricted simple g-module, or V is simple. Since
Exté(k,k:) = Hl(g,k) = (g/[g,9])* = 0, if V consists only of trivial compo-
sition factors then V is semisimple. Thus we may assume that g contains a
non-trivial composition factor L. Then either dim L = p and V is simple, or
p > h by Lemma [Riii). By the condition on V', any two distinct composition
factors, L(A) and L(u) satisfy A, u € Cz by Lemma RIii). If G is not of type
Ay, then Exté(L()\), L(p)) = 0 by Theorem[89and the exceptional case, where
G = Ay, is well known. O

As before there is a corollary:

COROLLARY 8.12. Let G be a semisimple algebraic group and let V be a g-
module with p > dim V. Assume that g = [g,g]. Then V is semisimple.

The next corollary uses a famous result of Serre on the semisimplicity of tensor
products to extend our results a little further. This result will be crucial for
showing the splitting of certain non-semisimple Lie algebras.

COROLLARY 8.13. Let g be a Lie algebra and V, W two semisimple g-modules
with dimV +dimW < p+ 2. Then V& W is semisimple.

Furthermore, let g = Lie(G) for G a semisimple algebraic group with p > 2 and
p very good. Then H%(g,V @ W) = 0 unless g contains a factor sly and V@ W
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contains a composition factor of the sla-module L(p—2). Also H!(g, VW) =0,
unless one of V- and W is isomorphic to k and we are in one of the exceptional

case of Theorem [8.9.

Proof. For the first statement, we begin with some reductions as in [Ser94]. If
W = 0 or k there is nothing to prove. If W is at least 2-dimensional, then
either p = 2 and V is trivial (so that the result holds), or both dimV and
dim W < p. We may assume that both V and W are simple. Further, we may
replace g by the restricted algebra generated by its image in gl(V & W). As
V & W is a semisimple module, we may thus assume g is p-reductive. Now
g C gl(V) x gl(W) = sl(V) x sl(W) X 3, where 3 is a torus, and where the
projections of g onto the first two factors are irreducible, hence semisimple by
Theorem B. We thus may assume g C s[(V') x sl(W) is a semisimple restricted
subalgebra.

By Theorem[23] either (i) g has a factor W1, the first Witt algebra and V' is the
(p — 1)-dimensional irreducible module for Wy; or (ii) g is Lie(G) for a direct
product of simple algebraic groups, and V and W are (the differentials of) p-
restricted modules for G. In case (i), as p > 2, we would have W = k@ k for W1
and the result holds. So we may assume that (ii) holds. Now [Ser94] Prop. 7]
implies that V ® W is the direct sum of simple modules with restricted high
weights A satisfying A € Cz. Since each of these composition factors is simple
also for g, V ® W is semisimple with those same composition factors.

For the remaining statements, let h be the image of g in gl(V @ W), so that
g = h & s with s acting trivially. Let h be the coxeter number of ). Now
if W = k, say, then since p is very good for g we can have p = dimV by
Proposition 8] only for p > h, so otherwise dimV < p. And if dimW > 1
then dimV < p also. Now dimV < p also implies by Proposition B1] that
p > h. Also a summand L(X) of V® W has A € Cz. Now Theorem B3] implies
that Hl(g,V @ W) = H%(g,V ® W) = 0, unless we are in the exceptional cases
described. However, if g = sl3 then the module L(p — 3,0) or its dual has
dimension (p — 1)(p — 2)(p — 3)/2 > ((p + 1)/2)? hence it cannot appear as a
composition factor of V@ W. O

Remark 8.14. If g = W; the conclusion of the second part is false, since
H'(g,V) # 0 when V is the irreducible (p — 1)-dimensional module for g.

Proof of Theorem D:. We must just give references for the statements made.
For (a), see Proposition 8.6 for (b), see Proposition [T} for (c), see Theorem
R9 for (d), see Corollary RI3l This completes the proof of Theorem D. O

9 DECOMPOSABILITY: THE EXISTENCE OF LEVI FACTORS

Let b be a restricted subalgebra of gl(V) with p > dimV. In this section
we show, in Theorem [3.2] a strong version of the Borel-Tits Theorem in this
context.
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Let G be connected reductive. Recall, say from [ABS90] that if p = [+ q is
a parabolic subalgebra of g = Lie G then q has a central filtration such that
successive quotients have the structure of -modules. We record a specific case:

LEMMA 9.1. In case G = GL,,, a parabolic subalgebra p = [+ q has the property
that lis a direct product gl(V1) x gl(V2) x- - -xgl(V;.) and q has a central filtration
with successive factors being modules of the form V; ® V", each factor occurring
exactly once.

THEOREM 9.2. Let b be a restricted Lie subalgebra of gl(V') with dimV < p,
and let v = Rad,(h) (= Rady (h)).

Then there is a parabolic subalgebra p = [+ q, with v < q and containing a
complement s to v in b, with s < [ and h = s + v as a semidirect product.
Furthermore, s acts completely reducibly on V and is the direct sum of a torus
and a semisimple ideal.

Proof. As in the proof of Lemma we take a minimal parabolic subgroup
P = L@ so that its Lie algebra p = [+ q contains h and so that the projection
by := m(h) of b to the Levi subalgebra [ is strongly p-reductive and we may
write b = bs @ 3 where b is semisimple and 3 = Z(h;). We also have ¢t < g,
since by is p-reductive.

Now by Theorem [23] either hs = W1, h = b, p = [ = gl(V) and we are done;
or by is isomorphic to a direct product of classical Lie algebras s; and j3.

We first lift 3 to . Let @’ : h — 3 be the composition of 7 with the projection
onto 3. By [SF88, Lemma 2.4.4(2)], there is a torus 3 < Z(I) 4+ q so that
h =3’ +ker(n’). Now since 3’ is a torus, it is linearly reductive, we may replace
b by a conjugate by @ so that 3’ C Z([). Let us rewrite 3 = 3’ and identify 3
with its image in [ under 7.

Next we construct a complement to tin . Let 7" : h — b, be the composition
of m with the projection onto b, and let ' C h be a vector space complement
to ker(n”). Then v+ b’ < b is a subalgebra, and we have an exact sequence

0—=t—t+h 5 bhs—0.

We show this sequence is split. By Lemma [@.] the nilpotent radical q of [
has a filtration ¢ = g1 2 g2 2 -+ 2 ¢ = 0 with each g;/q;+1 having the
structure of an -module M; ® N; with M; and N; irreducible modules for the
projections of h; to distinct factors of the Levi. Since dim M; + dim N; < p,
we have by Corollary B13] that M; ® N; is a direct sum of irreducible modules
for by with H2(hs, M; @ N;) = 0. By intersecting with t, we get a filtration
t=11 Dt D - Dty = 0 by hs-modules so that each t;/v;41 is a submodule
of M; ® N;, hence also a semisimple module with H2(hs,t;/t;11) = 0. By an
obvious induction on the length m of the filtration {r;} we now see that the
sequence
0—stv—t+h —-bh,—0

is split. Thus we may set b’ a complement to t in h’ + t.
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We would like to set s = b’ + 3, however this vector space may not be a
subalgebra of g. Write ¢ = ¢4(3) + [q,3]. (This can be done, for instance
by [SE88, Lemma 2.4.4(1)].) Any element h of b, can be written as hy + ¢1 + g2
for hy €1, q1 in ¢q(3) and g2 € [q,3]. As b is stable under ad 3, with 3 centralising
h1 and g1, we conclude that g2 € h. Thus we have the element b’ = h1+q; € b.
Thus we may form the subspace h? < b with b7 < [+ ¢4(3).

Using that b} < b is a subalgebra, that ¢q(3) is [ = cq((v)(3)-invariant and that
[q,3] is an ideal in g, one checks that b is indeed a subalgebrafl with §” also
a complement to v in h, + v. Now we have guaranteed that s = h? + 3 is a
subalgebra of h, a complement to t in b.

Now, by Corollary BI2] b/ acts completely reducibly. Also, since 3 is a torus,
3 is linearly reductive on restricted representations, hence also acts completely
reducibly. Thus s is completely reducible on V. In particular, we may replace
[ with a Levi subalgebra of p that contains s, which finishes the proof. O

10 PROOF OF THEOREM B(I)

Proof. We first prove the statement in the case that G = GL(V'), so we assume
p>dimV + 1. By assumption, b is a restricted subalgebra of g.

Let n = ng4(h). By Theorem we may decompose both n and . Let n =
n+ny < p=I+4qwith ny <land ng < q, with ny = n, +3, 3 a torus and ny is
by Theorem 2.3l isomorphic to a direct product of classical Lie algebras acting
completely reducibly on V; also set hq = hNq and h; = w(h) the projection to
[. Since n is generated by nilpotent elements we have 3 = 0 and h; = h,. Since
the complement to b4 in h obtained by Theorem [@.2]is completely reducible on
V' and hence conjugate to a subalgebra of [, we may assume that h = bhq + b
is this splitting. Furthermore, h; < ny is an ideal of a direct product of simple
subalgebras, hence is a direct product of some subset of those simples.

Since V' has dimension less than p, V,, is a restricted module for n;. Hence
there is a connected algebraic group N; with Lie Ny 2 n;, Ny < GL(V) and
Vvie(nyy) = Vla,. Hence, replacing Ni by a conjugate if necessary, we have
Lie(N{) = n;. Moreover if L is a Levi subgroup of GL(V) chosen so that
Lie(L) = [ then we may produce Ny < L. Clearly Ny normalises any direct
factor of n, in particular, b;.

Now, since the [-composition factors of q are all of the form W; ® Wy for
dim W1 4+ dim Wy < p and W1, Wy irreducible for ng, [Ser94 Prop. 7] implies
that g is a restricted semisimple module for Ny and n;. Since n; normalises
hq = bNq, this space also appears as an N-submodule in g, hence Ny normalises

bg-

4The calculation is as follows: if h1 + q1 + g2 and h} + ¢} + ¢} are two elements of b/, then

[h1+ g1 + g2, k] + 41 + gb) = [h1, ko] + [h1,¢1] + [q1, A1) + a1, 1] +=,
——

€by €cq(3)

where x € [q, 3] by the Jacobi identity. But projecting to b’/ one simply deletes g2, ¢} and x
to get the analagous calculation.
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It remains to construct a unipotent algebraic group /Ny such that Lie Ny = nq
with Ny normalising bj. For this we use Corollary[d4l Let Ny = (expz : « € ng).
Then Ny is a closed subgroup, which by Corollary [£4] consists of elements
normalising . By Lemma [.5] ny < Lie(Ny).

Let N be the smooth algebraic group given by N = (N, Nq). We have shown
that IV normalises h and that n C Lie V. Since also Lie N C n we are done for
the case G = GL(V).

To prove the remaining part, we appeal to Proposition E again.

Let G be a simple algebraic group with minimal dimensional representation V.
Then since p > dim V, (GL(V), G) is a reductive pair. Indeed, the assumption
on p guarantees that the trace form associated to V' is non-zero, see [Gar09] Fact
4.4]. This implies the reductive pair property (cf. the proof of [Gar09, Prop.
8.1]). The theorem now follows by invoking Proposition E. O

11 EXAMPLES

In this section we mainly collect, in a number of statements, examples which
demonstrate the tightness of some of our bounds. First let us just point out
that there are some rather general situations in which smooth normalisers can
be found.

ExaMPLE 11.1 ([MT09, Theorem B]). Suppose G is a quasi-split reductive
group over a field k of very good characteristic. Then the normaliser N =
N¢g(C) of the centraliser C' = Cg(e) of a regular nilpotent element e of g =
Lie(G) is smooth.

ExaMPLE 11.2 ([HS16L Proof of Lem. 3.1]). Suppose G is reductive over an
algebraically closed field k& of very good characteristic and e is a nilpotent
element of g = Lie(G), then the normaliser Ng({e)) of the 1-space (e) of g is
smooth.

We will first give the promised example discussed after the statement of The-
orem A. For this, we will need a lemma.

LEMMA 11.3. Let B = TU be a Borel subgroup of a reductive algebraic group
G containing a mazimal torus T with unipotent radical U. Suppose Np(h) is
smooth and s € t = Lie(T) an element normalising a subspace h of u = Lie(U).
Then (s) = Lie(x(Gy,)) for a cocharacter x : G, — Np(h), such that x(Gn,)
is conjugate by an element of Cy(s) to a cocharacter with image in T.

Proof. Since Np(h) is smooth, we may, by [Hum67, Thm. 13.3], write any
maximal torus s of ny (h) as Lie(S) for S a maximal torus of Ng(h). By [Die52]
Prop. 2], for any semisimple element s € s we may write (s) = Lie(S;) for
S1 € S. Defining an appropriate isomorphism G,, — 51, we may even write
s= %|t:1x(t) for x a cocharacter of N ().

As the maximal tori of B are conjugate by elements of U, we have that S
is conjugate to its projection to T, say via u € U; in particular, ux(t)u=! €
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T. Since projection to T' is B-equivariant, we have on differentiating, that
&, (ux(t)u™) = s, so that usu™! = s, i.e. that u € Cy(s). O

EXAMPLE 11.4. Let n > 4. This example depends on three fixed parameters
A1, A2, A3 together with variables {a;}1<i<n, {bit1<i<n—1, ¢, d, and e, each
taking values in k = IF’p.

Let us define the following matrices:

0 a1 ay * *  x
0 ap B2 * x

0 ax B3 =
0 a3 pBs
e 0 a4 - * * * ,
0 . Bu—2 ¢ e+ A fBn2
an-2 Bn-1 1+ M)an—2+d

0 Ap—1 bnfl

0 an

0

with 8; = a;41 + b1 fori=2,... ,n—1,

0 aq b1 * . *
0 ag bQ
B = 0 a3 A . * )
0 . bnfl
Qn
0
0 an-3 an—1+bp_3 c e+ Aa(an—1 + bn—3)
0 an—2 an + bn72 (1 + )\2)0%72 + d
C = 0 Ap—1 bnfl 9
0 an
0
0 Gp—2 Qp + bn72 d + )\3(1»,1,2
L 0 an—1 bnfl
D= 0 G
0
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Then the reader may check that for each choice of A1, A2 and A3, the following
set defines a subalgebra h of the strictly upper triangular matrices:

A * * *
8 ? é : :aiEk/’,bjek’c,d,eek
0 0 0 D

Let F; denote the ith Fibonacci number, so that Fy = F; = 1 and F5 = 2 and
suppose that r is chosen so that Fj.;; = p is the prime characteristic of k, and
let us suppose that Ng(h) is smooth. Since every entry of the superdiagonal
is non-zero for some element in h, it is easy to check that Ng(h) C B. Thus
N¢g(h) = Np(h) and we may employ Lemma [TT.31

Suppose s = diag(s1, ..., San+12) is an arbitrary element of the diagonal torus
t = Lie(T'). Then one can calculate the dimension of n(()) by enumerating the
linear conditions amongst the ¢; necessary to normalise . For example, setting
all indeterminates in a general matrix of h to be zero, except for a; = 1 gives a
matrix M, which spans a 1-space (M) of h. One can see by inspection that s
will normalise b only if it normalises (M). However, calculating [s, M], we see
that to normalise (M) implies the following condition must hold:

81 — 82 = 82 — 83 = S2n44 — S2n45-

Repeating over other 1-spaces leads to a collection of relations which can be
expressed by a system of linear equations Rs = 0 for some matrix R and
the vector s = (s1,...,San4+12). The kernel of R modulo p then determines
the dimension of n¢(h). To determine the dimension of Nr(h), one searches for
cocharacters x(t) = diag(t*,t*2 ... t*2n+12) which normalise h by conjugation.
This leads to an identical set of relations on the entries of the vector k =
(k1,...,kant12), so that the equation Rk = 0 must be solved over the integers.
Then the dimension of Np(h) is the nullity of R.

The nullities of R over Z and over Z/p are identical if and only if s can be lifted
to a diagonal cocharacter x(t) so that d/dt|;—1x(t) = s. By explicit calculation
of R in our particular case, one sees its elementary divisors are 04, 12"%7, [, .
Thus since p = F,41 the nullity of R modulo p is bigger than over Z. Thus
there is a toral element s, which cannot be lifted to a diagonal cocharacter. In
our case, h has an obvious centraliser whose elements are:

diag(s1,...,51,82,--+,82,83,-.,83,84,...,54)
—_— —— ——
r+2 r+1 5 4

which accounts also for the four-dimensional kernel over the integers.
One also checks that the subalgebra h is normalised by the toral element

s :=diag(1,2,3,5,8,..., F, Fry1, Fri2)
odiag(Fy +4=6,Fs+4="17,...,F, +4,F 41 +4,Fr o +4=F, +4)
@odiag(Fro+ 1, F 1+ 1,F 4+ 1, Fi1+1,Fy0+1)
© diag(Fr—1 + 2, Fr + 2, Frp1 + 2, Fryo + 2),
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where for the direct sum A @ B of two square matrices A and B we mean the
block diagonal matrix having A and B on the diagonal. Note the congruence
amongst the entries in ¢, F, = F,;2 mod p. Thus on each line, the last
and pen-penultimate entries are the same modulo p. Furthermore, since this
element does not centralise b, it can have no lift to a diagonal cocharacter.
By assumption, Ng(h) = Np(h) is smooth. Thus (s) lifts to the image of
a cocharacter x’ which, by Lemma [[T.3]is conjugate by Cy(s) to a diagonal
cocharacer y. Since by inspection, only five entries of s are the same, s is a
regular toral element of ng(h) and one checks

Cu(s) = (1 +tepripo, 1 +teapqi oris, 1+ tearioor48, 1 +tearri0,2r412 : L € k).

The action of the second listed element in turn normalises h and the first, third
and fourth simply change the values of A1, Ao, A3. Thus if g € Cyy(s) then one
computes a new relation matrix R’ computing the normaliser ny(§?) which, by
virtue of being independent of the values of \;, is identical to R. In particular,
(s) still normalises b but there is still no lift to a diagonal cocharacter. This
contradicts the conclusion of Lemma [[T.3] hence N¢(h) is not smooth.

The next example will show the necessity of the bound in Theorem We
first collect some miscellaneous auxiliary results in the following lemma. Recall
that a subgroup H of a connected reductive group G is called G-irreducible if
it is in no proper parabolic subgroup of G.

LEMMA 11.5. Suppose G is a connected reductive algebraic group and H is a
(possibly disconnected) closed reductive subgroup of G.

(i) We have Ng(H)2y = H°Cq(H)2 .

(i) If H is G-irreducible, then Cq(H)?, 4 = Rad(G), where Rad(G) = Z(G)5uy-
(111) Suppose H < M < G is an intermediate reductive subgroup with Rad(G) <
Rad(M) and that H is G-irreducible. Write Z(M)° = Rad(M) x upr for an
infinitesimal subgroup scheme ppr. Then either uy < Z(H) or Ng(H) is
non-smooth.

Proof. (i) and (ii) follow from [Mar03, Lemmas 6.2 and 6.8].

For (iii), clearly uy < Z(M) < Ng(H). If Ng(H) is smooth, then by parts
(i) and (ii) we have py < Z(M)° < H°Cq(H)sq = H° Rad(G). This forces
123, S H°. O

ExAMPLES 11.6. Lemma [IT5lcan be used to produce reductive subgroups H of
G with non-smooth normalisers in bad characteristic. We use [Her13, Example
4.1], in which the first author constructs examples of non-smooth centralisers
for each reductive group over a field of characteristic p for which p is not a
very good prime for G. All the subgroups constructed in loc. cit. are maximal
rank reductive subgroups M such that Cq (M) = Z(M) is non-smooth, hence
pn # 1 in Lemma [IT.5(iii) above. In many cases, we may take a further
connected, reductive G-irreducible subgroup H of M such that p is pretty
good for H. Thus its centre is in fact smooth, and being finite, cannot contain
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pnr- Thus by Lemma [IT5(iii) the normaliser Ng(H) is non-smooth. Let us
list some triples (G, p, M, H) which work for this process. By V,, we denote a
natural module of dimension n for the classical group M; by M; we mean a
subgroup of type M; corresponding to short roots.

G P M H

GQ 3 A2 Al‘—>M ‘/3|H— (2)

Fy 2 A Ay = M; x— (z,2% 2%, 216)
F4 3 A2A2 (Al,Al)‘—>M (‘/3,‘/3 |H—( (2 (
Eg 5 A At = M; (Vs Vs)lm = (L(4), L(4))
SL, p>2 SL, Alc—>M Vpla = L(p —1).

Remark 11.7. A complete list of conjugacy classes of simple G-irreducible sub-
groups of exceptional groups has been compiled by A. Thomas, see [Thol5]
for the cases of rank at least 2 and [Thol6|] for the rank 1 case. For the Gs
example one may consult [Stel(, Theorem 1, Corollary 3].

The next example shows the promised tightness of Theorem B(i) as stated in

Remark [[2)(a).

LEMMA 11.8. Let G = GL(V) with dimV > p — 1 > 3 and take any subspace
W <V with dimW = p — 1. Then if W1 < gl(W) is the first Witt algebra in

its p — 1-dimensional representation we have Ng(Wh) is not smooth.

Proof. Since Wy is irreducible on W, the normaliser ng vy (W1) = ngiowy (W1)®
3®9l(U) for V.= WU and 3 the centre of gl(W). Moreover as W is irreducible
on W, so is n = ngw) (W1). By Theorem C, n is semisimple, hence, as W7 is
simple, it must be a direct factor of n, say n = W7 @ . But now the action of
ad h on W is a Wi-module homomorphism, hence is a scalar by Schur’s lemma.
Thus b < 3(s{(W)) = 0. It follows that n = W;.

Now N¢(W7) sends W to another Wi-invariant subspace of the same dimen-
sion, hence Ng(W;) < GL(W) x GL(U). Since Wi is self-normalising, if
Ng(W1) were smooth we would have Lie Ng(W1) = ng(Wh) = Wy @ gl(U).
This shows that W3 is algebraic, a contradiction. O

We now justify the remark after Theorem B that the bound in Theorem B(i)
is tight for G = Sp,,,.

LEMMA 11.9. The p-dimensional Witt algebra W1 is a mazimal subalgebra of
sp,_1. Furthermore, its normaliser in any Sp,,_,-Levi of Spy,, with 2n > p—1
s mon-smooth.

Proof. Since W7 stabilises the element
XAXP 42 x2axr2p Lysxrs g S = _Xx P12\ x )/ e/\ 1%
2 3 —1

we find that Wj is contained in sp,_;, acting irreducibly on the p — 1-
dimensional module. Exponentiating a set of nilpotent generators of the
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Witt algebra as in the proof of Theorem B(ii) gives an irreducible subgroup
W < Sp,_;. We claim that we must have equality. From this claim it fol-
lows that W7 is in no proper classical algebraic subalgebra of sp,,_;, hence, by
Theorem 23] is maximal.

To prove the claim, suppose W is a proper subgroup of G = Sp,_;. Since
W is irreducible on the p — 1-dimensional module, W is it no parabolic of G.
Thus it is in a connected reductive maximal subgroup M. We must have that
M is simple, or else W7 would be in a parabolic of G. Now since the lowest
dimensional non-trivial representation of Wi is p — 1, it follows that M can
have no lower-dimensional non-trivial representation. Since p > 2, Sp,,_; has
no simple maximal rank subgroup. All classical groups of rank lower than p—;l
have natural modules of smaller dimension than p — 1, so M is of exceptional
type. The lowest dimensional representations of the exceptional types are 6
(p=2),7,25 (p=23), 26, 27, 56 and 248. The only time one of these is p — 1
is when p = 57 and M = E;. But if p = 57 then p > 2h — 2 for E7, then by
Theorem B(ii) all maximal semisimple subalgebras are algebraic and so W is
not a subalgebra of F;. This proves the claim, hence gives the first part of the
lemma.

For the second, with 2n > p — 1, we have W; < 5p,_1 D SPay_pi1 with Wi
sitting in the first factor. Then its normaliser is evidently Wi & spy,_,11,
however this is not algebraic for p > 3, hence the normaliser Ng(W;) cannot
be smooth. Thus we have shown that normalisers of all subalgebras of sp,,, are
smooth only if p > h + 1. O

If n > p there is a more straightforward example of a (non-restricted) subalge-
bra of gl,, whose normaliser in GL,, is not smooth.

ExAMPLE 11.10. Let g = gl,,, take J, a Jordan block of size p and take the
abelian one-dimensional Lie algebra h = k(I, + J,) where I, is an identity
block of size p. Then one can show with elementary matrix calculations that
the normaliser of N¢(h) is non-smooth.

The next example shows that even the normalisers of smooth groups are not
smooth, even in GL(V'), and even when p is arbitrarily large.

LEMMA 11.11. Let G = GL(V) with dimV > 3 and let W be a 3-dimensional
subspace. Let U < GL(W) be defined as the smooth subgroup whose k-points
are

10 ¢t
Uk)=<{|0 1 | :tek
00 1

Write V.= W aW’ for some complement W' to W and set H = U GGL(W') <
GL(V). Then Ng(H) is non-smooth.

Proof. From the reductivity of GL(W’) it follows that Ng(H) = Narw)(U) @
GL(W’) so it suffices to show that Ngp,wy(U) is non-smooth. This is a routine
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calculation. For example, if x is an element of a k-algebra A, with 2P = 0 then
one checks that the matrix

1 =
0 1 € Nevw)(U)(A).
0 0

= o O

Now, the normaliser of U of course normalises Lie(U). Since
0 0 1
LieU)=k| 0 0 0 |,
0 0 O

the normaliser of Lie(U) is the product of the centraliser of a certain (nilpo-
tent) element and the image of a cocharacter associated with that element. In
particular, the normaliser of Lie(U) is contained in the upper triangular Borel
subgroup.

Write V for the unipotent radical of that Borel subgroup, so V' is 3-dimensional;
a typical element has the form

1
0
0

S =
=0 o

In fact, the condition a? = 0 defines the scheme-theoretic normaliser in V'
of U, and the condition a = 0 defines the corresponding smooth subgoup of
V whose k-points form the group-theoretic normaliser of U(k) in V (k). The
lemma follows. O

Now we show that normalisers of height two or more subgroup schemes are not
smooth.

EXAMPLE 11.12. Let G be any connected reductive algebraic group over an
algebraically closed field k of characteristic p > 2 and set F' : G — G to be the
Frobenius endomorphism. Let B = T'U be a Borel subgroup of G with T" an
F-stable maximal torus, and let U the non-trivial unipotent radical. Let T, be
the kernel in T of F™ and U; the kernel in U of F. Finally set H = T, x Uj.
Then Ng(H) =T x Uy, hence is not smooth.

The next example shows that if p = dim V, then the normaliser of a smooth
connected solvable non-diagonalisable algebraic subgroup of GL(V') can even
be irreducible on V', thus a fortior: it is not smooth. This also gives an example
for when p = 2 and dimV = 2 that the normalisers in SL(V) and GL(V) of
subalgebras of the respective Lie algebras are not smooth.

EXAMPLE 11.13. By [Ten87, Lemma 3] the Lie algebra W; + O formed as the
semidirect product of W; and O;, where O; acts on itself by multiplication,
is a maximal subalgebra of sl, = sl(k[X]/XP). We imitate the embedding of
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O: in gl, by a solvable subgroup of GL,. Define the height ht(a) of a root a
to be the sum of the coefficients of the simple roots. Let U be the subgroup
(HQGR,;ht(a):i Ta)1<i<p—1- By construction U is connected and unipotent and
one can show that dimU = p— 1 and that Lie H = Oy, where H is the smooth
solvable subgroup Z(GL,)U. Now it can be shown that there is a subgroup
scheme W corresponding to Wi in GL, which normalises H and for which
W x H is irreducible. It immediately follows that Ng(H) cannot be smooth.

Finally we show that if p < 2n — 1 the normalisers in GL,, and SL,, of sub-
spaces of their Lie algebras are not all smooth, even when these normalisers
are generated by nilpotent elements, showing that the bound in Theorem B(ii)
cannot be improved for general subspaces.

LEMMA 11.14. If p < 2n — 1, normalisers of subspaces of gl,, (or sl,) are not
necessarily smooth.

Proof. Let p=2n — 3 and let h = sl = Lie H with H = SLy over a field k of
characteristic p. Then the action of H on the simple module L((p+1)/2) gives
an (irreducible) embedding H — GL,. Restricting the adjoint representation
of gl,, on itself to H gives a module

Li(p+1)/2)® L((p+1)/2)" = T(p+1)® M,

where M is a direct sum of irreducibles for H (and ) and T'(p+ 1) is a tilting
module, uniserial with successive composition factors L(p—3)|L(p+1)|L(p—3).
Now for the algebraic group H = SLy we have L(p + 1) = L(1) ® L(1)!Y by
Steinberg’s tensor product formula. Restricting to h, L(p + 1) is isomorphic to
L(1) @ L(1). Now it is easy to show the restriction map Extg(L(p + 1), L(p —
3)) — Exté(L(l), L(p-3)) @Exté(L(l), L(p—3)) is injective. Hence T'(p+1)|,
contains a submodule M isomorphic to L(1)/L(p — 3).

Now, the Lie theoretic normaliser of M contains h but the scheme-theoretic
stabiliser does not contain H. It follows that the normaliser of this subspace is
not smooth.

Indeed, as b acts irreducibly on the n-dimensional natural representation
for gl,,, it is in no parabolic of gl, (or sl,). However, the set of k-points
Ny (M)(k) = Nav,, (M)(k) N H is in a parabolic of H, hence in a parabolic of
GL,,. O
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A result of Milne ([9] Theorem 0.1) describes the special values of the zeta
function of a smooth projective variety X over a finite field satisfying the Tate
conjecture. A very natural reformulation of this result was given by Lichten-
baum and Geisser (see [2], [7], [8] and [I0]) using Weil-étale cohomology of
motivic complexes. They conjecture that

(1) limt%q*"Z(Xa t) . (1 - qnt)pn = iX(}I;V (Xa Z(?’L)), Ue) : qX(X/]Fq,OX’n)

and show that (I)) holds whenever the groups Hj,(X,Z(n)) are finitely gen-
erated. Here Hjy,(X,Z(n)) denotes Weil-étale motivic cohomology, e €
H*(Wr,,Z) is a fundamental class and x(Hy;, (X, Z(n)), e) is the Euler charac-
teristic of the complex

(2) S Hi (X, Z(n)) =S HEFY(X, Z(n)) =5 -

More precisely, the cohomology groups of the complex () are finite and
X(Hyyy (X, Z(n)), Ue) is the alternating product of their orders. Finally, Milne’s
correcting factor ¢X(X/F«:9:7) was defined in [9] by the formula

X(X/Fy, Ox,n) = Z (=1 - (n — i) - dimg, HY (X, Qe )-

i<n,j

The author was supported by ANR-12-BS01-0002 and ANR-12-JS01-0007.
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It is possible to generalize (Il) in order to give a conjectural description of
special values of zeta functions of all separated schemes of finite type over F,
(see [3] Conjecture 1.4), and even of all motivic complexes over F, (see [1I]
Conjecture 1.2). The statement of those more general conjectures is in any
case very similar to formula (). The present note is motivated by the hope for
a further generalization, which would apply to zeta functions of all algebraic
schemes over Spec(Z). As briefly explained below, the special-value conjecture
for (flat) schemes over Spec(Z) must take a rather different form than formula
[@. Going back to the special case of smooth projective varieties over finite
fields, this leads to a slightly different restatement of formula ().

Let X be a regular scheme proper over Spec(Z). The "fundamental line"

A(X)Z,n) := dety Ry o(X, Z(n)) ®7 detz RT 45 (X /Z) )/ F™

should be a well defined invertible Z-module endowed with a canonical trivial-
ization

R = A(X/Z,n) ®zR.
involving a fundamental class § € H(R,R) = ”H!(W,,R)” analogous

to e € H'(Wrp,,Z). Here Rl'w,(X,Z(n)) denotes Weil-étale cohomology

with compact support. However, there is no natural trivialization R =
detz RT'w,.(X,Z(n)) ®z R. Consequently, it is not possible to define an Euler
characteristic generalizing x(H;;, (X, Z(n)), Ue), neither to define a correcting
factor generalizing Milne’s correcting factor: one is forced to consider the fun-
damental line as a whole. Let us go back to the case of smooth projective
varieties X/F,, which we now see as schemes over Z. Accordingly, we replace
Z(X,t) with ((X,s) = Z(X,q*®), the fundamental class e with 6 and the
cotangent sheaf Qﬁg /B, = Lx,r, with the cotangent complex Lx/z. Assuming

that H{},(X,Z(n)) is finitely generated for all i, the fundamental line
(3)  A(X/Z,n) = detzRTw (X, Z(n)) ®z detz RT(X, LYy /F")
is well defined and cup-product with 6 gives a trivialization

AR - A(X/Z,n) @z R.

Here L%, /z /F™ is Ilusie’s derived de Rham complex modulo the Hodge filtra-
tion (see [6] VIIL.2.1). The aim of this note is to show that the Euler character-
istic of RT'(X, LQ}/Z/F”) equals gX(X/Fa:0x.1) “hence that Milne’s correcting
factor is naturally part of the fundamental line. We denote by ¢*(X,n) the
leading coefficient in the Taylor development of {(X, s) near s = n.

THEOREM. Let X be a smooth proper scheme over Fy and let n € Z be an
integer. Then we have

[T HA (X, L9 F7) (D = /a0,
i€EZ
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Assume moreover that X is projective and that the groups Hy, (X, Z(n)) are
finitely generated for all i. Then one has

AX/Zn) = 2 (log(a) - X(Hiy (X, Z(n)), Ue) ! - g XX/F00xm))
Z-X(C*(X,n)7h)

where p, := —ords—n((X, s) is the order of the pole of ((X,s) at s =n.

Before giving the proof, we need to fix some notations. For an object C' in the
derived category of abelian groups such that H*(C) is finitely generated for all
i and H*(C) = 0 for almost all i, we set

detz(C) := Q) detS V H (C).
iE€EZ

If H'(C) is moreover finite for all i, then we call the following isomorphism

detz(C) ®2Q 3 R)detl; V' (H(C) @2 Q) 5 R)dets, ™ (0) 5 Q
i€z i€z

the canonical Q-trivialization of detz(C). Let A be a finite abelian group,
which we see as a complex concentrated in degree 0. Then the canonical Q-
trivialization detz(A) ®z Q ~ Q identifies detz(A) with |A|7! - Z C Q, where
|A| denotes the order of A.
Given a ring R and an R-module M, we denote by I'g (M) the universal divided
power R-algebra of M, and by I'}; (M) its submodule of homogeneous elements
of degree i. We refer to ([I] Appendix A) for the definition of I'r(M) and
its main properties. There is a canonical map 7* : M — F}z(M ), such that
composition with v¢ induces a bijection Hompg(I'i, (M), N) = P*(M, N), where
Pi(M, N) is the set of "homogeneous polynomial functions of degree i". The
functor T'%; sends free modules of finite type to free modules of finite type.
Moreover sz commutes with filtered colimits, hence sends flat modules to flat
modules. If M is free of rank one, then so is T'%(M). If (T, R) is a ringed topos
and M an R-module, then I'g(M) is the sheafification of U + T'g(r) (M (U)).
We also denote by A% the (non-additive) exterior power functor and by LA%,
its left derived functor (see [5] 1.4.2). We often omit the subscript R and simply
write M, A°*M and LA*M.
Let X be a scheme. The notation RI'(X,—) refers to hypercohomology with
respect to the Zariski topology.

Proof. Since Milne’s correcting factor is insensitive to restriction of scalars (i.e.
gX(X/Fq,0x,m) — pX(X/FP’OX’")), we may consider X over F,. We need the
following

LEMMA 1. Let B = (EP4,dP9)P9 be a cohomological spectral sequence of
abelian groups with abutment H*. Assume that there exists an index ro such
that ER:9 is finite for all (p,q) € 72 and ERT =0 for all but finitely many
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(p,q). Then we have a canonical isomorphism

R dett V" ER Z (Q)dety VH
p,q n

such that the square of isomorphisms

(®p,q det(zfl)MEfgq) 2Q 2% (®n detg”"m) ®Q

L

commutes, where the vertical maps are the canonical Q-trivializations.

Proof. For any t > rg, consider the bounded cochain complex C} of finite
abelian groups:

EBdP,q
e @ Ef’qﬂ @Ef#l*t} @ Ef,q*},,,
ptg=n—1 ptg=n p+q=n+1
The fact that the cohomology of C} is given by H"(C}) = D, ., Ei} gives

an isomorphism

R dets V" B 2 Q) dety VT ERS
p.q

p.q

compatible with the canonical Q-trivializations. By assumption, there exists
an index 1 > ro such that the spectral sequence degenerates at the r1-page, i.e.
E}* = E%*. The induced filtration on each H™ is such that gr? A" = EL"~P.
We obtain isomorphisms

R dety V" ERe 3 Q) detl V" ERES
p:q

Pq
5 Q@ et B 5 Q) det )" H

n p n
compatible with the canonical Q-trivializations. O

Consider the Hodge filtration F™* on the derived de Rham complex L% 7 By
([6] VIII.2.1.1.5) we have

gr(LQ% /) ~ €D LA Ly z[—p].
p=>0
This gives a (convergent) spectral sequence
EP? = HY(X,LAP<"Ly ;) = H" (X, LQ%7/F")

where LAP<"Lx 7 := LAPLx 7 for p < n and LAP<" L,z := 0 otherwise. The
scheme X is proper and LAP L /7 is isomorphic, in the derived category D(Ox)
of Ox-modules, to a bounded complex of coherent sheaves (see (6) below). It
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follows that EY*? is a finite dimensional Fy-vector space for all (p, ¢) vanishing
for almost all (p,q). By Lemma[I], this yields isomorphisms

detzRT(X, LYy 5/ F") 5 Q) dets V) HI(X, IO/ F™)

Q) det VT HIX, LA Ly )
p<n,q
= Q) dets V" RU(X, LAP L)
p<n
which are compatible with the canonical Q-trivializations. The transitivity
triangle (see [5] 11.2.1) for the composite map X EN Spec(F,) — Spec(Z) reads
as follows (using [0] I11.3.1.2 and [5] I11.3.2.4(iii)):
(4) Lf*(pZ/p* L)1) = Lxjz — Qg [0] = Lf*(pZ/p*Z)[2].

We set £ := Lf*(pZ/p*Z), a trivial invertible Ox-module. By (J5] Théoréme
I11.2.1.7), the class

w € Extg (Qﬁ(/FP,E) ~ H*(X,Tx/v,)

is the obstruction to the existence of a lifting of X over Z/p?Z. If such a lifting
does exist then we have w = 0, in which case the following lemma is superfluous.
For an object C' of D(Ox) with bounded cohomology, we set

gr,C = @Hi(o)[fi].

LEMMA 2. We have an isomorphism
detzRF(X, LAPLX/Z) ~ detzRF(X, LAp(gI"TLX/Z))
compatible with the canonical Q-trivializations.

Proof. The map X — Spec(Z) is a local complete intersection, hence the com-
plex Lx,z has perfect amplitude C [—1,0] (see [5] II1.3.2.6). In other words,
Lz is locally isomorphic in D(Ox) to a complex of free modules of finite
type concentrated in degrees —1 and 0. By ([4] 2.2.7.1) and ([4] 2.2.8), Lx/z
is globally isomorphic to such a complex, i.e. there exists an isomorphism
Lx;z ~ [M — N] in D(Ox), where M and N are finitely generated locally
free Ox-modules put in degrees —1 and 0 respectively. Consider the exact
sequences

(5) 0O>L->M—>F—->0and0—>F—>N-—->Q—=0

where £ := Lf*(pZ/p*Z) and ) := Q% /v, are finitely generated and locally
free. It follows that F' is also finitely generated and locally free. One has an
isomorphism in D(Ox)

(6) LAPLxjz~[I*M —=T?"'"M®N —---— M®A"'N = APN]
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where the right hand side sits in degrees [—p,0] (see [6] VIII.2.1.2 and [5]
1.4.3.2.1). Moreover, in view of (@) we may choose an isomorphism
ngLX/Z ~ [E E) Q]

in D(Ox), the right hand side being concentrated in degrees [—1,0]. Hence the
complex LAP(gr, Lx/z) € D(Ox) is represented by a complex of the form

(1) LAP(gr Lyjs) ~ LAY(L - 9)) ~
~ [[PLSTPILRO = = LOAPTIQ — APQ]

where the right hand side sits in degrees [—p,0]. Lemma [l and (@) give an
isomorphism

(8)  detzRI(X,LAPLyx/z)~ (X) dety V" "RI(X,TP~9M ® AIN)
0<q<p

compatible with the Q-trivializations. The second exact sequence in (&) endows
AIN with a finite decreasing filtration Fil* such that gri, (AIN) = A'F ®
AT7iQ). Since TP~9M is flat, Fil* induces a similar filtration on I'?~9M ® AIN
such that

grig (DP~IM @ ATN) = TP=9M @ A'F @ ATQ.

This filtration induces an isomorphism

(9) detzRI'(X,TP79M @ AIN) ~ ® detzRD(X,TP~9M @ A'F @ A7)
0<i<gq

compatible with the Q-trivializations. Lemma [[]and (7) give an isomorphism
(10)  detzRT(X, LAP(gr, Ly)z)) ~ Q) dety V" RI(X,TP"L & A'Q)
0<i<p

compatible with the Q-trivializations. Moreover, we have an isomorphism (see
[5] 1.4.3.1.7)

I‘p—iﬁ ~ [FP-l’M RN I‘P—i—lM ® F ey M ® Ap—i—lF N Ap—iF]

where the right hand side sits in degrees [0,p — i]. Since A'Q is flat, we have
an isomorphism between I'?~*£ ® A*Q) and
P MANQ TP Mo FoAQ— -
e M@APTTIF @ A'Q — APTTE @ AYQ).
By Lemma [I], we have
(11) ,
detz RD(X, TP7LoA'Q) ~ Q) dets V" RD(X, TP IM @ AF @ A'Q).

0<j<p—i
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Putting ([I0), (@), @) and (&) together, we obtain isomorphisms
detz RT'(X, LAP(gr, LX/Z)) o~

~ Q) dety V" RD(X,TPTIL @ AYQ)
0<i<p

12

R | & deti RNXITIM e NF @ AQ)
0<:i<p \0<j<p—i

= X & dety V" RI(X,TPTIM @ MVF @ A'Q)
0<q<p \0<i,j ;i+j=q
&) detS " RT(X,TP71M @ AIN)
0<q<p
~ detZRF(X, LApLx/Z)

12

compatible with the canonical Q-trivializations. O

Recall from () that the complex LAP(gr, Lx,z) is isomorphic in D(Ox) to a
complex of the form

0= TPL TP L@Qkp — - = TILOO L — 04

X/F, xF, 0

put in degrees [—p,0]. An isomorphism of F,-vector spaces F, ~ pZ/p*Z
induces an identification Ox ~ £, and more generally Ox ~ I''L for any i > 0.
Hence (LAP(gr, Lx/z))[—p] € D(Ox) is represented by a complex of the form

(12) 0= Ox = Qe — - o W 0
sitting in degrees [0, p]. We obtain a spectral sequence
By = (X, Q¢ ) = H'™ (X, (LAP(gr, Lx/z))[-p))

where QISP := QF for i < p and Q'SP := 0 for i > p. By Lemma [I] again, we
get an identification

—1)t+ J ~
&) dets VT HI(X, Q) > detzRU(X, (LAP(gr, Lx/z))[~p))
i<p.j
=5 detS Y RD(X, LAP(gr, L /z)).
In summary, we have the following isomorphisms

(13) detz RD(X, L /F™) > (R dety, V" RI(X, LA Ly /z)

p<n

(14) = R)dety, V" RT(X, LAP(gr, Lx/z))
p<n

(15) = R X detl D™ i (x, Qi)
p<n \i:<p,j
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such that the square

CNitd .
(detz RU(X, L%,/ F™) )2 @ — | @) &) dett V™ HI(X, 0% e, ) |0 @

p<ni<p,j
‘/’Y lvl

Id
Q Q
commutes, where the top horizontal map is induced by (&), and the verti-

cal isomorphisms are the canonical trivializations. The first assertion of the
theorem follows:

-1
Z - (H | H'(X, L7/ F") I(l)l> =

<Y/

= 5 (detZRF(X, LQ}/Z/F"))

Cqyiti )
7R & dets VT HI(X, Qe )

p<ni<p,j

7 .p*x(X/Fp,Ox,n)_

We now explain why the second assertion of the theorem is a restatement of
(2] Theorem 1.3). We assume that H;,(X,Z(n)) is finitely generated for all
i € Z (X and n being fixed). Recall from [2] that this assumption implies the
following: Hi,(X,Z(n)) is in fact finite for i # 2n, 2n + 1, the complex (@) has
finite cohomology groups and one has

pn i= —ords—n((X, s) = rankz H3* (X, Z(n)).
In particular the complex
(16) oo =5 Hip(X,Z(n) © Q =5 Hyf (X, Z(n)) ©Q =5 - -

is acyclic. This gives a trivialization

B:Q " R dets V) (Hiy(X,Z(n)) ® Q)

= <® deté‘”iHéV(X,Zm))) ®Q
such that

Z- B (x(Hiy (X, Z(n)),Ue)~!) = ®det(z_1)iH§V(X,Z(n)).
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The class e € H*(Wg,,Z) = Hom(Wg,,Z) maps the Frobenius Frob € W, to
1 € Z. We define the map

W]Fq =7Z-Frob — R =: W]Fl
as the map sending Frob to log(q), while § € H!(Wp,,R) = Hom(R, R) is the
identity map. It follows that the acyclic complex

o HI (X, Z(n) @ R 25 HIFY(X, Z(n) o R 2 ...

induces a trivialization
a:R 5 @ detl ) (Hiy (X, Z(n) ©R) <® det$ V' Hi, (X, Z(m)) 2R

such that
Z - o (x(Hyy (X, Z(n)),Ue)~" -log(q)) = ®detg1>iH3V(X, Z(n)).

The trivialization X is the product of o with the canonical trivialization
R — detz RT(X, LQ}/Z/F") ®z R.
Hence we have
2 (log(@) - x(Hiy (X, 2(n)), Ue) ™ - X505 ) = AX/2, 7).
Moreover, formula () gives
(*(X, 5) = +log(q)~"" - X(Hyy (X, Z(n)), Ue) - gx-0xm)
hence the result follows from (J2] Theorem 1.3). O
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ABSTRACT. We show that the multivariate additive higher Chow
groups of a smooth affine k-scheme Spec (R) essentially of finite type
over a perfect field k of characteristic # 2 form a differential graded
module over the big de Rham-Witt complex W,,,{2%,. In the univariate
case, we show that additive higher Chow groups of Spec (R) form
a Witt-complex over R. We use these structures to prove an étale
descent for multivariate additive higher Chow groups.
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1. INTRODUCTION

The additive higher Chow groups TCHY(X,n;m) emerged originally in [5] in
part as an attempt to understand certain relative higher algebraic K-groups of
schemes in terms of algebraic cycles. Since then, several papers [16], [I7], [I8],
[19], [26], [27], [28] have studied various aspects of these groups. But lack of
a suitable moving lemma for smooth affine varieties has been a hindrance in
studies of their local behaviors. Its projective sibling was known by [I7]. During
the period of stagnation, the subject has evolved into the notion of ‘cycles
with modulus’ CHY(X|D, n) by Binda-Kerz-Saito in [I], [I5] associated to pairs
(X, D) of schemes and effective Cartier divisors D, setting a more flexible
ground, while this desired moving lemma for the affine case was obtained by
W. Kai [14] (See Theorem [A.T]).

The above developments now propel the authors to continue their program
of realizing the relative K-theory K, (X x Speck[t]/(t™T1),(¢)) in terms of
additive higher Chow groups. More specifically, one of the aims in the program
considered in this paper is to understand via additive higher Chow groups,
the part of the above relative K-groups which was proven in [2] to give the
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crystalline cohomology. This part turned out to be isomorphic to the de Rham-
Witt complexes as seen in [12]. This article is the first of the authors’ papers
that relate the additive higher Chow groups to the big de Rham-Witt complexes
W,,Q%, of [8] and to the crystalline cohomology theory. This gives a motivic
description of the latter two objects.

While the general notion of cycles with modulus for (X, D) provides a wider
picture, the additive higher Chow groups still have a non-trivial operation
not shared by the general case. One such is an analogue of the Pontryagin
product on homology groups of Lie groups, which turns the additive higher
Chow groups into a differential graded algebra (DGA). This product is induced
by the structure of algebraic groups on A! and G,,, and their action on X x A" =:
X|[r] for r > 1.

The usefulness of such a product was already observed in the earliest papers
on additive 0O-cycles by Bloch-Esnault [5] and Riilling [28]. This product on
higher dimensional additive higher Chow cycles was given in [19] for smooth
projective varieties. In §hl of this paper, we extend this product structure in
two directions: (1) toward multivariate additive higher Chow groups and (2)
on smooth affine varieties. In doing so, we generalize some of the necessary
tools, such as the following normalization theorem, proven as Theorem
Necessary definitions are recalled in §2

THEOREM 1.1. Let X be a smooth scheme which is either quasi-projective or
essentially of finite type over a field k. Let D be an effective Cartier divisor on
X. Then each cycle class in CHY(X|D,n) has a representative, all of whose
codimension 1 faces are trivial.

The above theorem for ordinary higher Chow groups was proven by Bloch and
has been a useful tool in dealing with algebraic cycles. In this paper, we use
the above theorem to construct the following structure of differential graded
algebra and differential graded modules on the multivariate additive higher
Chow groups, where Theorem is proven in Theorems [1l [Z10 and [Z.11]
while Theorem is proven in Theorem

THEOREM 1.2. Let X be a smooth scheme which is either affine essentially of
finite type or projective over a perfect field k of characteristic # 2

(1) The additive higher Chow groups {TCH?(X,n;m)}qn.men has a func-
torial structure of a restricted Witt-complex over k.

(2) If X = Spec (R) is affine, then {TCHY(X,n;m)}q n,men has a structure
of a restricted Witt-complex over R.

(3) For X as in (2), there is a natural map of restricted Witt-complezes
Tk . WmQ%_l — TCH" (R, n;m).

n,m

THEOREM 1.3. Letr > 1. For a smooth scheme X which is either affine essen-
tially of finite type or projective over a perfect field k of characteristic # 2, the
multivariate additive higher Chow groups {CHY(X[r]|Dm, n)}qn>0 with modu-
lus m = (mq,--- ,m,), where m; > 1, form a differential graded module over

DOCUMENTA MATHEMATICA 21 (2016) 49-89



ON ADDITIVE HIGHER CHOW GROUPS OF AFFINE SCHEMES 51

the DGA {TCHY(X,n;|m| — 1)}¢n>1, where |m| = >.._, m;. In particular,
each CHY(X[r]| Dy, n) is a W (|pm)—1)(R)-module, when X = Spec (R) is affine.

The above structures on the univariate and multivariate additive higher Chow
groups suggest an expectation that these groups may describe the algebraic
K-theory relative to nilpotent thickenings of the coordinate axes in an affine
space over a smooth scheme. The calculations of such relative K-theory by
Hesselholt in [9] and [I0] show that any potential motivic cohomology which
describes the above relative K-theory may have such a structure.

As part of our program of connecting the additive higher Chow groups with the
relative K-theory, we show in [22] that the above map Tfjm is an isomorphism
when X is semi-local in addition, and we show how one deduces crystalline
cohomology from additive higher Chow groups. The results of this paper form
a crucial part in the process.

Recall that the higher Chow groups of Bloch and algebraic K-theory do not sat-
isfy étale descent with integral coefficients. As an application of Theorem [L3]
we show that the étale descent is actually true for the multivariate additive
higher Chow groups in the following setting:

THEOREM 1.4. Let r > 1 and let X be a smooth scheme which is either affine
essentially of finite type or projective over a perfect field k of characteristic # 2.
Let G be a finite group of order prime to char(k), acting freely on X with the
quotient f: X — X/G. Then for all g,n > 0 and and m = (mq,--- ,m,) with
m; > 1 for 1 <i <r, the pull-back map f* induces an isomorphism

CHY(X/G[r]|Dpm,n) = H*(G,CHY(X[r])| Dy, 1))

Note that the quotient X/G exists under the hypothesis on X. Since the
corresponding descent is not yet known for the relative K-theory of nilpotent
thickenings of the coordinate axes in an affine space over a smooth scheme, the
above theorem suggests that this descent could be indeed true for the relative
K-theory.

CONVENTIONS. In this paper, k£ will denote the base field which will be assumed
to be perfect after §41 A k-scheme is a separated scheme of finite type over
k. A k-variety is a reduced k-scheme. The product X X Y means usually
X X Y, unless said otherwise. We let Schy be the category of k-schemes,
Smy, of smooth k-schemes, and SmAff; of smooth affine k-schemes. A scheme
essentially of finite type is a scheme obtained by localizing at a finite subset
(including () of a finite type k-scheme. For C = Schg, Smy, SmAffy, we let
C*® be the extension of the category C obtained by localizing at a finite subset
(including @) of objects in C. We let SmLocy, be the category of smooth semi-
local k-schemes essentially of finite type over k. So, SmAff;™ = SmAff, U
SmLocy for the objects. When we say a semi-local k-scheme, we always mean
one that is essentially of finite type over k. Let SmProj, be the category of
smooth projective k-schemes.
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2. RECOLLECTION OF BASIC DEFINITIONS

For P! = Proj,,(k[so, 51]), we let y = s1/s¢ its coordinate. Let (I := P*\{1}. For
n > 1,1et (y1, -+ ,yn) € 0" be the coordinates. A face F' C 0" means a closed
subscheme defined by the set of equations of the form {y;, = €1, - ,y;, = €5}
for an increasing sequence {i;|1 < j < s} C {1,--- ,n} and ¢; € {0,00}. We
allow s = 0, in which case F = 0" Let O := P!. A face of 0" is the closure
of a face in J". For 1 < i < n, let F%J- c T" be the closed subscheme given
by {yi = 1}. Let F, := >_"" | F, ;, which is the cycle associated to the closed

subscheme 0" \ O Let 0% = 0 .= Spec (k). Let ty . : 0"t < O be the
inclusion (y1,- -+ ,yn—1) = (Y1, ,¥i-1,6Yis ** ,Yn—1)-

2.1. CYCLES WITH MODULUS. Let X € Schy™. Recall ([21, §2]) that for ef-
fective Cartier divisors D1 and Ds on X, we say D1 < D5 if D1 + D = Dy
for some effective Cartier divisor D on X. A scheme with an effective divisor
(sed) is a pair (X, D), where X € Sch}™ and D an effective Cartier divisor. A
morphism f : (Y, E) — (X, D) of seds is a morphism f : ¥ — X in Schi>® such
that f*(D) is defined as a Cartier divisor on Y and f*(D) < E. In particular,
YD) C E. If f: Y — X is a morphism of k-schemes, and (X, D) is a sed
such that f=1(D) =0, then f: (Y,0) — (X, D) is a morphism of seds.

DeriNiTION 2.1 ([1], [I5]). Let (X, D) and (Y, E) be schemes with effective
divisors. Let Y =Y \ E. Let V C X x Y be an integral closed subscheme with
closure V.C X x Y. We say V has modulus D (relative to E) if vi;(D x Y) <

v, (X x E) on VN, where vy : 7" ¥V < X x Y is the normalization followed
by the closed immersion.

Recall the following containment lemma from [2I], Proposition 2.4] (see also [I
Lemma 2.1] and [I7] Proposition 2.4]):

PROPOSITION 2.2. Let (X, D) and (Y, E) be schemes with effective divisors
andY =Y\ E. If V. C X XY is a closed subscheme with modulus D relative
to E, then any closed subscheme W C V also has modulus D relative to E.

DEerFINITION 2.3 ([1], [I5]). Let (X, D) be a scheme with an effective divisor.
For s € Z and n > 0, let z,(X|D, n) be the free abelian group on integral closed
subschemes V' C X x 0" of dimension s+ n satisfying the following conditions:

(1) (Face condition) for each face F' C 0", V intersects X x F properly.
(2) (Modulus condition) V has modulus D relative to F! on X x O".

We usually drop the phrase “relative to F!” for simplicity. A cycle in
2,(X|D,n) is called an admissible cycle with modulus D. One checks that
(n — z,(X|D,n)) is a cubical abelian group. In particular, the groups
z,(X|D,n) form a complex with the boundary map 9 = > | (—1)"(97° — 8?),
where 0§ = ¢}

n,i,e*

DerINITION 2.4 ([I], [15]). The complex (z5(X|D,e),0) is the nonde-
generate complex associated to (n +— 2,(X|D,n)), ie., 2z (X|D,n) :=
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2,(X|D,n)/z,(X|D,n)degn. The homology CH(X|D,n) := H,(2:(X|D,e))
for n > 0 is called higher Chow group of X with modulus D. If X is equidi-
mensional of dimension d, for ¢ > 0, we write CHY(X|D, n) = CHy—4(X|D,n).

Here is a special case from [21]:

DEFINITION 2.5. Let X € Sch}®. For r > 1, let X[r] := X x A". When
(t1,--- ,t,) € A" are the coordinates, and my,--- ,m, > 1 are integers, let D,
be the divisor on X[r] given by the equation {¢t*!---t7* = 0}. The groups
CHY(X [r]| Dy, n) are called multivariate additive higher Chow groups of X. For
simplicity, we often say “a cycle with modulus m” for “a cycle with modulus
Dy, For an r-tuple of integers m = (my,--- ,m,), we write [m| = >_;_; m;.
We shall say that m > p if m; > p for each 1.

When r = 1, we obtain additive higher Chow groups, and as in [I9], we often use
the older notations Tz?(X,n + 1;m — 1) for 29(X[1]|Dy,, n) and TCH?!(X, n +
1;m — 1) for CHY(X[1]|Dm,n). In such cases, note that the modulus m is
shifted by 1 from the above sense.

DEFINITION 2.6. Let W be a finite set of locally closed subsets of X and
let e : W — Zxo be a set function. Let zj, (X|D,n) be the subgroup
generated by integral cycles Z € z%(X|D,n) such that for each W € W
and each face F' C O", we have codimwxp(Z N (W x F)) > q¢ — e(W).
They form a subcomplex zj,, (X|D,e) of 29(X|D,s). Modding out by de-
generate cycles, we obtain the subcomplex zy,, (X|D,e) C 2z¢(X|D,s). We
write 2y, (X|D, ®) := 27y, ((X|D, ). For additive higher Chow cycles, we write
Tz}, (X, n;m) for g‘{/v[l] (X[1]|Dmt1,n — 1), where W[1] = {W[1] | W € W}.

Here are some basic lemmas used in the paper:

LEMMA 2.7 (21l Lemma 2.2]). Let f : Y — X be a dominant map of normal
integral k-schemes. Let D be a Cartier divisor on X such that the generic
points of Supp(D) are contained in f(Y'). Suppose that f*(D) >0 onY. Then
D>0onX.

LEMMA 2.8 ([21, Lemma 2.9]). Let f : Y — X be a proper morphism of quasi-
projective k-varieties. Let D C X be an effective Cartier divisor such that
fY) ¢ D. Let Z € z9(Y|f*(D),n) be an irreducible cycle. Let W = f(Z) on
X x O™ Then W € 25(X|D,n), where s = codim y yn (W).

LEMMA 2.9. Let X be a k-scheme, and let {U;};er be an open cover of X.
Let Z € 29X x O") and let Zy, be the flat pull-back to U; x O". Then
7Z € z9X|D,n) if and only if for each i € I, we have Zy, € z9(U;|Dy,,n),
where Dy, is the restriction of D on U;.

Proof. The direction (=) is obvious since flat pull-backs respect admissibility
of cycles with modulus by [2I, Proposition 2.12]. For the direction (<), we

may assume Z is irreducible. In this case, it is easily checked that the face and
the modulus conditions are both local on the base X. O

2.2. DE RHAM-WITT COMPLEXES.
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2.2.1. Ring of big Witt-vectors. Let R be a commutative ring with unit. We
recall the definition of the ring of big Witt-vectors of R (see [11] §4] or [28|
Appendix Al). A truncation set S C N is a non-empty subset such that if
s € S and t|s, then t € S. As a set, let Wg(R) := R® and define the map
w : Ws(R) — RS by sending a = (as)ses to w(a) = (w(a)s)ses, where
w(a)s ==y taf/t. When RS on the target of w is given the component-wise
ring structure, it is known that there is a unique functorial ring structure on
Ws(R) such that w is a ring homomorphism (see [1I, Proposition 1.2]). When
S={1,---,m}, we write W,,(R) := Wg(R).

There is another description. Let W(R) := Wy(R). Consider the multiplicative
group (1 + tR([[t]])*, where ¢ is an indeterminate. Then there is a natural
bijection W(R) ~ (1+tR][[t]])*, where the addition in W(R) corresponds to the
multiplication of formal power series. For a truncation set S, we can describe
Ws(R) as the quotient of (1+¢R[[t]])* by a suitable subgroup Is. See [28, A.7]
for details. In case S = {1,--- ,m}, we can write W,,(R) = (1 +tR[[t]])*/(1+
tmTLR[[t]])* as an additive group.

For a € R, the Teichmiiller lift [a] € Wg(R) corresponds to the image of
1—at € (1 +tR[[t]])*. This yields a multiplicative map [—] : R — Wg(R).
The additive identity element of W,,(R) corresponds to the unit polynomial 1
and the multiplicative identity element corresponds to the polynomial 1 — ¢.

2.2.2. de Rham-Witt complex. Let p be an odd prime and R be a Z(p)—algebraﬂ
For each truncation set S, there is a differential graded algebra WgQ2%, called
the big de Rham-Witt complex over R. This defines a contravariant functor
on the category of truncation sets. This is an initial object in the category of
V-complexes and in the category of Witt-complexes over R. For details, see [g]
and [28] §1]. When S'is a finite truncation set, we have WsQy, = Q) 7/N3,
where Ng is the differential graded ideal given by some generators ([28, Propo-
sition 1.2]). In case S = {1,2,---,m}, we write W,,Q%, for this object.
Here is another relevant object for this paper from [8 Definition 1.1.1];
a restricted Witt-complexr over R is a pro-system of differential graded Z-
algebras ((Em)men, R : Emy1 — Epn), with homomorphisms of graded rings
(Fr : Ermar—1 = Em)m,ren called the Frobenius maps, and homomorphisms
of graded groups (V, : Eyy = Eppmgr—1)mren called the Verschiebung maps,
satisfying the following relations for all n,r, s € N:

(i) RE = FER RV, = VR 1 =Vi =1d, . Fs = Frs, Vi Vs = Vig;

(ii)) F. V. =r. When (r,s) =1, F.V, = ViF, on Epppyro1;

(iii) Vi(Fr(x)y) = 2Vi(y) for all © € Eppir—1 and y € E; (projection

formula)
(iv) F.dV, =d, where d is the differential of the DGAs.

Furthermore, we require that there is a homomorphism of pro-rings (A :
W, (R) = E2)men that commutes with F,. and V., satisfying

LA definition of Witt-complex over a more general ring R can be found in [II, Defini-
tion 4.1].
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(v) F.d)\([a]) = X([a]""1)dA([a)]) for all @ € R and r € N.
The pro-system {W,,Q%}mn>1 is the initial object in the category of restricted
Witt-complexes over R (See [28, Proposition 1.15]).

3. NORMALIZATION THEOREM

Let k be any field. The aim of this section is to prove Theorem Such
results were known when D = (@, or when X is replaced by X x Al with
D = {tmt1 = 0} for t € Al. We generalize it to higher Chow groups with
modulus.

DEFINITION 3.1. Let (X,D) be a scheme with an effective divisor. Let
2%, (X|D,n) be the subgroup of cycles a € 29(X|D, n) such that 8?(a) = 0 for
alll <i < nand 9 () = 0 for 2 <4 < n. One checks that 95°005° = 0. Writ-
ing 95° as %, we obtain a subcomplex ¢ : (2%(X|D,e),0N) < (29(X|D, e),0).

€ss

THEOREM 3.2. Let X € Smy” and let D C X be an effective Cartier divisor.
Then v : z3%;(X|D,e) = z9(X|D, ®) is a quasi-isomorphism. In particular, every
cycle class in CHY(X|D,n) can be represented by a cycle a such that 0f(a) =0
forall1 <i<mn ande=0,00.

Let CUBE be the standard category of cubes (see [24, §1]) so that a cubical
abelian group is a functor CUBE®®? — (Ab). Recall also from loc.cit. that an
extended cubical abelian is a functor ECUBE®? — (Ab), where ECUBE is the
smallest symmetric monoidal subcategory of SETS containing CUBE and the
morphism g : 2 — 1. The essential point of the proof of Theorem is

THEOREM 3.3. Let X € Smy>® and D C X be an effective Cartier divisor.
Then (n— 29(X|D;n)) is an extended cubical abelian group.

If Theorem holds, then [24, Lemma 1.6] implies Theorem B2l We suppose
(X, D) is as in Theorem B2 in what follows. The idea is similar to that of [19]
Appendix].

Let q1 : 0% — O be the morphism (y1,y2) — y1 + y2 — y1y2 if y1,y2 # oo,
and (y1,y2) — oo if y1 or yo = co. Under the identification 1 : (0 ~ A! given
by y — 1/(1 —y) (which sends {oco0,0} to {0,1}), this map ¢ is equivalent
to g1y @ A2 — Al given by (y1,y2) — y1y2. For our convenience, we use
this Oy = (A',{0,1}) and cycles on X x 0. The boundary operator is
9 =" (=1)(8) — 8}), and we replace F, ; by Fy5 = {y; = oo}. We write
Fpo =31 F5S. We write Oy = (P, {0,1}). The group of admissible cycles is
23,(X|D,n). Consider g,y : X X DZ)’H — X x O} given by (z,y1,*+ ,Ynt1) =
(:Ea Y10 Yn—1, ynyn—i-l)-

PROPOSITION 3.4. For Z € zj(X|D,n), we have q;, ,(Z) € z}(X|D,n+1).

The delicacy of its proof lies in that the product map g1, : A% — A does not
extend to a morphism (P*)2 — P! of varieties so that checking the modulus
condition becomes nontrivial. We use a correspondence instead. For n > 1, let
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in: Wp — X X D:;‘H X ﬁjp be the closed subscheme defined by the equation
UOYnYn+1 = U1, where (Y1, ,Ynt1) € DZH and (uo;u1) € E}b are the coordi-
nates. Let y := u /up. Its Zariski closure W,, < X XEZH xﬁ; is given by the
equation Uoln 1Unt+1,1 = U1lUn,0Un+1,0, Where (U1,0,u1,1), 5 (Un+1,05 Unt1,1)
are the homogeneous coordinates of EZH with y; = u; 1/u 0.

Consider 6, : X x DZ“ X 511/) — X x O} given by (2,91, ,Yn+1, (wo; u1)) =
(T, 91, , Yn—1,YnYn+1), and let m, := 6,|w,. To extend this 7, to a mor-
phism 7,, on W,,, we use the projection 6,, : X XEZH xﬁll/) - X ><ﬁ$71 xﬁjp,
that drops the coordinates (un,0; tn,1) and (Un+1,0; Unt+1,1), and the projection
pp o X X DZ)’H X ﬁllp — X x D:;H, that drops the last coordinate (ug;u1).

LEMMA 3.5. (1) W, N{ug = 0} = 0, so that W,, C X x O x Oy, (2)
Onlw, = mn. Thus, we define T, := 9”|Wn’ which extends 7,,. (3) The varieties
W, and W,, are smooth. (4) Both m, and T, are surjective flat morphisms of
relative dimension 1.

Proof. Tts proof is almost identical to that of [I9, Lemma A.5]. Part (1) follows
from the defining equation of W,,, and (2) holds by definition. Let p,, := pn|w,, :
W, — X x Dzﬂ. Since X is smooth, using Jacobian criterion we check that W,
is smooth. Furthermore, p,, is an isomorphism with the obvious inverse. Under
this identification, the morphism 7, can also be regarded as the projection
(91, ,Yn,y) = (T, ¥1,"* ,Yn—1,y) that drops y,. In particular, 7, is a
smooth and surjective of relative dimension 1. To check that W, is smooth,
one can do it locally on each open set where each of uy, ;, tn11,i, 4; is nonzero for
i =0, 1. In each such open set, the equation for W, takes the same form as for
Wy, so that it is smooth again by Jacobian criterion. Similarly as for m,, one
sees T, is of relative dimension 1. Since 6, is projective and m, is surjective,
the morphism 7, is projective and surjective. So, since W, is smooth, the map
Ty, is flat by [7, Exercise I1I-10.9, p.276]. Thus, we have (3) and (4). O

LEMMA 3.6. Letn>1andlet Z C X x DZ be a closed subscheme with modulus
D. Then Z' := (in)«(7%(Z)) also has modulus D.

Proof. Let Z and 7' be the Zariski closures of Z and Z’ in X x EZ and
X x EZH, respectively. By Lemma and the projectivity of ,,, we see that

0,.(Z) = Z. Consider the commutative diagram

Vzl
/__E\ — —
(3.1) 7N LS W, X x DZH X D;
lf T len
7N B X x Oy,
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where f is induced by the surjection §n|7/ 7 = Z, the maps ¢ and vy
are normalizations of Z and Z composed with the closed immersions, and
vy = i 0g. By the definition of 8,, we have 0. L (D x Dd)) = D x DZH,
9n(Ffj°n) = F%5 42, while 6, (F° o) = Py, for 1 < i < n—1 By the
defining equation of W, we have T, = anﬁ27n+2 =i {u = 0} <
i ({tin,0 = 0} + {unt1,0 = 0}) = 0, (Fr3a, + Flons)-
Thus, Vil S B = S Ve Py + T ES < S va Pt +
(ngQ ntESs, n+1) St VZ, 0 < SR uE F 9o (Incasen =1,
we just ignore the terms with > 1 in the above.)
That Z has modulus D means Z/Z(D X Dw) <3 vEFESS. Applying f* and
using (31)), we have v}, (D wa ) =50, (D wa) < VZ,9 Yo which

is bounded by Z"+12 vy %o ; as we saw above. This means Z’ has modulus
D. O

’I’IZ’

DEFINITION 3.7. For any closed subscheme Z C X x 0%, we define W,,(Z) :=
Drsbnsmk(Z), which is closed in X X DZH.

LEMMA 3.8. Letn > 1. If a closed subscheme Z C X x LI intersects all faces

properly, then W,,(Z) intersects all faces of X x DZJFI properly.

Proof. Our W, is equal to 7*7,5 7,5, WX, where W;¥ is that of [23, Lemma 4.1],
and T, Ty, Th4+1 are the involutions (z — 1 — x) for y, y,, yn+1, respectively. So,
the lemma is a special case of loc.cit. O

Proof of Proposition [3.f] Consider the commutative diagram

W X x 00+ x Oy

n=Pn | Whn
Tn DPn

X x Oy " X s Ot

By Lemma[3.5, p,, is an isomorphism so that py.iypj, = Id. Hence, ¢}, ,(Z) =
Pt Prtr (2) =1 Pt (Z) = Prsinam(Z) = Wy (Z), where t, T are due to
commutativity. So, we have reduced to showing that W, (2) € 2, (X|D,n+1).
But, by Lemmas 3.6 and B8] we have i,.7}(Z) € ziH(X x PHD x PL,n+1).
Now, for the projection p,, by Lemma .8 we have W,,(Z) = ppsin.m(Z) €
z;i (X|D,n+ 1). This proves Proposition B4l O

Proof of Theorem[3.3. Since we know that (n — 2%(X|D;n)) is a cubical
abelian group, every morphism h : r — s in CUBE induces a morphism
h : 0" — [O° which gives a homomorphism h* : 29(X|D,s) — 24(X|D,r).
Furthermore, the morphism z : 2 — 1 induces the morphism ¢; : 0% — O!
of varieties, and for each Z € 29(X|D, 1), we have ¢j(Z) € 29(X|D,2). In-
deed, under the isomorphism 1 : 0 ~ Al y +— 1/(1 — y), this is equivalent to
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show that iy sends admissible cycles to admissible cycles, which we know by
Proposition [3.41

So, it only remains to show the following “stability under products”: if h; : r; —
Si, © = 1,2, are morphisms in ECUBE such that the corresponding morphisms
h; : 0" — O% induce homomorphisms h} : 24(X|D, s;) — 29(X|D,r;), for
i = 1,2 and all ¢ > 0, then h := hy X ho : O 2 — [O%7%2 induces a
homomorphism h* : 29(X|D,s) — z4(X|D,r) for all ¢ > 0, where r = 71 + 12
and s = 51 + $o.

Since h = hy X ha = (Id;, X h2) o (hy x Id,,), we reduce to prove it when h
is either Id,, X ho or hy x Id,,. But the statement obviously holds for these
cases. O

4. ON MOVING LEMMAS

Let k& be any field. In this section, we discuss some of moving lemmas on
algebraic cycles with modulus conditions. By a ‘moving lemma’, we ask whether
the inclusion z{,,(Y'|D,e) C 29(Y|D, e) in Definition 26lis a quasi-isomorphism.
It is known when Y is smooth quasi-projective and D = 0 (by [4]), and when
Y = X x A!, with X smooth projective, D = X x {t™*! = 0}, and W consists
of W x Al for finitely many locally closed subsets W C X (by [17]). Recently,
W. Kai [14] proved it when Y is smooth affine with a suitable condition. Kai’s
cases include the above case of Y = X x Al, where X is this time smooth affine.
His proof applies to more general cases, possibly after Nisnevich sheafifications.
In §47] we sketch the argument of Kai in the case of multivariate additive
higher Chow groups of smooth affine k-variety. In §42 we generalize the
moving lemma of [I7] in the case of pairs (X x S, X x D) where X is smooth
projective. In §4.3] and [£4] we discuss the standard pull-back property and its
consequences. In L5 we discuss a moving lemma for additive higher Chow
groups of smooth semi-local k-schemes essentially of finite type.

4.1. KAI'S AFFINE METHOD FOR MULTIVARIATE ADDITIVE HIGHER CHOW
GROUPS. The moving lemma of W. Kai [I4] is the first moving result that
applies to cycle groups with a mon-zero modulus over a smooth affine scheme.
Since the work loc. cit. is at present not yet refereed, we give a detailed sketch
the proof of the following special case on multivariate additive higher Chow
groups. But, we emphasize that the most crucial part is due to Kai. Following
Definition 25 we write X[r] := X x A".

THEOREM 4.1 (W. Kai). Let X be a smooth affine variety over any field k.
Let W be a finite set of locally closed subsets of X. Let W[r| := {W([r] | W €
Wt} Let m = (mq,---,my) > 1. Then the inclusion Z%[T](X[T”Dm, o) —
29X [r]| D, ®) is a quasi-isomorphism.

First recall some preparatory results:

LEMMA 4.2 ([I7, Lemma 4.5]). Let f : X — Y be a dominant morphism of
normal varieties. Suppose that'Y is integral with the generic pointn € 'Y, and
let Xy, be the fiber over n, with the inclusion j, : X;) — X. Let D be a Weil
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divisor on X such that j;;(D) > 0. Then there exists a non-empty open subset
U CY such that ji;(D) > 0, where jy : f~*(U) < X s the inclusion.

The following generalizes [I7, Proposition 4.7]:

PROPOSITION 4.3 (Spreading lemma). Let k C K be a purely transcendental
extension. Let (X, D) be a smooth quasi-projective k-scheme with an effective
Cartier divisor, and let VW be a finite collection of locally closed subsets of X.
Let (Xk,Dk) and Wi be the base changes via Spec (K) — Spec (k). Let
Pr/k + XK — Xy be the base change map. Then the pull-back map
. z9(X|D,e) 29(Xk|Dk, o)
Pk/k - —q — g
2 (XD, o) 2y, (XK |Dik s @)

is injective on homology.

Proof. Tt is similar to [I'7, Proposition 4.7]. We sketch its proof for the reader’s
convenience. If k is finite, then we can use the standard pro-f-extension ar-
gument to reduce the proof to the case when k is infinite, which we assume
from now. We may also assume that tr.deg, K < oo and furthermore that
tr.deg, K = 1, by induction. So, we have K = k(A}).

Suppose Z € z9(X|D,n) is a cycle that satisfies 0Z € z},(X|D,n — 1),
and Zg = 8(BK) + Vi for some Bg € Zq(XK|DK,TL + 1) and Vg €
2y, (XK |Dr,n). Consider the inclusion 29(Xg|Dy,e) — 29(Xk,e). Then
there is a non-empty open U’ C A} such that Bx = By, Vk = Virly,
ZxU" = 8(By+)+Vy- for some By: € z4(XxU’,n+1), Vi € 23y, (X XU’ n),
where 7 is the generic point of U’. Let j, : X x 7 — X x U’ be the inclusion,
which is flat.

Since B, Vi satisfy the modulus condition, we have j (X xU’'xF, ; —DxU’x

ﬁnﬂ) >0 on EIA([ and similarly for VIA([. Furthermore, Eg/ — U’,V][}[, — U’

are dominant. Thus by Lemma 2] there is a non-empty open U C U’ such
that jj; (X x U’ x Fh ., — D x U’ x EnJrl) >0 on FJJ and similarly for V][}[,
for juy : X x U — X x U’. This proves that By and Vi have modulus D x U.
Hence, By € 2%(X x U|D x U,n+1) and Vi € 2y, (X x U|D x U,n) with
Z x U= 8(BU) + V.

Since k is infinite, the set U(k) — U is dense. We claim the following;:
Cra: There is a point u € U(k) such that the pull-backs of By and Vy
under the inclusion i, : X X {u} < X x U are both defined in z1(X,n+1) and
20, (X, n), respectively.

Its proof requires the following elementary fact:

LEMMA: Let Y be any k-scheme. Let B € z9(Y x U) be a cycle. Then there
exists a nonempty open subset U” C U such that for each uw € U"(k), the
closed subscheme Y x {u} intersects B properly on'Y x U, thus it defines a
cycle i¥(B) € zU(Y), where Y is identified with Y x {u}.

Note that for each u € U(k), the subscheme Y x {u} C Y x U is an effective
divisor, so its proper intersection with B is equivalent to that ¥ x {u} does
not contain any irreducible component of B. If there exists a point u; € U(k)
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such that ¥ x {u;} contains an irreducible component B; of B, then for any
other uw € U(k) \ {w;}, we have (Y x {u}) N B; = . So, for every irreducible
component B; of B, there exists at most one u; € U(k) such that ¥ x {u;}
contains B;. Let S be the union of such points w;, if they exist. There are only
finitely many irreducible components of B, so |S| < co. Taking U” :=U \ S,
we have LEMMA.

We now prove CLAIM. Let F' C (O"*! be any face, including the case F' = [J"+1.
Since By € z4(X x U,n+1), by definition X xU x F and By intersect properly
on X x U x O™ 50 their intersection gives a cycle By p € 29(X x U x F).
By LEMMA with Y = X x F', there exists a nonempty open subset Ur C U
such that By p defines a cycle in 29(X x {u} x F) for every u € Up(k). Let
Ui := (g Ur, where the intersection is taken over all faces F' of On+!. This is
a nonempty open subset of U. Similarly, let ' C 0" be any face, including the
case ' =0". Here, Viy € z},,,.;(X x U,n), and repeating the above argument
involving LEMMA with Y = W x F for W € W, we get a nonempty open subset
Uw,r C U such that we have an induced cycle in z9(W x {u} x F) for every
u € Uw (k). Let Us = ﬂW,F Uw,r, where the intersection is taken over all
pairs (W, F'), with W € W and a face F C O". Taking U := U; N Uz, which is
a nonempty open subset of U, we now obtain CLAIM for every u € U(k).
Finally, for such a point u as in CLAIM, by the containment lemma (Proposition
2.2), i (By) and %, (V) have modulus D. Hence, i (By) € z4(X|D,n+1) and
in(Vu) € 27,,(X|D,n). This finishes the proof. O

Sketch of the proof of Theorem[{.1 STEP 1. We first show it when X = Ag.
Let K = k(A¢) and let € X be the generic point. To facilitate the proof,
as we did previously in §3| using the automorphism y +— 1/(1 — y) of P! we
replace (O, {00, 0}) by (A!,{0,1}), and write J = A'. We use the homogeneous
coordinates (u; o;u; 1) € 0 = P!, where y; = u;1/u; 0, then the divisor F,;in
the modulus condition is replaced by Fy$ = {y; = co} and F2° = 37" | F5.
For any g € A? and an integer s > 0, define ¢, s : Az(g) (7] Xk(g) D}C(g) —
Az(g) [r] by ¢g.s(x,t,y) = (x + y{7™---t")%g,t), where k(g) is the residue
field of g. (N.B. In terms of W. Kai’s homotopy, our g € A? corresponds to his
v = (g,0,---,0) € Al[r] = A*".) For any cycle V € 24(X[r]|Dyn,n), define
H; (V) = (¢g,s X Ian)*pZ(g)/k (V), where py(gy/k AZ(g) [r]xO" — Ad[r]xO"
is the base change.

Using [3, Lemma 1.2], one checks that H (V) preserves the face condition
for V. Moreover, if V' € z},,(X[r],n), then so does H} (V). When g = 7,
another application of [3, Lemma 1.2] shows that Hy (V) intersects with all
Wr] x F properly, where W € W and a F' C O" is a face. The argument for
proving these face conditions follows the same steps as that of the proof of [I7,
Lemma 5.5, Case 2] though the present case is slightly different so that we use
[3 Lemma 1.2] instead of [3} Lemma 1.1] (see [I4] Lemma 3.5] for more detail).

On the other hand, we have the following crucial and central assertion due to
W. Kai (¢f. [14] Proposition 3.3]):
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CLAIM: For each irreducible V € z9(A4[r]|Dp,n), there is s(V) € Z>q such
that for any s > s(V) and for any g € A9, the cycle H;S(V) has modulus Dy, .
Once it is proven, call the smallest such integer s(V'), the threshold of V', for
simplicity. Here, instead of translations by ¢ € A% used in usual higher Chow
groups of A? (which correspond to s = 0), Kai uses adjusted translations as in
the definition of ¢, s, so that near the divisors {¢; = 0}, the effect of adjusted
translation is also small, while away from the divisors {t; = 0}, the effect of
adjusted translation gets larger, so that for a sufficiently large s, this imbues
the desired modulus condition into cycles. Note the following elementary FACT
(¢f. |14, Lemma 3.2]), which amounts to rewriting the definitions: Let A be
a commutative ring with unity, p C A a prime ideal, € A, and u € A\ p.
Then the element (/u of k(p) is integral over A/p if and only if there is a
homogeneous polynomial E(a,b) € Ala,b], which is monic in the variable a,
with E(¢,b) € p in A.

For each I C {1,---,n}, consider the open subset Uy C A¢ x 0" given by the
conditions u; o # 0 for ¢ € I and u; ;1 # 0 for ¢ ¢ I. For i ¢ I, we let y;, =
wio/uin = y; *. Hence, Ur = Spec (Ry), where Ry := klz,t, {yi}ic1, {Fi }ig1],
where z = (21, ,24) and £ = (t1,--- ,t,). On Uy, the divisor F;>° used in
the definition of the modulus condition is given by the polynomial Hz‘g 1 Vs
For an irreducible V € 29(A¢[r]| Dy, n), let V be its Zariski closure in A¢[r] x
0", For a given I, the restriction V N (A%[r] x U;) is given by an ideal of Ry,
say, generated by a finite set of polynomials f{(z,t, {y;}ier, {¥;}igr) € Rr for
A€ AL

By the above FACT and the assumption that V' has the modulus condition,
there is a polynomial E;(a,b) = Er(z,t, {vi}tier, {U; }ier, a,b) € Rr[a, b], homo-
geneous in a, b and monic in a, satisfying the condition inside the ring R;:

(4.1) EI(Hyi,tﬂ) € Z (ff), where 7 = ¢7"* ... ¢,
gl AEA;

If necessary, by multiplying a power of a to E;, we may assume deg E; >
deg, f{, where deg is the homogeneous degree of E; in the variables a,b and
deg; is the total degree with respect to . In doing so, we may further assume
that deg E; is the same for all subset I C {1,--- ,n}. For this choice of degrees,
we let (V) =deg E;. If V is not irreducible, then take the maximum of s(V;)
over all irreducible components V; of V' to define s(V). The heart of the proof
is to show that this number satisfies the assertions of CLAIM, which we do now.
We may assume V is irreducible. For any fixed s > s(V) and g € A%, let V'

be an irreducible component of H; (V) and let V' be its Zariski closure in

Adlr] x Enﬂ, where k = k(g). We use the coordinates (y,y1, -+ ,yn) € ﬁnﬂ,

and for the first 0 = P!, use the homogeneous coordinate (uo;u;) so that
—N
y = ui/ug and ¥ := up/u; = y~ 1. Let v : V" — V be the normalization.
—IN
Note that whether a divisor is effective or not on V' is a Zariski local question

—N —
onV (thus on V/), so we may check the modulus condition Zariski locally
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near any point P € V. Fix a point P. Let I C {1,---,n} be the set points
i such that P does not map to oo € PL of the (i + 1)-th projection vV o<
Al x T 5 O, = PL.

There are two possibilities. In the first case P € A[r] x Al xd", i.e. P does not
map to oo € P! for the first projection to O, the morphism Pk 0 (0g,s x1d[)
A2[r]x At x O™ — A{[r] xO" extends uniquely to A%[r]x A xT" — Ad[r]xO".
Thus, by pulling-back the relation (@I, we obtain in the ring R;[y],

(4'2) E; (2 + y(tﬂ)sga t, {yi}iefa {yi}igfa Hyz’ tﬂ) €
gl
€ (H@+yt™ gt {yitier, {Ti}igr))-

AEAT

Here, the polynomials f1(z + y(t™)°g, {y: ier, {U; }igr) over A € A define the
underlying closed subscheme of the Zariski closure of H; (V') restricted on the
region Spec (R[y]). Due to the choice of the degrees of E; and f{, the relation
([@.2) implies that the rational function [ [, 7;/t™ is integral using FACT. In
particular, V' satisfies the modulus condition in a neighborhood of P.

In the remaining case P ¢ A%[r] x Al x 0", i.e. P does map to oo € P!
for the first projection to O, we use the affine open chart Spec (R;[]) where
uy # 0. The defining ideal of V' N Spec (Rr[¥)) in the ring R;[y] contains the
polynomials ¢§ (£5 L Y, {yi}i€la {yz}igl) = fAI(i =+ %(tm>sgv L {yi}iGIa {yzj”gI) '
yaee=(f i), where A € A;. By expanding the definition of ¢4, we see that it is of
the form

(4.3) oh = 725UV (.t {yiYier, {T; bigr) + (2)°h,  h € R;[g).

Express @) as Er([[;¢; Vi, t™) = Xsen, bafi for some by € Ry. Let ¢y =
gs(v)fdega(fi) -bx (which is in Ry because s(V) > deg,(f1)). Then from (#3),

(4.4) > adh =7V B[] ) + (),

AEAT i1

where (keep in mind that s > s(V)) the right hand side becomes
@1 L 7)Y + @ [Lig )"V 712 + -+ (a7 Y) + (#m)(V)h) -
(tm)s(V) | which we write as E'(Y1ligs Yirt™) for a polynomial E'(a,b) €
Ri[7][a, b], homogeneous in a,b and monic in a. Thus @) is Y\, A% =
E' (Y] Ligr i» t™), which implies that the rational function ][, y;/t™ is in-
tegral on V' N Spec (Rr[y]) using FACT. Thus V' also satisfies the modulus
condition near P. Combining these two cases, we have now proven CLAIM.

Now consider the subgroup 23\/[7“] SX[r]| Dy, n)=* C 23\/[7“] JX[r]|Dm,n) for
s > 0, consisting of cycles V with its threshold s(V) < s (cf. [14, §3.4]). We
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deduce <
Z&V[T],e(X[T”Dmv n) . ing\/[r],e(X[T”Dm’ TL)*S
X[ Dmon) — =5 20y (X [F][Dy, n) <5
Then one has the induced map from H:;VS,
o WX D, )= 2 (XK [ Dy + 1)

s — ,
75 2 (X [P D, )< i) (XE[r][ Dm0+ 1)

which gives a homotopy between the base change pj, Ik and H:;,s|y:1- How-
ever, Hf7‘15|y:1 is zero on the quotient, while pj(/k is injective on homology by
Proposition 3] after taking s — oo, so that the map p*K/k is in fact zero on
homology. This means, the quotient ZgV[r],e(X [7]| Dy, m)/ zf,vm (X [r]| D, n) is
acyclic, proving the moving lemma for X = Az.

STEP 2. If X is a general smooth affine k-variety of dimension d, we use
the standard generic linear projection trick. We choose a closed immersion
X — AY for some N > d and run the steps of §6 of [I7] (with P" replaced by
AN everywhere) mutatis mutandis to conclude the proof of the moving lemma
for X from that of affine spaces. We leave the details for the reader. |

4.2. PROJECTIVE METHOD FOR MULTIVARIATE ADDITIVE HIGHER CHOW
GROUPS. The following theorem generalizes the moving lemma for additive
higher Chow groups of smooth projective schemes [I7, Theorem 4.1] to a gen-
eral setting which includes the multivariate additive higher Chow groups.

THEOREM 4.4. Let (S, D) be a smooth quasi-projective k-variety with an effec-
tive Cartier divisor. Let X be a smooth projective k-variety. Let VW be a finite
collection of locally closed subsets of X. We let W x S := {W x S|W €
W}, Then the inclusion z,, (X %X S|X x D,e) — z9(X X S|X x D,e)
is a quasi-isomorphism. In particular, when m = (mq,---,m,) > 1, and
(S,D) = (A", Dy,), the moving lemma holds for multivariate additive higher
Chow groups of smooth projective varieties over k.

Proof. Most arguments of [17, Theorem 4.1] work with minor changes, so we
sketch the proof.

STEP 1. We first prove the theorem when X = P{. The algebraic group
SLgt+1,r acts on P4 Let K = kE(SL441,%). Then there is a K-morphism
¢ : O — SLgi1 i such that ¢(0) = Id, and ¢(c0) = n, where 7 is the generic
point of SLg11 k. See [I7, Lemma 5.4]. For such ¢, consider the composition
H,, of morphisms

P4 x § x OB 2 pd s § % O 2K P g % O P P xS x O,

where ji(z, 5,51, »Ynt1) = (B(H1)L, 5,91, »Yns1), DUl I8 the projection
dropping y1, and pk/y, is the base change. We claim that H}, carries zf,VXs(IP’d X
S[P? x D,n) to 2, (P4 x S|P% x D,n + 1), ie., for an irreducible cycle
Z € 2, (P x S|P?x S, n), we show that Z' := H}(Z) € zh,, 5(P% x S|P% x
D,n+1).
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To do so, we first claim that Z’ intersects with W x S x Fy properly for each
W € W and each face F' C O"*1,

(1) In case F = {0} x F”’ for some face F’ C (0", because ¢(0) = Id, we have
ZIQ(WXSXFK) ’ZZKQ(WXSXFII() Note that dlm(WXSXFK) =
dim(W x S x FJ;). Hence, codimpy xsx i (Z'N(W x S x F)) = dim(W x S x
Fr)—dim(Z'N(W xSx Fg)) = dim(W x S x Fj. ) —dim(Zg N(W x S x F}.)) =
dim(W xSx F")—=dim(ZN(W x Sx F')) = codimw xsx p (ZN(W x Sx F')) > ¢,
because Z € 2y, (P4 x S|P? x D, n).

(2) In case F' = {oo} x F' for some face F' C 0", dim(W x S x Fg) =
dim(WxSx Fj) and Z'N(WxSx Fk) ~n-(Zx )N(W xSx F}.), where SLgy1
acts on P4 x S x F', naturally on P¢ and trivially on S x F’. Let A := W xS x F’
and B := ZN (P! x S x F'). Thus, codimyxsxry (Z' N (W x S x Fg)) =
dim(W xS x Fg)—dim(Z'N(W x Sx Fi)) = dim(W x S x Fj,) —dim(n-(Zx)N
(W x Sx Fy.)) =" dim(Ax) —dim(n- Bk NAk) = codim,. (n- Bk NAf), where
T holds because ZN A = BN A. By applying [3, Lemma 1.1] to G = SLg11 .,
and the above A, B on X := P% x § x F’ there is a non-empty open subset
U C G such that for all g € U, the intersection (g - A) N B is proper on X. By
shrinking U, we may assume U is invariant under inverse map, sog =n~! € U.
Thus, codima, ((n- Brx) N Ag) > codimuy, (- Bx). Since codimy, (- Bx) =
codimy, By and codimy,, Bx = ¢, we get codimy xsx r (Z'N(W xSX Fk)) =
codimg, ((n- Bx) N Agk) > codimy, Bx = q.

(3) In case F' = O x F’ for some face F’ C ", the projection Z' N (W x
S x O x Fj) — Ok is flat, being a dominant map to a curve, so dim(Z’ N
(W x SxOx Fi)) =dim(Z' N (W xS x {0} x Ff)) + 1. We also have
dim(W x S x O x Fj,) = dim(W x S x {o0} x Fj )+ 1. Hence, we deduce
codimpy x sx Fi (Z' N (W x S X Fg)) = dim(W x S x O x Fg) —dim(Z' N(W x
S x O x Fi)) = codimyy y sx (oo} x Fy, (2" N (W x S x {00} x Ff)) > g, where
1 follows from case (2). This shows Z’ intersects all faces properly.

Now we show that Z’ has modulus P? x D. We drop all exchange of the
factors, for simplicity. For p : P4 — Spec (k), we take V = p(Z) on S x O".
Because Z C p~'(p(Z)) = P" x V, we have 2’ = pi(0f x Z) C pj(P* x
Ok x V) =P x Ok x V:=Z;. By Lemma[Z8, V is admissible on S x (™.
So, p*[V] = P4 x V is admissible on P? x S x [0". In particular, P4 x V has
modulus P? x D. Hence, Z; = P4 x Ok x V also has modulus P4 x D. Now,
7' C Z; shows that Z’' has modulus P¢ x D by Proposition Thus, we
proved Z' € 2}, (P4 x S|PL x D,n +1).

Going back to the proof, one checks that H} : 24(P? x S|P? x D, e) — 29(P% x
S|P? x D,e + 1) is a chain homotopy satisfying 0H*(Z) + H*0(Z) = Zx —
7+ (Zk), and the same holds for zyyx s by a straightforward computation (see
[I7, Lemma 5.6]). Furthermore, for each admissible Z, we have n - Zx €
z{kaxs(]P’C}( x S|P% x D,n), by the above proof of proper intersection of Z’
with W x S x Fg, where F = {oo} x F’ for a face F' C O". Hence, the
base change pj , : 24(P{ x S|P x D, 8)/zy,, o(P§ x S|P x D, o) — 29(P§ x

S|P x D,e)/z},  s(P% x S|P% x D, e) is homotopic to 7 * Pi¢/x> which is
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zero on the quotient. That is, pj, /k Oon the above quotient complex is zero
on homology. However, by the spreading argument (Proposition d.3), pj, n is
injective on homology. (N.B. We used here an elementary fact that k(SLg+1 1)
is purely transcendental over k. To check this fact, first note that by definition
E[SLgy1,k] ~ k{Ti ;11 < 4,5 < d+ 1}]/(det(M) — 1) for the (d + 1,d + 1)-
matrix M = [T};] consisting of indeterminates T; ; for 1 < ,5 < d+ 1. Here
by Cramer’s rule we can write det(M) — 1 = aTy41,4+41 — S — 1, where o =
det(Mgt1.4+1), 8= Zl<j<d(—1)d+1+j det(Mg41,;) and M;; is the (4, j)-minor
of M. Here both a and § do not have Tat1,d+1- Hence k[SLgi1 k] ~ E[{T;;]1 <
i,j <d+1,(i,5) # (d+1,d+1)}, 2], Thus, k(SLay1k) ~ k({Tj;]1 <i,5 <
d+1,(i,5) # (d+1,d + 1)}), which is purely transcendental over k.) Hence,
the quotient complex z7(P? x S|P? x D, e)/z},,. (P4 x S|P% x D, e) is acyclic,
i.e., the moving lemma holds for (P4 x S,P% x D), finishing Step 1.

STEP 2. Now let X be a general smooth projective variety of dimension d. In
this case, we choose a closed immersion X < PY for some N > d. We now run
the linear projection argument of [I7, §6] again without any extra argument
to deduce the proof of the moving lemma for X from that of the projective
spaces. We leave out the details. ([

4.3. CONTRAVARIANT FUNCTORIALITY. The following contravariant functori-
ality of multivariate additive higher Chow groups is an immediate application
of the moving lemma and the proof is identical to that of [I7, Theorem 7.1].

THEOREM 4.5. Let f : X — Y be a morphism of k-varieties, with Y smooth
affine or smooth projective. Let r > 1 and m = (mq,--- ,m,) > 1. Then there
exists a pull-back f* : CHY(Y[r]|Dm,n) — CHYX[r]| Dy, n).

If g 1Y — Z is another morphism with Z smooth affine or smooth projective,
then we have (go f)* = f*o g*.

Remark 4.6. As a special case, when r = 1, we have the pull-back map f* :
TCHY(Y,n;m) — TCHY(X, n;m).

4.4. THE PRESHEAF TCH. For the rest of the section, we concentrate on
additive higher Chow groups. Let m > 0. By Theorem EJ we see that
Ty, = TCH?(—,n;m) is a presheaf of abelian groups on the category
SmAff;, but we do not know if it is a presheaf on the categories Smy or
Schy,. However, we can exploit Theorem further to define a new presheaf
on Smy and Schy. The idea of this detour occurred to the authors while
working on [20]. We do it for somewhat more general circumstances.

Let C be a category and D be a full subcategory. Let F' be a presheaf of
abelian groups on D, i.e. F : D°° — (AB) is a functor to the category of
abelian groups. For each object X € C, let (X | D) be the category whose
objects are the morphisms X — A in C, with A € D, and a morphism from
hy: X — Ato hy: X — B, with A, B € D, is given by a morphism g: A — B
in C such that g o hy = he. The functor F' : D°® — (AB) induces the functor
(X { D)°P — (AB) given by (X LN A) — F(A), also denoted by F.
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DEFINITION 4.7. Suppose that for each X € C, the category (X | D) is cofil-

tered. Then define F(X) := colim F.
(X{D)er

In particular, when C = Schy and D = SmAff;, one checks that (X |
SmAff) is cofiltered, and for X € Schyg, we define TCHI(X,n;m) =

colim

q
(X|SmAfF,)or

PROPOSITION 4.8. Let C be a category and D be a full subcategory such that for
each X € C, the category (X | D) is cofiltered. Let F be a presheaf of abelian
groups on D and let F be as in Definition [{.7

Let f: X — Y be a morphism in C. Then for X € C, the association X —
F(X) satisfies the following properties:

(1) There is a canonical homomorphism ax : F(X) — F(X).

(2) If X € D, then ax is an isomorphism, and o : F — F defines an
isomorphism of presheaves on D.

(3) There is a canonical pull-back f*: F(Y) — F(X). Ifg: Y — Z is an-
other morphism in C, then we have (gof)* = f*og*. So, F is a presheaf
of abelian groups on C. In particular, TCHY(—,n;m) is a presheaf
of abelian groups on Schy, which is isomorphic to TCHY(—,n;m) on
SmAfT;.

Proof. (1) Let (X LN A) € (X | D)°P. By the given assumption, we have
the pull-back h* : F(A) — F(X). Regarding F'(X) as a constant functor on
(X | D)°P, this gives a morphism of functors F' — F(X). Taking the colimits
over all h, we obtain F(X) — F(X), where ax = colimj, h*.

(2) When X € D, the category (X | D)°P has the terminal object Idx : X —
X. Hence, the colimit F(X) is just F'(X).

(3) A morphism f: X — Y in C defines a functor f*: (Y | D)°P — (X | D)°P
given by (Y A A)— (X Ly™ A). Thus, taking the colimits of the functors
induced by F', we obtain f* : F(Y) — F(X). For another morphismg:Y — Z,
that (go f)* = f* og* can be checked easily using the universal property of the
colimits.

In the special case when C = Schy, and D = SmAff;, with F' = TCH?(—, n;m),
by Theorem 5 we know that F' is a presheaf on SmAff,. So, the above general
discussion holds. |

Remark 4.9. Since additive higher Chow groups have pull-backs for flat maps
(see [16, Lemma 4.7]), it follows that for X € Smy, a(_) defines a map of
presheaves TCHY(—,n;m) — TCH?(—,n;m) on the small Zariski site Xz,, of
X. Proposition [£.8(2) says that this map is an isomorphism for affine open
subsets of X. Thus, this map of presheaves on Xz, induces an isomorphism
of their Zariski sheafifications.

4.5. MOVING LEMMA FOR SMOOTH SEMI-LOCAL SCHEMES. One remaining ob-
jective in Section Ml is to prove the following semi-local variation of Theorem

AT
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THEOREM 4.10. Let Y € SmLocy. Let W be a finite set of locally closed
subsets of Y. Then the inclusion Tz, (Y,e;m) — Tz(Y,e;m) is a quasi-
isomorphism.

We begin with some basic results related to cycles over semi-local schemes.
Recall that when A is aring and ¥ = {p1,--- ,pn} is a finite subset of Spec (A),
the localization at X is the localization A — S~1A, where S = ﬂf.vzl(A \ pi)-
For a quasi-projective k-scheme X and a finite subset ¥ of (not necessarily
closed) points of X, the localization Xy is defined by reducing it to the case
when X is affine by the following elementary fact (see [25, Proposition 3.3.36])
that we use often.

LEMMA 4.11. Let X be a quasi-projective k-scheme. Given any finite subset
> C X and an open subset U C X containing %, there exists an affine open
subset V.C U containing X..

For X € Schy and a point € X, the open neighborhoods of x form a cofiltered
category and we have functorial flat pull-back maps (j})* : Tz%(V,n;m) —
Tz%(U,n;m) for ji; : U < V in this category.

LEMMA 4.12. Let X € Schy and let x € X be a scheme point. Let Y =
Spec (Ox ). Then we have colim,ey Tz?(U, n;m) — Tz(Y,n;m), where the
colimit is taken over all open neighborhoods U of x.

Proof. Replacing x by an affine open neighborhood of z € X, we may assume
that X is affine and write X = Spec (A). Let p, C A be the prime ideal that
corresponds to the point z and let S := A\ p,, so that Y = Spec (S~1A). To
facilitate our proof, using the automorphism y ~ 1/(1 —y) of P!, we identify
O with A! and take {0,1} C A! as the faces. So, X x B,, = X x Al x A"~! =
Spec (A[ta Y1, ayn—l])'

Let o € Tz(Y,n; m). We need to find an open subset U C X containing x such
that the closure of o in U x A! x A"~! is admissible. For this, we may assume
a is irreducible, i.e., it is a closed irreducible subscheme Z C Y x Al x A”~1,
Let Z be its Zariski closure in X x A! x A"~ Let p be the prime ideal of
B := Alt,y1, -+ ,Yn—1] such that V(p) = Z.

For the proper intersection with faces, let ¢ C B be the prime ideal (y;, —
€1, ,Yi, —€s), where 1 <i; <--- <iy<n—1ande; €{0,1}. Let P be a
minimal prime of p 4+ q. One checks immediately from the behavior of prime
ideals under localizations that there is a € S such that either BBla~!] = Bla™!]
or ht(PBla~']) > g+ s. This means, over Uy := Spec (A[a"']), either the
intersection of 7Uq with V'(q) is empty, or has codimension > g + s. Applying
this argument to all faces, we can take U; := ﬂq Uy. Then Zy, intersects all
faces of Uy x Al x A"~1 properly.

For the modulus condition, let v : ZV — Z < X x P! x (P)"~! be the nor-
malization composed with the closed immersion of the further Zariski closure
Z of Z. Let F* = """y, = oo} be the divisor at infinity. For an open
set j : U = X, the modulus condition of Zyy means (m + 1)[j*v*{t = 0}] <
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[7*v*(F2°)] on 2{}’ . Note that there exist only finitely many prime Weil divi-
sors Py, -+, Py on ZN such that ordp, (v* (E°)—(m+1)v*{t =0}) < 0. Their
images @; under the normalization map ZN - 7 are still irreducible proper
closed subsets of Z, thus of X x P! x (P1)"!. Since Z = Zy has the modulus
condition on Y x B, by the given assumption, we have (Y x En) nNQ; =0
for each 1 < i < {. Thus, there is an affine open subset Uy C X containing x
such that (Uz x En) NQ; = 0 for each 1 < i < £. Now, by construction, 7U2
on U, x B, satisfies the modulus condition. So, taking an affine open subset
U C Uy NUy containing =, we have Zy € Tz%(U,n;m). That (Zy)y = Z is
obvious. |

We can extend this colimit description to semi-local schemes:

LEMMA 4.13. Let Y be a semi-local k-scheme obtained by localizing at a finite
set X of scheme points of a quasi-projective k-variety X. For a cycle Z on
Y x B, let Z be its Zariski closure in X x B,.

Then Z € Tz (Y, n;m) if and only if there exists an affine open subset U C X
containing ¥, such that Zy € T2z%(U, n;m), where Zy is the pull-back of Z via
the open immersion U — X.

Proof. The direction (<) is obvious by pulling back via the flat morphism
Y < U. For the direction (=), by Lemma I2] for each z € ¥ we have an
affine open neighborhood U, C X of z such that Zy, € Tz%(U,,n;m). Take
W = Ugex; Uz. This is an open subset of X containing ¥. By Lemma 2.9 we
have Zy € Tz?(W,n;m). On the other hand, by Lemma EIT] there exists an
affine open subset U C W containing Y. By taking the flat pull-back via the
open immersion U — W, we get Zy € Tz (U, n;m). |

LEMMA 4.14. Let' Y be a semi-local integral k-scheme obtained by localizing at
a finite set X2 of scheme points of an integral quasi-projective k-scheme X . Let
Z € T24(Y,n;m), W € Tz4(Y,n+1;m), and let Z, W be their Zariski closures
i X X B, and X x B,41, respectively. For every open subset U C X, the
subscript U means the pull-back to U. Then we have the following:

(1) If 0Z =0, we can find an affine open subset U C X containing ¥ such
that Zyy € Tz9(U,n;m) and 0Zy = 0.

(2) If Z = OW, we can find an affine open subset U C X containing ¥
such that Zy € Tz9(U,n;m), Wy € Tz9(U,n+1;m) and Zy = OWy.

Proof. Note that (1) is a special case of (2), so we prove (2) only. Let Z’ :=
Z — 0W € 29(X x B,). If Z'is 0 as a cycle, then take Uy = X. If not,
let Z7,---,Z. be the irreducible components of Z’. Since Z = W, each
component Z! has empty intersection with Y x B,,. So, each m((Z})°) is a non-
empty open subset of X containing 3, where 7 : X x B,, — X is the projection,
which is open. Take Uy = (;_, 7((Z])°).

On the other hand, Lemma [£.13] implies that there exist open sets Uy, Us C X
containing ¥ such that Zy, € Tz%(Uy,n;m) and Wy, € Tz9(Ug,n + 1;m).
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Choose an affine open subset U C Uy N U; N Uy containing ¥, using Lemma
11l Then part (2) holds over U by construction. O

Proof of Theorem[{.10L We show that the chain map Tzj,(Y,e;m) <
Tz4(Y, e;m) is a quasi-isomorphism. Let X be a smooth affine k-variety with
a finite subset ¥ C X such that Y = Spec (Ox x).

For surjectivity on homology, let Z € Tz(Y,n;m) be such that 9Z = 0.
Let Z be the Zariski closure of Z in X x B,,. Here, 9Z may not be zero,
but by Lemma [T4{(1), there exists an affine open subset U C X containing
¥ such that we have 0Zy = 0, where Zy is the pull-back of Z to U. Let
Wy = {Wy|W € W}, where Wy is the Zariski closure of W in U. Then
the quasi-isomorphism Tz?,vU (U,o;m) — Tz?(U, e;m) of Theorem [4.1] shows
that there are some C' € Tz?(U,n + 1;m) and Z;; € Tz, (U, n;m) such that
0C = Zy — Z};. Let v : Y < U be the inclusion. So, by applying the
flat pull-back ¢* (which is equivariant with respect to taking faces), we obtain
0(*C) = Z — v*Zy;, and here .*Z[; € Tz{,,(Y,n;m), i.e., Z is equivalent to a
member in Tz, (Y, n;m).

For injectivity on homology, let Z € Tzj,,(Y,n;m) be such that Z = 92’ for
some Z' € Tz4(Y,n + 1;m). Let Z and 7' be the Zariski closures of Z and Z’
on X x By, and X X By, 1, respectively. Then by Lemma [LT4Y(2), there exists a
nonempty open affine subset U C X containing ¥ such that Zy = 87IU. Then
the quasi-isomorphism Tz?,vU (U,o;m) — Tz?(U, e;m) of Theorem [4.1] shows
that there exists Z” € Tz}, (U,n + 1;m) such that Zy = 0Z". Pulling back
via ¢ : Y < U then shows Z = 9(.*Z"), with .*Z" € Tz},,(Y,n + 1;m). O

Using an argument identical to Theorem [.5] (see [I7, Theorem 7.1]), we get:

€ss

COROLLARY 4.15. Let f : Y1 — Y2 be a morphism in Schy~, where
Y2 € SmLocy. Then there is a natural pull-back f* : TCHY(Ya,n;m) —
TCHY(Y1,n;m).

5. THE PONTRYAGIN PRODUCT

Let R be a commutative ring and let (A,d4) be a differential graded algebra
over R. Recall that (left) differential graded module M over A is a left A-
module M with a grading M = ®,czM, and a differential dj; such that
A M, C Mpin, dy(M,) C Myt and das(az) = da(a)x + (—1)"adpy (2)
for a € A, and * € M. A homomorphism of differential graded modules
f:M — N over A is an A-module map which is compatible with gradings and
differentials.

In this section, we show that the multivariate additive higher Chow groups
have a product structure that resembles the Pontryagin product. We construct
a differential operator on these groups in the next section and show that the
product and the differential operator together turn multivariate additive higher
Chow groups groups into a differential graded module over W,,Q% for suitable
m, when X = Spec (R) is in SmAfF;™. This generalizes the DGA-structure on
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additive higher Chow groups of smooth projective varieties in [I9]. The base
field k is perfect in this section.

5.1. SOME CYCLE COMPUTATIONS. We generalize some of [19, §3.2.1, 3.2.2,
3.3]. Let (X, D) be a k-scheme with an effective divisor.

Recall that a permutation o € &,, acts naturally on 0" via o(y1,- -+ ,Yn) :=
(Yo(1), "+ »Yo(ny)- This action extends to cycles on X x 0" and X x o".

Let n,r > 1 be given. Consider the finite morphism x, , : X xO" — X x O"
given by (z,y1, - ,Yn) — (x,9],y2, - ,yn). Given an irreducible cycle Z C
X x O, define Z{r} = (onr)a((2]) = [5(Z) = kCenn(Z))] - [nr(Z)]. We
extend it Z-linearly.

LEMMA 5.1. If Z is an admissible cycle with modulus D, then so is Z{r}.

Proof. The proof is almost identical to that of [19, Lemma 3.11], except that
the divisor (m + 1){t = 0} there should be replaced by D x T". We give its
argument for the reader’s convenience.

We may assume Z is irreducible. It is enough to show that x,, ,(Z) is admissible
with modulus D. We first check that it satisfies the face condition of Definition
2.3 When n = 1, the proper faces of [0 are of codimension 1, and for ¢ €
{0,000}, we have 95 (xn,r(Z)) = r0§(Z). When n > 2, for € € {0,000}, we have
05 (xXnr(2)) = r05(Z) and O (xn,r(Z)) = Xn-1,-(05(Z)) if i > 2. For faces
F c O of higher codimensions, we consequently have F-(x, »(Z)) = r(F-Z) if
F involves the equations {y1 = ¢}, and F- (xnr(Z)) = Xn-cr(F-Z), otherwise,
where c is the codimension of F. Since the intersection F'- Z is proper, so is
Xn—e,r(F + Z) by induction on the codimension of faces. This shows xy r(2)
satisfies the face condition.

To show that W := x,, (Z) has modulus D, consider the commutative diagram

V7 x O

where 7, W are the Zariski closures of Z and W in X x [ and vy, vy are the
respective normalizations. The morphisms Xy r, X, , are the natural induced
maps, and Yflv, , is induced by the universal property of normalization. Since Z
has modulus D, we have the inequality

-

Il
—

(5.1) i (DO <Y Wiy =1}

K2

By the definition of X, ., we have x;; .(D x 0" = b x0O", Xy = 1} >
{y1 = 1}, and x;, . {yi = 1} = {y; = 1} for i > 2. Hence (E.) implies that
X (D x O] < S0 Wiy {yi = 1}]. By the commutativity of the
diagram, this implies that %, " (1, viy tiy v = 1} = vyeiy (D xT7)) 2 0.
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By Lemma 7 this implies Y7 vy el {yi = 1} — vy 3y (D x O") > 0, which
means W has modulus D. This completes the proof. O

Let n,i > 1. Suppose X is smooth quasi-projective essentially of finite type
over k. Let (z,y1, " ,Yn,y, A) be the coordinates of X x "%, Consider the
closed subschemes Vi on X x [0""2 given by the equation (1—y)(1—X\) = 1—y;
ifi=1and (1-y)(1-N) = L—y)A+yi+- 4y = AL+y +--+yi2)
if i > 2.

Let XA/)Z( be the Zariski closure of Vi in X x 0", Let m o X X [
X x T be the projection that drops yi, and let 7} := 7r1|V;'(. As in [19]
Lemma 3.12], one sees that 7] is proper surjective. For an irreducible cycle
Z C X x O, define (see [19, Definition 3.13]) 7% := 71, (VL - (Z x 0?)) as
an abstract algebraic cycle. One checks that it is also the Zariski closure of
v (Z x O), where v* : X x 0" x 0 — X x O is the rational map given by

Y=y

vy, Yns ) = (T,92,93, 5 Ynsy Y, ” yi,l). We extend the definition of
—9

%, Z-linearly.
LEMMA 5.2. Let Z € 29(X|D,n). Then ~% € 29(X|D,n + 1).

Proof. Once we have Lemma .1l the proof of Lemma is very similar to
that of [19, Lemma 3.15], except we replace (m + 1){t =0} by D x T We
give its argument for the reader’s convenience.
We may assume Z is irreducible. To keep track of n, we write 7271 =L, We
first check that it satisfies the face condition of Definition Let € € {0, 00}.
Let F C O""! be a face. If F involves the equation {y; = €} for j =n,n + 1,
then by direction computations, we see that d;(v%,,) = - Z,0),,1(7%,) =
o - (Z{i}) for the cyclic permutation o = (1,2,---,n), and 9;°(v},,) = 0,
%1 (7g.,) = 0 - (Z{i —1}). Since Z is admissible with modulus D, so are
Z{i} and Z{i — 1} by Lemma Bl In particular, all of o - Z,0 - (Z{i}), and
o - (Z{i—1}) intersect all faces properly. Hence 7}, intersects F' properly.
In case F' does not involve the equations {y; = €} for j = n,n + 1, we prove
it by induction on n > 1. By direction calculations, for j < n, we have
5(Vym) = 72,; Zn_1 SO that the dimension of 9%(v} ) is at least one less by
the induction hypothesis. Repeated applications of this argument for all other
defining equations of F' then give the result.
It remains to show that 4% has modulus D. Every irreducible component of
7% is of the form W’ = 7} (Z'), where Z' is an irreducible component of V¥ -
(Z x 0%). We prove W’ has modulus D. Consider the following commutative
diagram
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. - i - Y .
where vz is the normalization of the Zariski closure Z of Z’ in Vi, v is

the normalization of the Zariski closure W of W’ in X x ﬁn+1, and 7,
7 are the induced morphisms. We use (z,y1, " ,¥n, ¥y, A) € X X 0" and

(92, ,Yn,y,A) € X X """ as the coordinates. From the modulus D
condition of Z, we deduce

(5.2) vy (D X ﬁn+2) < ZV},L*{% =1}.
j=1

Note that the above does not involve the divisors {y = 1} and {\ = 1}. Since
Vi is an effective divisor on X x 00"*2 defined by the equation (1 — y1)(x) =
(1 —y)(1 — A) for some polynomial (%), we have [v5,*{y1 = 1}] < v {y =
]+ et (A = 1)1 *

Since the above diagram commutes, from ([5.2) we deduce 7 v*i},/ (D x
g < o (2?22 vy =1+ {y=11+{\ = 1}) Hence by Lemma

277, we deduce v*ify, (D x ﬁnH) <Y viupdyy =1 H{y =1+ {A =1},

which means W’ has modulus D. This finishes the proof. O

LEMMA 5.3. Let n > 2 and let Z € z9(X|D,n) such that 0(Z) = 0 for all
1<i<nande€ {0,00}. Let 0 € S,,. Then there exists vy € z9(X|D,n+1)
such that Z = (sgn(o))(o - Z) + 0(v%).

Proof. Tts proof is almost identical to that of [19) Lemma 3.16], except that
we use Lemma instead of [19, Lemma 3.15]. We give its argument for the
reader’s convenience.

First consider the case when o is the transposition 7 = (p,p + 1) for 1 <
p<n-—1 Wedo it for p = 1 only, i.e. 7 = (1,2). Other cases of 7 are
similar. Let & be the unique permutation such that & - (z,y1, - ,Ynt+1) =
(T, Yns Y1, Ynt1, Y2, »Yn—1). Consider the cycle 7% := £ - v}, where 7% is as

in Lemma[5.2] Being a permutation of an admissible cycle, so is this cycle ’yg.
Furthermore, by direction calculations, we have 95°(v%) = 0, (1) =7 - Z,
05°(v%) = 0 and 99(v%) = Z. On the other hand, for ¢ € {0,00}, 95(v%)
is a cycle obtained from 755( 7) by a permutation action. So, it is 0 because
05(Z) = 0 by the given assumptions. Similarly for j > 4, we have 95(v;) = 0.
Hence 0(v}) = Z + 7 - Z, as desired.

Now let 0 € G,, be any. By a basic result from group theory, we can express
0 = T Tr—1-+-TaT1, where each 7; is a transposition of the form (p,p + 1)
as considered before. Let o9 := Id and oy := 7yry_1---7 for 1 < £ < r.
For each such ¢, by the previous case considered, we have (—1)*"loy_; - Z +
(- o001 - Z = 8((71)4’172271_2). Since 7y - 0y_1 = 0y, by taking the
sum of the above equations over all 1 < ¢ < r, after cancellations, we obtain
Z+ (=10 Z = 9(v%), where 7§ := Y, (—1)""147¢ . Since (—1)" =
sgn(o), we obtain the desired result. O
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5.2. PONTRYAGIN PRODUCT. Let X € Sch;™ be an equidimensional scheme.
For m = (mq,--- ,m,) > 1, let CH(X[r]|Dp) := ®qnCHYX[r]|Dm,n). For
m > 1, we let TCH(X;m) = ®,,TCHY(X,n;m) = &, ,CHY(X[1]|Dpt1,n —
1). The objective of §5.2is to prove the following result which generalizes [19]
83].
THEOREM 5.4. Let k be a perfect field. Let m > 0 and let m = (mq,--- ,my) >
1. Let X,Y be both either in SmAfT® or in SmProj,. Then we have the
following:
(1) TCH(X;m) is a graded commutative algebra with respect to a product
Ax.
(2) CH(X[r]|Dm) is a graded module over TCH(X;|m| — 1).
(3) For f 'Y — X with d = dimY — dimX, f* : CH(X[r]|Dp) —
CH(Y[r)|Dw) and f. : CH(Y[r]|Dy) — CH(X[r]|Dwm)[—d] (if [ is
proper in addition) are morphisms of graded TCH(X; |m|—1)-modules.

The proof requires a series of results and will be over after Lemma [5.13]

LEMMA 5.5. Let X1, X5 € Schy®. Fori=1,2 andr; > 1, let V; be a cycle on
X; x A" x O™ with modulus m; = (M1, -+, M4y, ), Tespectively. Then Vi X Va,
regarded as a cycle on X1 x Xg x AT1772 x (™12 gfter q suitable exchange of
factors, has modulus (my,ms,).

Proof. We may assume that Vi and V5 are irreducible. It is enough to show
that each irreducible component W C V; x V4 has modulus (m,,m,). Let
1t Vi X; X AT x 0" be the Zariski closure of Vi, and let 2o Vﬁv — V., be
the normalization for ¢ = 1, 2. Since k is perfect, [16, Lemma 3.1] says that the
morphism v := Uy XUy, - Viv XV;V — V1xVsy =V; x Vs is the normalization.
Hence, the composite WN MWW SV, x V3, where W is the Zariski closure of
N N N __ — — J—

W and vy is the normalization of W, factors into wh S Viv X V;v L V1xVs,
where ¢V is the natural inclusion. .

Let (tla o atha /15 o ati‘gayla o ;yn1+n2) € AT1+T2 X Dn1+n2 be the coor-
dinates. Consider two divisors D' := > {y; = 1} — Y7L, my{t; =
0},D? = M2 fy; = 1} — 3272 my;{tj = 0}. By the modulus con-
ditions satisfied by V; and Vz, we have ((t1 x 1) o (v, x 1))*D' > 0 and
((1 x 12) o (1 x 147,))*D? > 0. Thus, we have v* (11 X 12)*(D' + D?) > 0 on
Viv XV;V so that (¢:™)*v* (11 x 12)*(D*+D?) > 0 on W, Since tovy =voiv,
this is equivalent to v, ¢* (11 X Lg)*(D1 + D2) > 0, which shows W has modulus
(my, my). O

DEFINITION 5.6. Let » > 1 be an integer and define pu : X7 x Al x O™ x
X2 x AT x O — X1 X X2 x AT x DnlJrnz by (ZL'l,t, {yj}) X (1‘2, {tz}, {y_;}> —>
($1, L2, {tti}a {yj}’ {y;})

The map p is flat, but not proper. But, the following generalization of [19]
Lemma 3.4] gives a way to take a push-forward:
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PROPOSITION 5.7. Let Vi € X1 x Al x O™ and Vo C Xo x A” x O™ be closed
subschemes with moduli m and m > 1, respectively. Then p|v, xv, is finite.

Proof. Since p is an affine morphism, the proposition is equivalent to show that
wlv, xv, 18 projective.

Set X = X1 x XoxOmtm2 Let I' & X7 x Xo x Al x A” x A" x Om+m2 =
X x A' x A" x A" denote the graph of the morphism p and let T' < X x
Pl x (P x (PYH)™ = X x Py x P, X P3 be its closure, where P; = P! and
Py = P3 = (PY)". Let p; be the projection of X x P! x (P1)" x (P!)" to X x P,
for 1 << 3. Set = p3 (X x A"). Then p3 : T & X x A" is projective.
Using the homogeneous coordinates of P; x P, x P3, one checks easily that
7 :=T°\T' ¢ EU(!_, E;) (the union is taken inside X x P, x Py x Ps), where
E=Xx{oo}x({0})"xA" and E; = X x {0} x ((P!)"~! x {oo} x (P1)"~%) x A".
Let V= V; x V5. Let I'y be the graph I restricted to V' and let Ty be its Zariski
closure in X x P; X P, x P3. Since p3 : TW = X x A" is projective, so is the
map f?, =Ty AT — X x A" So, if we show f?/ NZ=0,then V ~Ty = f?/
is projective over X x A", which is the assertion of the proposition.

To show f?/ N Z = 0, consider the projections X x P, x Pa x Py 23 X x Py &
X, x Py x 0", Since the closure V; has modulus m > 1 on X7 x P; x O™, we
have V1 N (X1 x {0} x O™) = . In particular, ['y N E; < (7 op1) 1 (V1N
(Xp x {0} xOm))=0for 1 <i<r.

To show that f?/ N E = 0, consider the projections X x P; x P, x P3 &3
X x P, BB Xy x P, x O"2. Since the closure Vs has modulus m > 1 on
Xy x Py x "2, we have Vo N (Xo x ({0})" x O0"2) = (). In particular, 'y NE —
(ma 0 p2)~H(Van (Xa x ({0})" x O"2)) = (). This finishes the proof. O

LEMMA 5.8. Let X € Schi™® and let V be a cycle on X x At x A" x 0" with
modulus (|m|,m), where m = (mq,--- ,m,) > 1. Suppose ul|y is finite. Then
the closed subscheme p(V) on X x A™ x O™ has modulus m.

Proof. This is a straightforward generalization of [I9, Proposition 3.8] and is a
simple application of Lemma[Z7l We skip the detail. We only remark that it is
crucial for the proof that the A'-component of the modulus is at least |m|. [

DEFINITION 5.9. For any irreducible closed subscheme V' C X x Al x A" x ("
such that p|y : V' — p(V) is finite, where y is as in Definition [5.6] define p. (V)
as the push-forward p. (V) = deg(p|v) - [4(V)]. Extend it Z-linearly.

If V; is a cycle on X7 x A! x O™ and V5 is a cycle on X» x A" x (1”2 such that
ivy xv, is finite, we define the external product Vi x, Vo := p (Vi x V). If
p; = dim V;, then dim(Vi x,, Vo) = p1 + pa2. If X1 X X5 is equidimensional and
if g; is the codimension of V;, then Vi x, V2 has codimension q; + ¢2 — 1.

LEMMA 5.10. Let Vi € 29 (X1[1]|Dm,n1) and Vo € 22(X3[r]|Dum,n2) with
X1, Xo € Schy™ and m,m > 1. Then Vi x, Vs intersects all faces of X; x
Xo x A" x O™ +t"2 properly.
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Proof. We may assume that V; and V5 are irreducible. Vi x V4 clearly intersects
all faces of X x X x Al x A” x O™ *72 properly. It follows from Proposition (.7
that p|v, xv, is finite. In this case, the proper intersection property of (V7 x,,
V4) follows exactly like that of the finite push-forwards of Bloch’s higher Chow
cycles. O

COROLLARY 5.11. Let X1, X2, X3 € Sch}™® be equidimensional and let m > 1.
Then there is a product

et 2 (X0 [1]| Dy 1) © 29 (Xo[r]| Dy iz) =
— qu+qz71((X1 X XQ)[THDﬂ, ny + 712)

which satisfies the relation 0(§ x, n) = 0(§) X, n+ (=1)™¢& x, 0(n). It
is associative in the sense that (a1 X, o) X, B = o1 X, (ag X, B) for
a; € 2%(X;[1]| D)), i) for i = 1,2 and B € 2% (X3[r]|Dm,n3). In particu-
lar, it induces operations x,, : CH" (X1[1]| D)y, n1) ® CH? (X3[r]| Dy, n2) —
CHq1+q2_1((X1 X XQ)[?"“Dﬂ,nl + 712).

Proof. The existence of x, on the level of cycle complexes follows from the
combination of Proposition[5.7] Lemma[5.8land Lemma 510l The associativity
follows from that of the Cartesian product x and the product p : A x Al — Al
By definition, one checks (€ xn) = 9(§) x n+ (—1)"1& x d(n). So, by applying
i+, we get the required relation. That X, descends to the homology follows. [

DEFINITION 5.12. Let m = (mq,---,m,) > 1 and let X be in SmAff;™
or in SmProj,. For cycle classes a; € CH”(X[1]|D|p),n1) and az €
CH® (X [r]|Dm, n2), define the internal product a1 Ax aa to be A% (a1 X, a2)
via the diagonal pull-back A% : CH®T2~ (X x X)[r]|Dp,n1 + na) —
CH? T~ (X[r]| Dy, n1 + n2). This map exists by Theorem and Corol-
lary .15

LEMMA 5.13. Ax is associative in the sense that (a1 Ax a2) Ax B = a1 Ax
(2 Ax B) for an,a0 € CH(X[1]|D)y,) and B € CH(X[r]|Dp). Ax is also
graded-commutative on CH(X[1]|D)p,).

Proof. The associativity holds by Corollary BTl For the graded-
commutativity, first note by Theorem that we can find representatives
a1 and as of the given cycle classes whose codimension 1 faces are all triv-
ial. Let o be the permutation that sends (1,---,n1,n; +1,--- ,n1 + n2) to
(n1 +1,---,n1 +na,1,--- ,n1) so that sgn(o) = (—1)"*"2. Tt follows from
Lemma B3] that oy Ax az = (=1)"T2a5 Ax oy + (W) for some admissible
cycle W, as desired. O

Proof of Theorem[5.J) The proof of (1) and (2) is just a combination
of the above discussion under the observation that TCHY(X,n;m) =
CHY(X[1]|Dpm+1,n —1) for m > 0 and n > 1. To prove (3) for f*, consider the
commutative diagram
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(5.3) Y[l xO"25% (v x YV)[r] x 0" <22 (Y x Y)[r +1] x O"

lf lfxf lfxf
X[r] x 07 23 (X x X)[r] x O" (X x X)[r + 1] x O".

There is a finite set W of locally closed subsets of X such that
[0 (X[ D) = 22(Y[1]|Djyy),e) and f* 0 205(X[r]|Dp,e) —
2%2(Y'[r]| Dy, ®) can be defined as taking cycles associated to the inverse images.
Moreover, it is enough to consider the product of cycles in z}5,(X[1]| D)y, ®)
and 205 (X[r]|Dm, ®) by the moving lemmas Theorems EI] and L4l For irre-
ducible cycles Vi € 29 (X[1]|Djpy,n1) and Vo € 2%(X[r]|Dp, n2), the map
py is finite when restricted to f*(V1) x f*(Va2) by Lemma 7l In particular,
iy (7 (V1) X f*(V2)) € 2054 1((Y X Y)[r]| Dy s + 1)

Since the right square in the diagram (B3] is transverse, it follows that
flux(Va x V2)) = uy (f*(V1) x f*(V2)) as cycles. The desired commuta-
tivity of the product with f* now follows from the commutativity of the left
square in (B3] and the composition law of Theorem

The proof of (3) for f, is just the projection formula, whose proof is identical to
the one given in [19, Theorem 3.19] in the case when X1, X2 € SmProj,. O

As applications, we obtain:

COROLLARY 5.14. Let X be in SmAfE® or in SmProj,. Then for ¢,n >0
and m > 1, the group CHY(X[r]|Dp,n) is a W (| —1)(k)-module.

Proof. Applying Theorem [5.4] to X and the structure map X — Spec (k),
it follows that CH(X[r]|Dy,) is a graded module over TCH(k;|m| — 1). By
Corollary .10} this yields a TCH'(k, 1;|m| — 1)-module structure on each
CHY(X[r]|Dm,n). The corollary now follows from the fact that there is a
ring isomorphism W,, (k) = TCH'(k,1;m) for every m > 1 by [28, Corol-
lary 3.7]. O

We can explain the homotopy invariance of the groups CHY(X,n) in terms of
additive higher Chow groups as follows.

COROLLARY 5.15. For X € Schy™® which is equidimensional and for g,n > 0,
we have CHY(X[1]|Dy,n) = 0.

Proof. By Corollary 11l we have a map x, : CH'(pt[l]|D1,0) ®
CHY(X[1]|Dy,n) — CHY(X[1]|D1,n) and it follows from the definition of x,
that [1] x, o = « for every a € CHY(X[1]|Dy,n), where [1] € CH'(pt[1]| Dy, 0)
is the cycle given by the closed point 1 € Al(k). It therefore suffices to show
that the homology class of 1 is zero. To do so, we may use the identification
(0,{0,0}) ~ (A',{0,1}) given by y — 1/(1 — y) again. Then the cycle
C C A? given by {(t,y) € A2|ty = 1} is an admissible cycle in z!(pt[1]|Dy,1)
such that 01 ([C]) = [1] and 9y([C]) = 0. O
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6. THE STRUCTURE OF DIFFERENTIAL GRADED MODULES

In this section, we construct a differential operator on the graded module of
g8l of multivariate additive higher Chow groups over the univariate additive
higher Chow groups, generalizing [19, §4]. We assume that k is perfect and
char(k) # 2.

6.1. DIFFERENTIAL. Let X be a smooth quasi-projective scheme essentially of
finite type over k. Let » > 1 and let m = (my,---,m,) > 1. Let (G],)* :=
{(t1, -+ ,t;) € GI, | t1---t, # 1}. Consider the morphism 6, : (G},)* x O™ —
Gl < O (b1, oty g1, s Yn) = (E1, o by ﬁ,yl, -+, Yn). It induces
8n: X x (GI)* x O™ — X x G, x O+

Recall a closed subscheme Z C X x A" x [1"™ with modulus m does not intersect
the divisor {¢1---t, = 0}. So, it is closed in X x G}, x O". For such Z, we
define Z* := Z|x x(cr,)x xOn-

LEMMA 6.1. For a closed subscheme Z C X x A" x (O™ with modulus m, the
image 8,(Z*) is closed in X x GI, x ("L,

Proof. 1t is enough to show that &, : X x (G7))* xO" — X xG7, x 0" isa
closed immersion. It reduces to show that the map (G7,)* — GT, x (P'\ {1})

given by (t1,--+,t.) — (1, ,tp, 1/(t1---t.)) is a closed immersion. This is
obvious because the image coincides with the closed subscheme given by the
equation t1 - - - t,y = 1, where (¢1,--- ,t,,y) € G, x O are the coordinates. O

DEFINITION 6.2 (¢f. [19, Definition 4.3]). For a closed subscheme Z C X X
A" x O™ with modulus m, we write 6,,(Z) := §,(Z*). If Z is a cycle, we define
0n(Z) by extending it Z-linearly. We may often write §(Z) if no confusion
arises.

LEMMA 6.3. Let Z be a cycle on X x A" x O™ with modulus m. Then 6,(2)
is a cycle on X x AT x O™ with modulus m.

Proof. We may suppose that Z is irreducible. Let V' = §,,(Z), which is a priori
closed in X x G7, x 0"+, If the closure V' of V in X x A” x (0"*! has modulus
m, then it does not intersect the divisor {t;---t, = 0} of X x A" x 0" so
V =V’ and V is closed in X x A" x O"*! with modulus m. So, we reduce to
show that V' has modulus m.

Let Z and V be the Zariski closures of Z and V/ in X x A" x O" and X x

A" x ﬁn—H, respectively. Observe that 4, extends to 8, : X x A” x 0" —

X x A" x ﬁn+1, which is induced from A7 5 A" x T "% A7 x O, where

I' is the graph morphism of the composite A”—A! < O of the product map
followed by the open inclusion, (t1,--- ,t.) — (t1---t.) — (t1---t;;1), while
o : 0 — Ois the antipodal automorphism (a; b) ~ (b; a), where (a;b) € O = P!
are the homogeneous coordinates. Since I' is a closed immersion and Id X o
is an isomorphism, the morphism §,, is projective. Hence, the dominant map
Snlzx + Z* = V induces 0| : Z — V. In particular, we have a commutative
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diagram
(6.1) 7V 7 x x A xO"
lgn lt?nf lgn
7N =7 —5 X x AT <O,

where 1z, 1y are the closed immersions, vz, vy are normalizations, and gn is
given by the universal property of normalization for dominant maps.
By definition, §,{t; = 0} = {t; = 0} for 1 < j < r. First con-

sider the case n > 1. Then EZF,%H,I. = Fp, , for 2 < i < n+1l
SE k% +1 Tk +1
Now, 5anLV(Z?:1 Fﬁﬂ,i - Z;:1 m;{t; = 0}) > 6nVV[’V(Z?:2 Fﬁﬂ,i -
o 1
Zgzlmj{tj = 0}) = V}%%(Z?ﬁ F’r%Jrl,i - Zgzlmj{tj = 0} =

* % n+1 r [ n T
VZLZ(Zi:Q F%,z‘—1 - 23:1 mj{tj = 0}) = VZLZ(Zizl Fi,i - 23:1 mj{tj =
0}) >* 0, where 1 holds by the commutativity of (6.I) and { holds as Z has

modulus m. Using Lemma 2.7, we can drop §;;, i.e., V' has modulus m.

When n = 0, we have for 1 < j < r, é§vi i {t; = 0} = v} gg{tj =0} =
vyuy{t; = 0}, which is 0 because Z N {t; = 0} = 0. Hence, d5vi i (FI; —
doi—1my{t; = 0}) = ggy‘*,ﬁ{,Fil > 0. Dropping 0¢, we get V'’ has modulus
m. |

PROPOSITION 6.4. Let Z € z9(X|[r]|Dm,n). Then§(Z) € 247X [r]|Dm,n+1).
Furthermore, § and O satisfy the equality 60 + 95 = 0.

Proof. We may assume that Z is an irreducible cycle. Let 9y, ; be the boundary
given by the face Fy ; on X x A" x [J", for 1 <i <n and € = 0, c0.

Cram: For e = 0,00, (i) 0544106, = 0, (ii) 9541 ;00 = dp—100;,,_, for
2<i<n+1.

For (i), we show that §,(Z) N {y1 = €} = 0 for e = 0,00. Since §,(Z) C
V(ty1---try1 = 1), we have §,(Z) N{y1 = 0} = 0. On the other hand, if §,(Z)
intersects {y; = oo}, then some t; must be zero on Z, i.e., Z intersects {t; = 0}
for some 1 < ¢ < r. However, since Z has modulus m, this can not happen.
Thus, §,(Z) N {y1 = co} = P. This shows (i). For (ii), by the definition of d,,
the diagram

€
Li_

(Gy,)* x Ot —— (Gy,)* x O"

l&n 1 Jén

Gr, x O" — 5 @7, x On+!
is Cartesian. Thus, 6,—1((t;_1(Z)) = (:5)*(d,(Z)) by [0, Proposition 1.7], i.e.,
(ii) holds. This proves the claim.
By Lemma [6.3] we know 6,,(Z) has modulus m. Since Z intersects all faces
properly, so does d,,(Z) by applying (i) and (ii) of the above claim repeatedly.
For 95+80 = 0, note that 86,,(Z) = S_1 0 (=1)/(851 ;6,(2)— %1 16,(Z)) =1
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2?221(*1)i(5n71873?i71(z> - 571*18_2,1'71(2)) = 72?21(*1>i(5n7183?i(z> -
On-100 ;_1(Z)) = =0n-1 2y (=1)(075(Z) = ), ;(Z)) = —0p—10(Z), where
1 holds by the claim. O

Lemma and Corollary below, which generalize [19] §4.2], have much
simpler proofs than loc.cit.

LEMMA 6.5. Let Z € z9(X[r]|Dm,n) be such that 05(Z) =0 for 1 <i<n and
€ =0,00. Then 262(Z) is the boundary of an admissible cycle with modulus m.

Proof. Note that §%(Z) is an admissible cycle on X x A x ("2 with modulus
m, by Proposition[6.4l For the transposition 7 = (1,2) on the set {1,--- ,n+2},
we have 7 - §2(Z) = §?(Z), by the definition of §. On the other hand, we have
7-62(Z) = —6%(Z) + () for some admissible cycle v, by Lemma 5.3l Hence,
we have —0%(Z) + d(y) = 6%(Z), i.e., 26%(Z) = O(7), as desired. O

COROLLARY 6.6. Let k be a perfect field of characteristic # 2 and let X be in
SmAfF* or in SmProj,. Let m > 1. Then §° =0 on CHY(X[r]|Dp,n).

Proof. If r = m = 1, by Corollary [5.15] there is nothing to prove. So, suppose
either » > 2 or |m| > 2. But, if » > 2, then we automatically have |m| > 2, so
we just consider the latter case.

Given o € CHY(X[r]|Dy,n), by Theorem B2 we can find a representative
Z € z9(X|[r]|Dm,n) such that 95(Z) =0 for 1 <i <n and € = 0,00. Then by
Lemma [6.5] we have 262(a) = 0.

On the other hand, by Corollary [514] the group CHY(X[r]|Dy,n) is a
W (|m|-1)(k)-module. As |m| > 2 and char(k) # 2, it follows that 2 €
(W (jm|—1)(k))*. In particular, §%(e) = 0. O

6.2. LEIBNIZ RULE. We now discuss the Leibniz rule, generalizing [19] §4.3].
Let X € Schi™. Let (z,t,t1, -+ ,tr, Y1, ,Ynt2) € X X ATTL x 072 be the
coordinates. Let T C X x A" x (0"*2 be the closed subscheme defined by
the equation ty, 41 = Ynto(tt1 - trynt1 — 1).

DEFINITION 6.7 (¢f. [19, Definition 4.9]). Given a closed subscheme Z C
X x ATl x O", define Cz := T - (Z x 0?) on X x A" x O"F2 This is
extended Z-linearly to cycles.

LEMMA 6.8. Let Z be a cycle on X x A" x O" with modulus m =
(m1,-++ ,mpy1). Then Cz has modulus m on X x AT x (On+2,

Proof. We may assume Z is irreducible. We show that each irreducible com-
ponent V' C Cz has modulus m. Let Z and V be the Zariski closures of Z

and Vin X x A"t x 0" and X x A" x En+2, respectively. The projection

—n+2 = —2
pr: X x ATt x 07 & X x A" x T" that ignores the last two [I” is pro-
jective, while its restriction to X x A™t! x O"*2 maps V into Z. So, pr maps
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V to Z, giving a commutative diagram

(6.2) N T x o AT O

[ F” Jo

7V L7 x At x O,

where ¢y and ¢z are the closed immersions, vy and vz are normalizations, and
pr¥ is induced by the universal property of normalization for dominant maps.
The modulus condition for V' is now easily verified using the pull-back of the
modulus condition for Z on Z and the fact that pr*{t; = 0} = {t; = 0} for
all j and pr*Fﬁﬁi = F%er for all 7. U

COROLLARY 6.9. Let X1,Xo € Schy™. Let Vi C X; x Al x O™ and Vo C
Xo x A" x O™ be closed subschemes with moduli |m| and m, respectively with
m > 1.

Under the exchange of factors X1 x A x[™ x Xox A" x["2 ~ X x Xox AT x
0", where n = ny + na, consider the cycle Cy, xv, on X1 X Xa X AT Ont2,
Then plcy, v, is finite. In particular, p.«(Cv,xv,) as in Definition 5.9 is well-
defined, and has modulus m.

Proof. We set V = V; x V5. From the definition of u, the map pu: V x 0?2 —
X1 X Xo x A™ x O"*2 is of the form u|y x Idgz. By Proposition B.7) the map
|y is finite, thus so is ply x Idge : V x 02 — X7 x Xa x A™ x ("2, Hence,
its restriction to Cy = T' - (V x [J?) is also finite. The modulus condition for
w+(Cy ) follows from Lemmas 5.8 and 6.8 O

DEFINITION 6.10 (cf. [19, Definition 4.12]). Let Vi € 2% (X1[1]| D)y, n1) and
Vo € 2%2(X3[r]| D, ne) with Xq,Xs € Schy™. Let n = ny + ne and define
Vi v Va be the cycle o - 1 (Cyv, xv3 ), where 0 = (n+2,n+1,--- ,1)? € &, 40.

LEMMA 6.11. Let V;,Va be as in Definition [6I0.  Then Vi x,y Vo €
Zq1+q2_1((X1 X XQ)[?"“Dﬂ,nl + no + 2)

Proof. By Corollary 629, the cycle p.(Cv, xv,) has modulus m, thus so does
W = Vi X, Va. It remains to prove that W intersects all faces properly. Let
On, = (n1+1,n1,---,1) € &,41. Then by direct calculations, we have
(6.3)
a?OW = On, (Vl X 5(‘/2)),(9?W = 0,8§°W = 5(‘/1 X VQ))
AW = (V1) x,, Va,
W — 05_o (Vi) X Va, for 3 <¢<mnq+2,
v Vi X 05 _o(Va), formy +3<i<n+2,

Since each V; is admissible, using ([6.3)), Lemma [5.10, Proposition and in-
duction on the codimension of faces, we deduce that W intersects all faces
properly. O
PROPOSITION 6.12. Let X1,Xy € Smy™. Let § € 29 (X [1]| D)y, n1) and
n € z92(Xs[r]|Dm,n2). Let n = n1 +ng and ¢ = ¢1 + q2. Suppose that

e € {0,00}.
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all codimension one faces of & and 1 vanish. Then in the group 29 1((X; x
X2)[r]|Dm,n+1), the cycle 6(€§ x,,m) — & xun— (—=1)"1& x,, 0n is the boundary
of an admissible cycle.

Proof. By ([@.3), for 3 < i < ni + 2, we have 95(§ x,»v 1) = 95_5(§) X1 =0,
while for ny +3 <4 < n+42, we have 05 (§ X, n) = EX,w O5_,, _o(n) = 0. Hence,

A(Exwm) = S (= 1) (077 =) (Ex ) = 8(Exum) —{om, (€% ,00) +E X um}
by (63) for ¢ = 1,2. Equivalently,

(6.4) (& xum) =06 Xum—0p, - (€ X, 0m) =0(& X,n).
But, for £ x,, 7, notice that

05 x,0m=0, forl<i<nyg,

(65) o€ ptn) = { T BT I SISm e (ool

We have 95(6n) = 0 when ¢ = ny + 1 by Claim (i) of Proposition [64] and
05, (0n) = 6(0;_,,,_1m) = 0(0) = 0 when n; +2 < i < n+ 1 by Claim
(ii) of Proposition Hence, & x,, 0n is a cycle with trivial codimension 1
faces, so, by Lemma [5.3] for some admissible cycle v, we have o, - (§ X, 6n) =
sgn(on, ) (€ X, 0n)+0(y) = (—1)™ ¢ x, 6n+0(7y). Putting this back in ([64), we
obtain 6(§ X, 1) —6& X, n—(—1)"E& X, 0n = 0(§ x,wn) —O(y), as desired. O

The above discussion summarizes as follows:

THEOREM 6.13. Let X be in SmAf;® or in SmProj,, over a perfect field k
with char(k) # 2. Letr > 1 and m = (mq,--- ,m,) > 1. Then the following
hold:

(1) (CH(X[1]| D), Ax,0) forms a commutative differential graded
W m|-1)$2},-algebra.

(2) (CH(X[r]|Dyw),d) forms a differential graded (CH(X[1]| D)), Ax,0)-
module.

In particular, (CH(X[r]|Dy,),0) is a differential graded W (|p|—1)S2p -module.

Proof. The commutative differential graded algebra structure on
CH(X[1]| D)) and the differential graded module structure on CH(X [r][D,,)
over CH(X[1]| D)) follows by combining Theorem [5.4] Corollary and
Proposition using Theorem

The structure map p : X — Spec(k) turns (CH(X[1]|Dy), Ax,0)
into a differential graded algebra over (CH(pt[1]|D|n|), Apt,0) via p*.
Since @nZOCH”H(pt[lHDm‘,n) forms a differential graded sub-algebra of
(CH(pt[1]| D), Apt, ). The map of commutative differential graded algebras
W (-1 — @n>oCH ! (pt[1]| D}y, n) (see [28]) finishes the proof of the
theorem. O

As a consequence of Theorem[6.13 (use CorollaryB.I5when |m| = 1), we obtain
the following property of multivariate additive higher Chow groups.
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COROLLARY 6.14. Let r > 1 and m > 1 and let X be in SmAT® or in
SmProj,. Then each CHY(X|[r]|Dp, n) is a k-vector space provided char(k) =
0.

7. WITT-COMPLEX STRUCTURE ON ADDITIVE HIGHER CHOW GROUPS

Let k be a perfect field of characteristic # 2. In this section, a smooth affine
k-scheme means an object in SmAF®, i.e., an object of either SmAff; or
SmLocy.

Riilling proved in [28] that the additive higher Chow groups of 0-cycles over
Spec (k) form a restricted Witt-complex over k. When X is a smooth projective
variety over k, it was proven in [19] that additive higher Chow groups of X
form a restricted Witt-complex over k. Our objective is to prove the stronger
assertion that the additive higher Chow groups of Spec (R) € SmAff;™® have
the structure of a restricted Witt-complex over R.

Since we exclusively use the case r = 1 only, we use the older no-
tations Tz?(X,n;m) and TCH?(X,n;m) instead of z%(X[1]|Dmt1,n — 1)
and CHY(X[1])|Dm+1,n — 1). For X € Sch}® we let TCH(X;m) :=
D TCHY (X, n;m) and TCHM (X;m) := @, TCH"(X,n;m). The super-
script M is for Milnor. Let TCH(X) := @,,TCH(X;m) and TCHY (X) :=
®m TCHM (X;m). We similarly define TCH(X;m), TCHM (X;m), TCH(X),
and TCHM (X) for X € Schy, using Definition E7

7.1. WITT-COMPLEX STRUCTURE OVER k. In this section, we show that the
additive higher Chow groups for an object of SmAff>® form a functorial re-
stricted Witt-complex over k. For r > 1,let ¢, : A' — A! be the morphism x
a2, which induces ¢, : Spec (R) X B, — Spec (R) x B,. By [19, §5.1, 5.2], we
have the Frobenius F,. : TCHY(R, n;rm+r—1) — TCH!(R,n; m) and the Ver-
schiebung V,. : TCHY(R,n;m) — TCHY(R, n;rm+r—1) given by F,. = ¢, and
V. = ¢¥. We also have a natural inclusion R : Tz(R, e;m+ 1) — Tz%(R, e;m)
for any m > 1, which induces /& : TCHY(R,n;m + 1) — TCHY(R,n;m),
called the restriction. Finally, by Theorem [6.13] there is a differential
0 : TzY(R,e;m) — Tz%(R,e + 1;m), which induces § : TCHY(R,n;m) —
TCHY(R,n + 1;m).

THEOREM 7.1. Let X € SmAff}*® and m > 1. Then TCH(X;m) is a DGA
and TCHM (X;m) is its sub-DGA. Furthermore, with respect to the operations
8, R, F,,V, in the above together with X = f* : W, (k) = TCH'(k,1;m) —
TCH' (X, 1;m) for the structure morphism f : X — Spec (k), TCH(X) is a
restricted Witt-complex over k and TCH™ (X) is a restricted sub- Witt-complex
over k. These structures are functorial.

Proof. In [19, Theorem 1.1, Scholium 1.2], it was stated that TCH(X;m) and
TCHM(X;m) are DGAs, and that TCH(X) and TCH (X) are restricted
Witt-complexes over k with respect to the above d,R, F., V,., provided the
moving lemma holds for X. But this is now shown in Theorems [£.1] and
We give a very brief sketch of this structure and its functoriality.
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The functoriality of the restriction operator R recalled above, was stated in
[19, Corollary 5.19], which we easily check here: let f: X — Y be a morphism
in SmAff}® and consider the following commutative diagram:

Tz, (Y, e;m + 1) AN Tz4(X,e;m + 1)

Tzi,(Y, e;m) _r Tz (X, e;m),

where W is a finite set of locally closed subsets of Y, and the horizontal maps
are chain maps given by the inverse images as in the proof of Theorem and
Corollary .15l The diagram and Theorems[ZI]and Z.I0/imply that f*R = R f*
because the vertical inclusions induce R by definition.

For each r > 1, the Frobenius F;. and Verschiebung V,. recalled in the above
are functorial as proven in [19] Lemmas 5.4, 5.9], and that F,. is a graded ring
homomorphism is proven in [I9, Corollary 5.6].

Finally, the properties (i), (i), (iii), (iv), (v) in Section 22222 are all proven in
[19, Theorem 5.13], where none requires the projectivity assumption. g

COROLLARY 7.2. Let m > 1 be an integer. Then TCH(—;m) and
TCHM(—;m) define presheaves of DGAs on Schy, and the pro-systems
TCH(—) and TCHM (=) define presheaves of restricted Witt-complezes over
k on Schy,.

Proof. Let X € Schy. By definition, TCH(X;m) is the colimit over all
(X = A) € (X | SmASff;)°P of TCH(A;m). But the category of DGAs is
closed under filtered colimits (see [I3]) so that TCH(X;m) is a DGA. For each
morphism f : X — Y in Schy, one checks f*: TCH(Y;m) — TCH(X;m) is a
morphism of DGAs. The other assertions follow easily using Theorem [l [

Before we discuss Witt-complexes over R, we state the following behavior of
various operators under finite push-forward maps.

PROPOSITION 7.3. Let f : X — Y be a finite map in SmAML®. Then forr > 1,
we have: (a) f R =Rf.; (b) fu0 =0fs; (¢) fulr = Fofs; (d) £V =V, fu.

Proof. The item (a) is obvious and (b) and (c) follow at once from the fact
that these operators are defined as push-forward under closed immersion and
finite maps and they preserve the faces. For (d), we consider the commutative
diagram

IdX ¢y
(7.1) XxAlAXxAl

lfxld lfxld
I

dx ¢,
YXA1A>YXA1.

Since this diagram is Cartesian and f as well as ¢ preserve the faces, we con-
clude from [6, Proposition 1.7] that f. o ¢* = ¢* o f.. O
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7.2. WITT-COMPLEX STRUCTURE OVER R. Let X = Spec (R) € SmAff;™.
The objective of this section is to strengthen Theorem [Z.I] by showing that
TCH(X) is a restricted Witt-complex over R.

Let m > 1 be an integer. We first define a group homomorphism 75 : W,,,(R) —
TCH'(R, 1;m) for any k-algebra R. Recall that the underlying abelian group of
W, (R) identifies with the multiplicative group (1+tR[[t]])* /(1+t™TLR][[t]])*.
For each polynomial p(t) € (1 + R][t]])*, consider the closed subscheme of
Spec (R[t]) given by the ideal (p(t)), and let T'(,)) be its associated cycle.
By definition, F(p(t)) Nn{t =0} = ? so that F(p(t)) S Tzl(R, 1;m). We set
Fapn=T(_qmn) forn>1andac R.

LEMMA 7.4. Let f(t),g(t) be polynomials in R[t], and let h(t) € RJt] be the
unique polynomial such that (1—tf(t))(1—tg(t)) = 1—=th(t). Then T _tnhu)) =
Caa-tsv) + Do) in T2 (R, 1;m).

Proof. This is obvious by (1 —¢f(¢))(1 —tg(t)) =1 — th(t). O
LEMMA 7.5. For n>m+ 1, we have I'(1_ns4)) =0 in TCHY(R,1;m).

Proof. Consider the closed subscheme I' C X x A x (J given by y; = 1—t"f(t).
Letv:T" =T < X x Al x P! be the normalization of the Zariski closure T' in
X x A x PL. Since f(t)t" =1 —1y; on I, we see that nv*{t =0} < v*{y; = 1}
onT . Since n > m + 1, this shows that I" satisfies the modulus m condition.
Since 97°(I') = 0 and 9{(I") = I'(1_¢n p(4)) (which is of codimension 1), the cycle
I' is an admissible cycle in Tzl(R, 2;m) such that OI' = I'(; _yn ¢(4)). This shows
that I'(1_sn p(¢)) = 0 in TCH' (R, 1;m). a

PROPOSITION 7.6. Let R be a k-algebra. Then the map tr : (1 + tR[t]) —
Tz'(R,1;m) that sends a polynomial 1 — tf(t) to Ci—tf(1)), defines a group
homomorphism g : W,,(R) — TCH'(R, 1;m).

Proof. Every element p(t) € (1 + tR[[t]])* has a unique expression p(t) =
1,51 (1 — ant™) for a, € R. For any such p(t), set p="(t) =[], (1 — ant™).
We define 7r(p(t)) = L (p<m4))- It follows from Lemmas [T.4] and that this
map descends to a group homomorphism from W, (R). O

Recall from [28, Appendix A] that for each r» > 1, we have the Frobenius F, :
Wemtr—1(R) = W, (R) and the Verschiebung V,. : W,,(R) — W,,,1—1(R).
They are given by F,(1 —at™) = (1 — a*t+)%, where s = ged(r,n) and V,.(1 —
at™) =1 —at™. On the other hand, as seen in Section [Z.I] we have operations
F,. and V, on {TCH' (R, 1;m)}.men.

LEMMA 7.7. Let R be a k-algebra. Then the maps 7r : W, (R) —
TCH' (R, 1;m) of Proposition [7.6] commute with the F,. and V, operators on
both sides.
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Proof. That gV, = V,.7g, is easy: we have V,.(Tr(1—at™)) = V;:(Tan) = Ta.rn,
while TR(VT(I — at”)) = F(l_at'r‘n) = Fa,rn~

That 7rF, = F,.7gr, is slightly more involved. Recall that F,.(1 — at™) =
(1—a5t%)®, where s = ged(r,n). Write n = n’s and r = 7’s, where 1 = (', n’).
Hence, we have tpF,.(1 — at™) = sl"ag,1 = sVa (Fa§71) = sV (L 1) =2 &,
while F7r(1 — at®) = F,T4,, = F,V,(Ta1) = O.

First observe that when n =1, we have s =1, r =1r',n =n' = 1, and we have
O=F.(Tg1)=T4 1=, sothat 7rF.(1 — at) = F,7r(1 — at), indeed.

For a general n > 1, we have F.V,, = F. F,V;V,,y = F.oo(s-1d)o V, =
$F.Vy =1 sV, F.r, where 1 holds because (r',n’) = 1. Since F.(Ty1) = |
(by the first case), we have O = F,.V,,(Ty1) = sV Fr (Tg,1) = sV (Farfyl) =
&. This shows TrF,. = F,.7R. O

Remark 7.8. In the proof of Lemma [[77] we saw that for s = (r,n),
(7.2) Fr(Ton) = SFa§ ns Ve(Lon) =Tarn.

)

PROPOSITION 7.9. For X = Spec (R) € SmAf”, the maps 7 : W,,(R) —
TCHl(R, 1;m) form a morphism of pro-rings that commutes with F, and V,
forr >1.

Proof. Tt is clear from the definition of 7z in Proposition [Z.6] that it commutes
with R. We saw that 7z commutes with F;. and V, in Lemma [[C7l So, we
only need to show that 7 respects the products. By [2] Proposition (1.1)], it
is enough to prove that for a,b € R and u,v > 1,

(7.3) TouATpy=wl 2,4 ,, in TCH'(R,1;m),
where w = ged(u,v) and A = Ax is the product structure on the ring
TCH' (R, 1;m) as in Theorem [T1}

STEP 1. First, consider the case when v = v =1, d.e., we prove I'y 1 ALy 1 =

I'ap,1. Recall that A is defined as the composition A* o i, 0 X in
XxA'x X x AV 5 X x X x A & X x AL

Under the identification X x X ~ Spec (R Qx R), we have p.(Tg1 x T'p1) =
Caoaep),1, and A*(F(a®1)(1®b)71) = I'gp,1, because A is given by the multi-
plication R ®; R — R. This proves (73] for Step 1.

For the following remaining two steps, we use the projection formula: x A
Vs(y) = Vi(Fs(z) Ay), which we can use by Theorem [T.11

STEP 2. Consider the case when v = 1, but u > 1 is any integer. We apply the
projection formula to z =I'y; and y = I'y 1 with s = u. Since TCHI(R, 1;m)
is a commutative ring, by the projection formula, we get V,,(Tq1) ATp1 =
Vu(Ta1 A Fy(Tp1)). Here, the left hand side is T'g o, A T'p 1 by equ:FV identity,
while the right hand side is =1 V,,(T41 ATpu 1) =2 Viu(Capu 1) =2 Tapu u, where
=1 and =3 hold by (Z2) and =2 holds by Step 1. This proves (Z.3)) for Step 2.
STEP 3. Finally, let u,v > 1 be any integers. Let w = ged(u,v). We again
apply the projection formulato x = V,(T's.1), y =T'p1, s = v, so that V,,(I'q 1)A
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Vo(Tp1) = Vo (Fu(Vi(Ta1)) AT 1). Its left hand side coincides with that of (Z.3)
by (T2). Its right hand side is = V,,(F,(Tau) A Tp1) =2 Vo(wl 2 W ATp1),

where =" and = hold by (Z2). But, Step 2 says that T’ = , AT %a%b% u
so that V,(wl' 2 , ATp1) =wV,(l 2,2 ) ., where = 1 holds
by ([Z2)). This last expression is the right hand side of (Z3)). Thus, we obtain
the equality (Z3]) and this finishes the proof. a

gl

R
w ’

s 2|

=T wl' v u
awbw

5|

THEOREM 7.10. For Spec(R) € SmAff}™, TCH(R) is a restricted Witt-
complex over R, and its sub-pro-system TCHM (R) is a restricted sub- Witt-
complez over R.

Proof. As saw in the proof of Theorem [[I] we already have the restriction R,
the differential §, the Frobenius F,. and the Verschiebung V;. defined by the same
formulas. Furthermore, by Proposition [Z.9) now we have ring homomorphisms
A =71r: W, (R) = TCH'(R,1;m) for m > 1. The properties (i), (ii), (iii),
(iv) in Section are independent of the choice of the ring, so that what we
checked in Theorem [Tl still work. To prove the theorem, the only thing left
to be checked is the property (v) that for all a € R and r > 1,

(7.4) Fyorr((a]) = r([a]"~")oTr((a)),

where we have shrunk the product notation A and taken the ring homomor-
phism A to be 7. To check this, we identify W,,(R) with (1 + ¢R[[t]])* /(1 +
£ R[] <

If a = 0, then 7r([a]) = T'(1_0.+) = 0. So, both sides of (ZZ)) are zero.

If a = 1, then 7r([a]) = Tr(1 —t) = I'(1_y). But, in our definition of 4, to
compute it, we should first restrict the cycle I';_;y C Spec(R) x G,, onto
Spec (R) x (G, \ {1}), which becomes empty. Hence, 07r([a]) = 6T'(1_4) = 0,
so again both sides of (74 are zero.

Let a € R\ {0,1}. Then 7g([a]) = T(1_ar) C Spec(R) x A', and d7r([a]) is
given by the ideal (1 — at,1 — ty1) in R[t,y1]. Since ¢ is not a zero-divisor in
R[t,y1], we have (1 —at,1—1ty;) = (1 —at,y1 — a) as ideals. Hence, F.d7r([a])
is given by the ideal (1 — a"t,y1 — a) in R[t,y1]. On the other hand,
7r([a)"=)07r([a]) = T(1_qr—1¢) A Spec (M)

(1—at,y1—a)

(7.5) _ A+ (( (R®y R)[t,y1] ) =" Spec ((R%) )

1-(a"~1®1)(1®a),y1 —(1®a)) 1—a"t,y1—a)

where t holds because A is induced by the product homomorphism R®x R — R.
Hence, both hand sides of ([Z4) coincide. This completes the proof. a
THEOREM 7.11. For Spec(R) € SmAff® and n,m > 1, there is a unique
homomorphism Tﬁm : WmQ}l{l — TCH"(R,n;m) that defines a morphism of
restricted Witt-complexes over R, {7F, : W, Q3" — TCH*(R, ®;m)}, such
that Tfm =TR.

Proof. The theorem follows from Theorem [[.T0 and 28] Proposition 1.15]. We
have 7%, = 7 because the map A of §2.2.2is given by 7 in Theorem 10 [
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We have shown in Propositions and [Z.9] that 7 is a group homomorphism
for any k-algebra R and is a ring homomorphism if R is smooth. Here, we
provide the following information on 75.

THEOREM 7.12. Let R be an integral domain which is an essentially of finite
type k-algebra. Then TR is injective. It is an isomorphism if R is a UFD.

Proof. Let K := Frac(R) and ¢ : R — K be the inclusion. This induces a
commutative diagram

W, (R) —=Y s w,, (k)

TRl TK\LN
TCHY(R,1;m) —— TCHY (K, 1;m),

where the bottom map is the flat pull-back via Spec (K) — Spec (R), and 7x
is the isomorphism by [28, Corollary 3.7]. Since W,,(¢) is clearly injective (see
[28 Properties A.1.(i)]), it follows that 7 is injective, too.

Suppose now R is a UFD and V is an irreducible admissible cycle in
Tz'(R,1;m). Then we must have (I(V),t) = R[t], where I(V) is the ideal
of V. Since R[t] is a UFD, using basic commutative algebra, one checks that
I(V) = (1 —tf(t)) for some non-zero polynomial f(t) € R[t]. In particular, the
map TR is surjective and hence an isomorphism. O

7.3. ETALE DESCENT. Finally:

Proof of Theorem[I]} By Corollary G158 we can assume |m| > 2. We set
Y = X/G, A\ = |G| and consider the diagram

(7.6) Gx XX

| |

XTY,

where 7 is the action map and p is the projection. Since G acts freely on X,
this square is Cartesian and f is étale of degree \. By [0, Proposition 1.7], we
have f* o f. = p. oy* : CHY(X[r]| Dy, n) = CHY(X[r]|Dpm,n).

Since f is G-equivariant with respect to the trivial G-action on Y, we see that
f* induces a map f* : CHY(Y[r]|Dm,n) — CHY(X[r]|Dp,n). Moreover, it
follows from [21] Theorem 3.12] that f. o f* is multiplication by A.

On the other hand, it follows easily from the action map ~ that p. o v*(«) =
S g*(a). In particular, p, o y*(a) = X - a if @ € CHY(X[r]| Dy, n)€.

geG

Since A € k* and the Teichmiller map is multiplicative with |m| > 2, we
see that A € (W(|p—1)(k))*. We conclude from Theorem (.4(3) and Corol-

* —1
lary 514 that the composite CHY(Y [r]| Dy, 1) s CHY(X[r]|Dpa, )¢ 2L
CHY(Y [r]| Dy, n) yields the desired isomorphism. O
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ABSTRACT. Let X be a separated scheme of finite type over an alge-
braically closed field: and letm be a natural number. By an explicit ge-
ometric construction using torsors we construct a pairieigveen the first
modm Suslin homology and the first mod tame étale cohomology of.

We show that the induced homomorphism from the mo&uslin homol-
ogy to the abelianized tame fundamental grougXofod m is surjective.

It is an isomorphism of finite abelian groups(if:, char(k)) = 1, and for
generabn if resolution of singularities holds ovér
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Keywords and Phrases: Suslin homology, higher dimensiolaak field
theory, tame fundamental group

1 INTRODUCTION

Let X be a (possibly singular) separated scheme of finite type avelgebraically
closed fieldk of characteristip > 0 and letm be a natural number. We construct a
pairing between the first moeh algebraic singular homologf ¥ (X, Z/mZ) and
the first modm tame étale cohomology groufi} (X, Z/mZ). Forxb*(X) =
H!(X,Q/Z)" we prove the following analogue of Hurewicz's theorem inedigaic

topology:

1Supported by JSPS Grant-in-Aid (B) 23340004
2Supported by DFG-Forschergruppe FOR 1920
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92 THOMAS GEISSER ANDALEXANDER SCHMIDT

THEOREM1.1. The induced homomorphism
recx : HY (X, Z/mZ) — 70 (X)/m

is surjective. It is an isomorphism of finite abelian groupgrm,p) = 1, and for
generain if resolution of singularities holds for schemes of dimensi dim X + 1
overk.

For p f m, the groupsH{ (X, Z/mZ) and='** (X)/m are known to be isomorphic
by the work of Suslin and Voevodsky [SV1]. Theoréml]1.1 aboravigles an ex-
plicit isomorphism which extends to the casem (under resolution of singularities).
Moreover, in the last section we show that fof m our isomorphism coincides with
the one constructed in [SV1].

The motivation for constructing our pairing between theup®H (X, Z/mZ) and
H}(X,Z/mZ) comes from topology: For a locally contractible Hausdoptse X
and a natural numben, the canonical duality pairing

() : H¥™8(X,Z/mZ) x H (X, Z/mZ) — 7./mZ,

between singular homology and sheaf cohomology with modoefficients can be
given explicitly in the following way: represert € HY(X,Z/mZ) by aZ/mZ-
torsor7 — X anda € H;"¢(X,Z/mZ) by al-cyclea in the singular complex of
X. Then

(a,b) = @;al,. 0 Doyt € Z/mZ, Where®, e, ®por: a*(T)|o = (T

are the isomorphisms between the fibres ovand1 of the pull-back torsoe* (7)) —
A' = [0, 1] given tautologically (* o = 1*«) and by parallel transport (eves/ mZ.-
torsor on[0, 1] is trivial).

For a varietyX, the pairing betweed/; (X, Z/mZ) and H} (X, Z/mZ) inducing
the homomorphisnrec x of our Main Theoreni 111 will be constructed in the same
way. However,1-cycles in the algebraic singular complex are not linear luioa
tions of morphisms but finite correspondences framto X. In order to mimic the
above construction, we thus have to define the pull-back ofsot along a finite cor-
respondence, which requires the construction of the poskaird torsor along a finite
surjective morphism.

To prove Theorerfi 111, we first consider the case of a smootledlr If A is the
Albanese variety of’, then we have isomorphisms

HE(C,Z/mZ) = 1 HE (C,Z) = 1 AlK). 1)

The first isomorphism follows from the coefficient sequeramgether with the divisi-
bility of HY(C, Z), and the second from the Abel-Jacobi theorem. On the ottmet,ha

Hom(,, A(k), Z/mZ) — H{(C,Z/mZ). )
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This follows because the maximal étale subcoverings A of them-multiplication
map A % A is the quotient of4 by the connected component of the finite group
scheme,, A, and the maximal abelian tame étale coveringlowith Galois group
annihilated bym is C' := C x 4 A. The heart of the proof of Theordm 1L.1 for smooth
curves is to show that under the above identifications, oiringaagrees with the
evaluation map.

We then show surjectivity ofec x for generalX by reducing to the case of smooth
curves. Finally, we use duality theorems to show that balkssiofrecx have the
same order: For the-primary part, we use resolution of singularities to redtee
the smooth projective case considered_in [Ge3]. orchar(k)) = 1, Suslin and
Voevodsky[[SV1] construct an isomorphism

ax : HY(X,Z/mZ) = HL(X,Z./mZ).

Hence the source and the targetref x have the same order and therefoeey is
an isomorphism. In Sectidg 7 we show that x is dual to the mapvx. Thus, for
char(k) 1 m, our construction gives an explicit description of the 8usbevodsky
isomorphismux, which zig-zags through Ext-groups in various categoneksia dif-
ficult to understand.

The authors thank Takeshi Saito and Changlong Zhong fousisans during the early
stages of the project. It is a pleasure to thank Johanneshitsevhose comments
on an earlier version of this paper led to a substantial sfioation of the proof of
Theoreni4l1. Finally, we want to thank the referee for hiptublcomments.

2 TORSORS AND FINITE CORRESPONDENCES

All occurring schemes in this section are separated schedésite type over a
field k. For any abelian groud and a finite surjective morphism: Z — X with Z
integral andX normal, connected, we have transfer maps

e Hy(Z,A) — HL (X, A)

foralli > 0 (see[MVW], 6.11, 6.21). The grouf’,(Z, A) classifies isomorphism
classes of étald-torsors (i.e., principal homogeneous spaces) over thense#. We
are going to construct a functor

T PHS(Z, A) — PHS(X, A)

from the category of étalél-torsors onZ to the category of étaleél-torsors onX,
which induces the transfer map : H(Z, A) — HL (X, A) above on isomorphism
classes.
We recall how to add and subtract torsors. For an abelianpgdoand A-torsors7y,
T2 on a schem&”, define

T+ T2
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94 THOMAS GEISSER ANDALEXANDER SCHMIDT

to be the quotient scheme @f xy 73 by the action ofA given by (¢;,¢3) + a =
(t1 + a,t2 — a). It carries the structure of aA-torsor by setting

(t1,t2) +a:=(t1 +a,t2) (= (t1,t2 +a)).
The functor
+: PHS(Y,A) x PHS(Y,A) — PHS(Y,A), (T1,7T2)— Ti+ Tz,

lifts the addition inH’, (Y, A) to torsors (cf. [[Mi], lll, Rem. 4.8 (b)). Note that”
is associative and commutative up to natural functor is@iniems. In particular, we
can multiply a torsor by any natural number, puttingm -7 =7 +---+ T (m
times). IfmA = 0, then we have a natural isomorphism of torsors

m-T = Y xA (t1,...;tm) = (ta—t1)+ -+ {tm—t1) €A, (3)

whereY x A is the trivial A-torsor onY representing the constant shehbverY'.
Heret; — t; denotes the unique element A with t; = ¢; + a.

Furthermore, given a torsdr, define(—7) to be the torsor which is isomorphic o
as a scheme and on whiehe A acts as-a. This yields a functor

(—1): PHS(Y,A) — PHSY,A), T— (-T),

which lifts multiplication by(—1) from H’, (Y, A) to an endofunctor oPHS(Y, A).
We have a natural isomorphism of torsors

T+ (=T) =Y xA, (ti,ts) >t —ts € A (4)

Now letr : Z — X be finite and surjective/ integral, X normal, connected, and let
7T be anA-torsor onZ. For every point: € X, the base changéx x X" is a product

of strictly henselian local schemes. Therefore we find ale &€@ver(U; — X);e; of

X such thatT trivializes over the pull-back étale cover—!(U;) — Z);cr of Z.

Next choose a pseudo-Galois covering Z > X dominatingZ — X. Recall
that this means that(Z)|k(X) is a normal field extension and that the natural map
Autx(Z) — Autyx)(k(Z)) is bijective (cf. [SV1], Lemma 5.6). Let;, : Xin —

X be the quotient schenﬁ/G, whereG = AutX(Z). ThenX;, is the normalization

of X in the maximal purely inseparable subextensioi )™ /k(X) of k(Z)/k(X).
Consider the object

T= > ¢(T) € PHS(Z A),

weMorx (Z,7)

which is defined up to unique isomorphism. Starting from aiwalization of 7~ over
(7=Y(U;) = Z);er1, we obtain a trivialization of the restriction Gf to (7 =1(U;) —

Z);er of the form
Tl%*l(Ui) = %_I(Ui) X A,
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whereG = Autx (Z) acts on the right hand side in the canonical wayron (U;)
and trivially onA. Therefore the quotient scherﬁe/G is anA-torsor onZ/G = X;n
in a natural way. Sinc&;,, — X is a topological isomorphisn’7~,‘/G comes by base
change from a uniqud-torsor7’ on X.

DEFINITION 2.1. The push-forward\-torsorn,.(T) on X is defined by
m(T) = [k(Z) : k(X)]in - T

The assignmerif — ..(7) defines a functor

Tt PHS(Z,A) — PHS(X, A).
The functorr, is additive in the sense that it commutes with the functer and
“(—1)" up to a natural functor isomorphism.

Let T € PHS(Z,A) and assume that there exists a section Z — T to the
projection7 — Z (so7 is trivial ands gives a trivialization). Let again : 7 — X
be finite and surjectivey integral, X normal, connected. Then

T= > ¢(T) € PHS(Z. A)
LpGMorX(Z,Z)

has the canonical sectioEweMorx(ZZ) ©*(s) over Z. It descends to a section of

T /G overZ/G = X,. Descending toX and multiplying by[k(X;,) : k(X)], we
obtain a section
7w (8) : X = me(T).

In other words, we obtain a map
e D(Z,T) — T(X, 7 (T));

hence every trivialization of” gives a trivialization ofr. (7) in a natural way.

In order to see that, induces the transfer man. : H.(Z, A) — HL (X, A) after
passing to isomorphism classes, we formulate the congtruof 7, on the level of
éechl-cocycles. As explained above, we find an étale coler— X),c; such that
T trivializes over the étale covér—1(U;) — Z);cr of Z. We fix a trivialization and
obtain aCech1-cocycle

a=(a;; € D(m 1 (U; xx U;), A))

over(n~Y(U;) — Z);cr which defines. As before choose a pseudo-Galois covering

7 : Z — X dominatingZ — X. Now for all 4, j consider the element

Y ¢ay) eTEN U xx U), A)
@eMorx (Z,7)
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96 THOMAS GEISSER ANDALEXANDER SCHMIDT

which, by Galois invariance, lies in
F(ﬂ'l-_nl(Ui X x U]),A) = F(Ul X x Uj,A).
TheCech1-cocycle given by

B2 kN (X @lay)) €T xx U, A).

@eMorx (Z,7)

now defines a trivialization of,.(7) over (U; — X);es. Since the transfer map on
étale cohomology is defined @ech cocycles in exactly this way (sée [MVYW], 6.11,
6.21), we obtain

LEMMA 2.2. Passing to isomorphism classes, the funetor: PHS(Z,A) —
PHS(X, A) constructed above induces the transfer homomorphism

7 HY(Z,4) — HL(X, A).

If any finite subset of closed points &f is contained in an affine open, then symmetric
powers exist, and another description of the push-forwarthbirsors is the following:
Associated with the finite morphism : Z — X of degreed, there is a section
sz : X — Sym?(Z/X) to the natural projectioSym?(Z/X) — X (see ([SV1],

p. 81). We denote the composite gf with pr : Sym?(Z/X) — Sym?(Z) by S,.
Defining f : Z — Sym?(Z/X) by repeating each element Mory (Z, Z) exactly
[k(Z) : k(X)]in-times, the diagram

7 — s symi(z/X) -2 Sym?(2)

3
"
3

commutes. For aml-torsor7 — Z, thed-fold self-product] xj --- x; T is an
A?-torsor over thei-fold self-product ofZ in a natural way. Taking the quotient by
the A?—!-action

(a1,...,aq-1)(t1,...,ta) = (t1 + a1, t2 — a1 + ag, t3 —az +as, ..., tqg — ag—1),

we obtain amA-torsor overZ<. Dividing out the by the action of the symmetric group
Sq, we obtain anA-torsor overSym®(Z) and denote it bySym¢% (7). We obtain
natural isomorphisms ilPHS(Z, A):

K(Z) k(X )in - > ¢"(T) = (prof)*Sym4(T)
g;EMorx(E,Z)

o~

7o (prosg)* Symi(’T).
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By our construction ofr.(7") we obtain

LEMMA 2.3. We have a natural isomorphism iAHS (X, A):
. (T) 2 S (Sym(T)),

whereS, = pro sy : X — Sym%(Z2).

Assume now tha¥ is regular and” arbitrary. The group of finite correspondences
Cor(X,Y) is defined as the free abelian group on the set of integratbebnsesZ C

X xY which project finitely and surjectively to a connected comgat of X'. For such
aZ, we definep;_, x1. : PHS(Z,A) — PHS(X, A) by extending (ifX is not
connected) the push-forward torsor defined above in a trvag to those connected
components o which are not dominated h¥. We consider the functor

[Z]" = piz—x1« 0 P[zoy) : PHS(Y, A) — PHS(X, A).

Using the operations+” and “(—1)” we extend this construction to arbitrary finite
correspondences.

DEFINITION 2.4. Let X be regularyY arbitrary anax = > n;Z; € Cor(X,Y) a
finite correspondence. Then

a1 PHS(Y, A) — PHS(X, A)

is defined by setting
a(T) =Y mil Z)*(T).

Using the isomorphisni{4) above, we immediately obtain

LEMMA 2.5. Foray,as € Cor(X,Y) andTy1, T2 € PHS(Y,A), n1,ns € Z, we
have a natural isomorphism

(1 + a2)" (M1 Th + n2Tz) = niaj(Th) + nias(Th) + n2ai(T2) + naas(72).

If X andY are regular and is arbitrary, we have a natural composition law
Cor(X,Y) x Cor(Y,Z) — Cor(X, Z), (o, 8) — B o«,

(see [MVW], Lecture 1). A straightforward but lengthy congtion unfolding the
definitions shows
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PROPOSITION2.6. Let X andY be regular and arbitrary. Leto € Cor(X,Y) and
g € Cor(Y, Z). Then, foranyT € PHS(Z, A), we have a canonical isomorphism

a*(B°(T)) = (Bea)(T).

Finally, assume thainA = 0 for some natural number.. Then (using the isomor-
phism [3) above), we have for amy 5 € Cor(X,Y), T € PHS(Y, A), a natural
isomorphism

(@ +mp)*(T) = a*(T).

Therefore, we have aA-torsor
a*(T) € PHS(X,A)

given up to unique isomorphism for aaye Cor(X,Y) ® Z/mZ. In other words,
we obtain the

LEMMA 2.7. Assume thatn A = 0, and leto, 8 € Cor(X,Y') have the same image
in Cor(X,Y) ® Z/mZ. Then there is a natural isomorphism of functors

a* =2 3% PHS(Y, A) — PHS(X, A).

For a regular connected cur¢éwe consider the subgrouis;} (C, A) C HL(C, A)
of tame cohomology classes (corresponding to those caniBithomomorphisms
7t (C) — A which factor through the tame fundamental gragpC, C' — C), where
C'is the unique regular compactification@j.

For a general schem¥ overk we call a cohomology class ine H), (X, A) curve-
tame (or just tame) if for any morphisgh: C — X with C a regular curve, we have
f*(a) € H}(C, A). The tame cohomology classes form a subgroup

H}(X,A) C HY(X, A).
The groups coincide iX is proper or ifp = 0 or if p > 0 and A is p-torsion free,

wherep is the characteristic of the base fiéld

DEFINITION 2.8. We call an étalel-torsorT on X tameif its isomorphism class lies
in HY(X,A) C HL(X, A).

LEMMA 2.9. Let Z be integral, X normal, connected; : Z — X finite, surjective
andf : Z — 'Y any morphism. Lef be a tame torsor ovi. Thenr.(f*(T)) is a
tame torsor orX .
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Proof. By definition, f* preserves curve-tameness. So we may asstimeY’, f =

id. Again by the definition of curve-tameness and using PreipodP.8, we may
reduce to the case that is a regular curve. Since étale cohomology commutes with
direct limits of coefficients, we may assume thatis a finitely generated abelian
group. Furthermore, we may assume tttair(k) = p > 0andA =Z/p"Z, r > 1.

Let Z be the canonical compactification 4f, i.e., the unique proper curve over
which containsZ as a dense open subscheme and such that all poitts-of are
regular points ofZ. By the definition of tame coverings of curveg, extends to a
Z./p"Z-torsor onZ. Hence alsor, (7') extends to the canonical compactificati&n

of X and so is tame. O

PROPOSITION2.10. Let X be a proper and regular scheme okvaand letX c X
be a dense open subscheme. jhet char(k) > 0. Then for anyr > 1 the natural
inclusion

Hey (X, Z/p"Z) — Hoy(X,Z/p"Z)

induces an isomorphism

Hy(X,Z/p"2) = Hy (X, Z/p"Z) — Hy (X, Z/p"Z) C Hoy (X, Z/p"Z).

Proof. Let 7y be any connected component of a té#fiye" Z-torsor7 on X. Then the
morphism7, — X is curve-tame in the sense bf [KS], 84, dhds the normalization
of X in the abelian field extension gfpower degreé:(7y)/k(X). By [KS], Thm.
5.4.(b),70 — X is numerically tamely ramified alon§ . X. This means that the
inertia groups irGal(k(7y)/k(X)) of all pointsz € X ~. X are of order prime tg,

hence trivial. Therefor&;, and thusT extends taX . O

COROLLARY 2.11. Let A™ = Spec(k[Ty, ..., Tn]/ > T; = 1) be then-dimensional
standard simplex ovérand letA be an abelian group. Then

H} (A", A) = H(k, A).

In particular,H! (A", A) = 0 if k is separably closed.

Proof. Since tame cohomology commutes with direct limits of cogffits, and since
HL (A", Z) = 0, we may assume that = 7 /mZ for somem > 1. If p t m, we
obtain:

H}(A™ Z/mZ) = HY (A", Z/mZ) = H) (k,Z/mZ).

If p = char(k) > 0 andm = p", r > 1, Propositiof 210 yields
HNA™ Z/p"Z) = H} (A", Z/p"7) < HY(P",Z/p"Z) = H.(P",Z/p"7Z).
Finally note that7, (P", Z/p"Z) = H., (k,Z/p"Z). O
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In the following, letk be an algebraically closed field of characterigtic 0 and let
X be a separated scheme of finite type dvelcet H (X, Z/mZ) denote the modn
Suslin homology, i.e., theéth homology group of the complex

Cor(A*, X) ® Z/mZ.
Let A be an abelian group with A = 0. We are going to construct a pairing
HY(X,Z/mZ) x H{(X,A) — A

as follows: letT — X be a tameA-torsor representing a class iy (X, A) and let
a € Cor(Al, X) be a finite correspondence representirig@cycle in the modn
Suslin complex. Then

a*(T)

is a torsor oveA!. Sincea is a cocycle modulan, (0* — 1*)(«) is of the formm - 2
for somez € Cor(A°, X) = Z(X (k) We therefore obtain a canonical identification

Diqut 2 0% (a*(T)) == 1*(a*(T))

of A-torsors overA? = Spec(k). Furthermore, by Corollafy 211, the tame torsor
a*(T) on Al is trivial, hence a disjoint union of copies af*. By parallel transport,
we obtain another identification

Dpar  0°(a™(T)) — 1"(e"(T)).
Hence there is a uniqug«, 7) € A such that

D, = (translation byy(a, 7)) © ®yaus.

PROPOSITION2.12. The elementy(«,T) € A only depends on the class Gf in
H} (X, A) and on the class af in H{(X,7,/mZ). We obtain a bilinear pairing

() : HY (X, Z/mZ) x H} (X, A) — A.
Proof. Replacing/ by another torsor isomorphic ¥ does not change anything. The

nontrivial statement is thdty, 7) only depends on the class @fin H{ (X, Z/mZ).
For 3 € Cor(Al, X), we have

(a+mpB,T)=A{a, T)+m(B,T)={a,T).
It therefore remains to show that
(0°(@),T) =0,

for all ® € Cor(A2%, X), whereg; : A — A2 i = 0,1,2, are the face maps
ando*(®) = ®ody — Pody + ® o Je. Consideringd = 9y — 4 + 02 as a
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finite correspondence from! to A2, it represents a cocycle in the singular complex
Cor(A*®, A?%). Propositio 26 implies that

(07(2),T) = (200,T) = (9,2%(T)).
By Corollary[Z.11, the tame torsa*(7) is trivial on A?. Hence(d, ®*(T)) =
0. O

In the following, we use the notatiat{"**(X) := H}(X,Q/Z)*. If X is connected,

thenwi’“b (X) is the abelianized (curve-)tame fundamental groufy p§ee[KS], 84.

DEFINITION 2.13. Form > 1 we define

recx : HY (X, Z/mZ) —s 7 (X)/m
as the homomorphism induced by the pairing of Proposifid@ 2or A = 7./mZ.
combined with the isomorphisii} (X, Z,/mZ)* = 7** (X)) /m.

The statement of the next lemma immediately follows fromdagnition of rec.

LEMMA 2.14. Let f : X' — X be a morphism of separated schemes of finite type
overk. Then the induced diagram

TeC x 1 t.ab

HY (X', Z/mZ) — 7% (X')/m

|» |»

recx

HS(X,Z)mZ) —= 2" (X)/m
commutes.

3 RIGID CECH COMPLEXES

We consider étale sheavéson the categorych/k of separated schemes of finite
type over a fieldk. By a result of M. Artin,Cech cohomology?* (X, F) and sheaf
cohomologyH?, (X, F') coincide in degre& 1 and in arbitrary degree X is quasi-
projective (cf. [M]], Il Thm. 2.17). Comparing th€ech complex for a covering
and that for a finer coveriny, the refinement homomorphism

C*(U,F) — C*(V, F)
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is canonical only up to chain homotopy and hence only thedadumapH® (i, F)
— H*(V, F) is well-defined. We can remedy this problem in the spirit dé&lander
[Er], chap.4, by using rigid coverings:

We fix an algebraic closurk/k. A rigid étale coverind/ of X is a family of pointed
separated étale morphisms

Uy, u) — (X,2), z€X(k),

with U, connected and,, € U, (k) mapping taz. For an étale shedf the rigidCech
complex is defined by

C*(U,F): C"(U,F)= 11 D(Upy Xx - Xx Uy, , F)

(20, xn)EX (k) Ht

with the usual differentials. It is clear what it means forigid coveringV to be a
refinement of/. Because the marked points map to each other, there is exen!
refinement morphism, hence we obtain a canonical refinemerghism on the level
of complexes

C*(U,F) = C*(V,F).

The set of rigid coverings is cofiltered (form the fibre prodfioc eachz € X (k) and
restrict to the connected components of the marked poiltgrefore we can define
the rigidCech complex ofX with values inF' as the filtered direct limit

C*(X,F):= %né'(U,F),

wherel/ runs through all rigid coverings ak. Note that the rigidCech complex
depends on the structure morphigim— k& and not merely on the schemg&
Forgetting the marking, we can view a rigid covering as a bsagering. Every
covering can be refined by a covering which arises by fomgygtihe marking of a
rigid covering. Hence the cohomology of the rigi‘xdach complex coincides with the
usualCech cohomology ok with values inF.

For a morphismf : ¥ — X and a rigidéech coverind{// X, we obtain a rigid
Cech covering*U//Y by taking base extension 16 and restricting to the connected
components of the marked points, and in the limit we obtainradmorphism

fr:C*X,F) — C*(Y,F).

LEmmMA 3.1. If m: Y — X is quasi-finite, then the rigid coverings of the forrfid
are cofinal among the rigid coverings Yf

Proof. This is an immediate consequence of the fact that a quast-fnid separated
schemé&” over the spectrunX of a henselian ring is of the formd = YpLY; LI . .LIY,
with Yy, — X not surjective and’; — X finite surjective withY; the spectrum of a
henselianring; = 1,...,r, cf. [Mi], I, Thm. 4.2. O
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LEMMA 3.2. If F is qfh-sheaf orch/k, then for anyn > 0 the presheat’” (—, F)
given by }
X — C"(X,F)

is aqfh-sheaf. The obvious sequence
0= F = (=, F) =5 C' (= F) > C' (=, F) > -

is exact as a sequence of étale (and hence algthpEheaves.

Proof. We show that eacl’” (—, F) is aqfh-sheaf. For this, letr : Y — X be a
gfh-covering, i.e., a quasi-finite universal topological epiphism. We denote the
projection byll : Y x x Y — X. By Lemmd3.1,, we have to show that the sequence

lig C" (U, F) — lim C™(7*U, F) = lim C" (IT'U, F)
u u u

is an equalizer, wher# runs through the rigid coverings &f. Since filtered colimits
commute with finite limits, it suffices to show the exactnessd single, sufficiently
small{. This, however, follows from the assumption ttats aqfth-sheaf.

Finally, the exactness & — F — C"(—, F) — (" (=, F) — --- as a sequence of
étale sheaves follows by considering stalks. O

Being gfh-sheaves, the sheavESandQn(—, F') admit transfer maps, see [SV1], §5.
For later use, we make the relation between the transfersarid of C"(—, F) ex-
plicit: Let Z be integral X regular andr : Z — X finite and surjective. LeF’ be a

qfh-sheaf orSch/k. Forz € X (k) we have

Xhxxz= [ 2z

ze€m—1(x)

wherer~!(x) denotes the set of morphisms: Spec(k) — Z with 7 0 z = z.
For sufficiently small étal¢U,,u,) — (X,x), the set of connected components of
U, X x Z is in 1-1-correspondence with the set!(z), and to each family of étale
morphisms

(Va,v.) — (Z,2), zern Y(x),

there is (after possibly making, smaller) a unique morphism
Uy, xx Z —> H Vz7
zem—1(z)

over Z, which sends the connected component associatedvafiU, x x Z to V,,
and the poinfu,, z) to v,.

In this way we obtain, for finitely many poin{sy, ..., z,), n > 0, and for every
family
(Vziﬂ)zi) — (Z) Zi)) Zi e ﬂ._l(‘ri))
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and sufficiently small chosen
(Umi5uzi)4>(Xazi); i:(),...,n,
a homomorphism

H T(Veg Xz Xz Vo, F) — T(Upy xx -+ xx Uy, xx Z,F).

SinceF is agfh-sheaf, we can compose this with the transfer map assoaeidttethe
finite morphism

Uacg XX"'XXUzn xXZ%UIO XX"'XXUzn-

Forming for fixedn the product over al{zo, . ..,z,) € X (k)"*! and passing to the
limit over all rigid coverings, we obtain the transfer homanphism

7. : C*(Z,F) — C*(X, F).

Passing to cohomology, we obtain the usual transfer on étddemology in degree
and1, and in any degree if the schemes are quasi-projective.

Next we give the pairing
() : HY (X, Z/mZ) x H} (X, A) — A.
constructed in Proposition 212 fbralgebraically closed and an abelian grotiith
mA = 0 the following interpretation in terms of the rigldech complex:
Leta € HY(X,7Z/mZ) andb € H}(X, A) be given, and letr € Cor,(A', X) and

B € ker(CL(X, A) %5 C2(X, A)) be representing elements. Note tf@it—1*)(a) €
m Cor(A°, X') by assumption. Consider the diagram

CO(X, A) —4 C1(X, A) —L C2(X, A)

CO(AL, A) —1 (AL, A) —1 C2(AL, A)

JO*—l* JO*—l* JO*—l*
A A0, 4) —L 1 (A0, 4) —L C2(A0, A)
Since/3 represents a tame torspron X, a*(3) represents the torsar(7’), which
is tame by Lemm&_219. By Corollafy 2]11, there exists C°(A!, A) with dy =

a*(B). Since
(0" = 1%)(7) = (0" = 19)a"(8) = 0,
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we conclude thaf0* — 1*)(v) liesin
A= HO(A, A) = ker(CO(A", A) % C1(A°, A)).
It is easy to verify that the assignment
() (a,0) — (0" = 17)(7) € A

does not depend on the choices made. By the explicit geanretdtion between
Cech 1-cocycles and torsors, and since our constructiomité fpush-forwards of
torsors is compatible with the construction of transfersjfa-sheaves given in [SV1],
85, we see that the pairing constructed above coincidestivtione constructed in
Propositio 2.112.
Finally, let

A I°5T1t 512 (5)
be a (partial) injective resolution of the constant shéah the category ofZ/mZ-
module sheaves ofSch/k)qm. Leto : (Sch/k)qm — (Sch/k).¢ denote the natural
map of sites. Sincé™* is exact,¢, sends injective sheaves to injective sheaves. By
[SV1], Thm. 10.2, we havé&’¢,.(A) = A andR'¢.(A) = 0 fori > 1. Hence[(b)
is also a partial resolution of by injective, étale sheaves @f/mZ-modules. We
choose a quasi-isomorphism

0= C'(—,A4) = C' (=, A) > C* (=, A)] — [0 I° 5 T' — 17

of truncated complexes affh-sheaves. Sinc€ech- and étale cohomology agree
in dimension< 1, the induced map on global sections is a quasi-isomorphfsm o
truncated complexes of abelian groups. Hence the pairifgropositiof 212 can
also be obtained by the same procedure as above but usinagrard

I(X) — I'(X) — I2(X)

(A = (A = (A1)

lo*fl* Jo*fr Jo*fr

A IO(A%) —L 11(A%) —L 12(A0).

By [SV1], Theorem 10.7, the same argument applies with agbamjective resolution
of the constant sheaf in the category o%Z/mZ-module sheaves ofsch/k)p,.

4 THE CASE OF SMOOTH CURVES

In this section we prove Theordm1l.1 in the case fhat C is a smooth curve.
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Let k£ be an algebraically closed field of characterigtic 0, and letC' be a smooth,
but not necessarily projective, curve over Let the semi-abelian varietyl be the
generalized Jacobian 6f with respect to the modulus given by the sum of the points
on the boundary of the regular compactificati@rof C (cf. [S€], Ch.5). The group
A(k) is the subgroup of degree zero elements of the relativedPgraupPic(C, C ~

C). By [SV1], Thm. 3.1 (se€[Li], for the casé = C), there is an isomorphism

HS(C,Z)° = ker(HS (C, Z) 5 7) = A(k),

in particular, A(k) is a quotient of the group of zero cycles of degree zera’on
From the coefficient sequence together with the divisipiit 7 (C,Z) (which is
isomorphic tok* if C is proper and zero otherwise), we obtain an isomorphism

HE(C,Z/mZ) = 1 HE (C,Z) = 1 Alk). (6)

After fixing a closed poinf, of C, the morphisnC — A, P — P — P, is univer-
sal for morphisms o€’ to semi-abelian varieties, i.e4 is the generalized Albanese
variety ofC' ([S€], V, Th. 2). N
Consider then-multiplication mapA % A. Its maximal étale subcovering — A
is the quotient of4 by the connected component of the finite group scheyde((if
(p,m) = 1, the connected component is trivial). The projectién— A induces an
isomorphismA(k) = A(k) on rational points, and we identify(k) and.A(k) via
this isomorphism. With respect to this identification, thejection A(k) — A(k) is
them-multiplication map onA(k).
By [S€], Ch. IV,C := C x4 A is the maximal abelian tame étale covering(of
with Galois group annihilated by:. BecauseAut4(A4) = ,,.A(k), we obtain an
isomorphism

Hom(,, A(k), A) = H}(C, A) 7

~

for any finite abelian groupl with mA = 0.

THEOREMA4.1. For any finite abelian groug with mA = 0, the diagram

()

HS(C,Z/mZ) H(C, A) A
ol - H
mA(R) x  Hom(mA(k), A) vl A

where( , ) is the pairing from Propositidn 2112 ardal is the evaluation map, com-
mutes. In particular, the upper pairing is perfect and thfduded homomorphism
HS(C,Z/mZ) — 2" (C) /m is an isomorphism.
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Proof. We have to show that(5(¢)) = (¢, 7(¢)) for any ¢ € HY (C,Z/mZ) and
any¢ € Hom(,,A(k), A). By functoriality, it suffices to consider the universal eas
A =, A(k), ¢ = id. In this caser(id) is the torsoft : C' — C.
Let C’ be the regular compactification af. By [SVI], Thm. 3.1,6(¢) €
mH5 (C,Z) = ,, A(k) is the clasgz] of somez € Zy(C) (the group of zero-cycles
on () such that

mz =~"(0) —=v*(1)
for some finite morphisny : ¢’ — P! with C’ . C C v~ !(00). The diagram

C'~y Hoo) —— C—— '

k‘c&vww) k

Al < P!

shows thaty induces a finite correspondence, gayrom A to C. The class ofy in
H{ (C,7/mZ) is a pre-image o6(¢) underH?(C, Z/mZ) = ,,HS (C,Z), i.e.,¢
is represented by. It therefore suffices to show that

[2] = (9, C).

Let d be the degree of and~*(0) = Zle P, v*(1) = Z‘f:l Q;. Each point in
~*(0) and~*(1) occurs with multiplicity divisible bym, in particulard = mr for
some integer. After reindexing, we may assume théf = P; and@; = Q; for

1 = j mod r, hence
T T
=Y r-Ye
i=1 =1

On the level of closed points; = C' x4 A can be identified with the set af ¢
A(k) = A(k) such thatna = P — P, for some point? € C (a projects toP in C,
i.e.,m(a) = P). The,, A(k)-principal homogeneous spaBeg*C can be identified
with the quotient of the set

d
I[[7 ')
=1

by the action of,,.A(k)¢~! given by

(Bry--Ba-1)(a1,...,aq) = (a1 + Bi,a2 — B1+ P2, ..., aq — Ba—1)-
We fix pointsay,...,aq € C over P, ..., P; subject to the condition; = a; for
P; = P;. Then0*g*C is identified with the quotient of the set
(a1 + mA(K)) x - X (aqg + mA(k))

by the action of,,.A(k)¢~1. Since each, occurs with multiplicity divisible bym, the

trivialization0*g*(C) = ,,, A(k) given by

(a1 4+ a1,...,a0+ @q) — a1 + -+ ag € R A(k)
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does not depend on the choice of the We do the same with*¢*(C) by choosing
b; € C over@;. Then we see that the tautological identificatib,,; : 0*g*(C) =

1*¢*(C) is given by

(a1 +ai,...,ad +aq) — (b1 +ai,...,bs + aq).

Now consider the morphism
S :Sym(C) — A, (21,...,2a) — [D_(zi — R)]-

Associated with the,, A(k)-torsor C over C, we have the,,A(k)-torsor
Sym? 41y (C) over Sym?(C) (cf. the paragraph preceding Lemrhal2.3). The
commutative diagram

L |
Sym?(C) —=— A
induces a map (hence an isomorphism)nM(k)—torsorsSymiA(k)(5) 3 Axy
Sym?(C). Consider the morphistf, : Al — Sym?(C) associated with the finite
correspondence. Since the generalized Jacobian®f = A} is Spec(k), the com-
posite
At N Sym?(C) = A
is constant with value, := [Zle(]%- - PR)] = [Zle(Qi - BRy)] € A(k). By
LemmdZ3B, we obtain an isomorphism

g*(C) = 8:(Sym?(C)) = B*S; A = A} x 71 (a)

(giving a trivialization after choosing a point ! (a)). On the fibre ove# it is given

by
d ~
(a1 +a1,...,0q9 —|—ad) — Z(al —l—ai) S %’1(a) cA
=1

—1
tau

and similarly on the fibre over. We conclude tha®,,, o ¢, is translation by

d r T
D (e —b) =) mla;—b) =) [P —Qi =[]
=1 =1 =1
This concludes the proof. O

5 THE BLOW-UP SEQUENCES

All schemes in this section are separated schemes of fipieedyer the spectrum of a
perfect fieldk. A curve on a schem# is a closed one-dimensional subscheme. The
normalization of a curv€’ is denoted by
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Now let
Z — X’

|

7t X

be an abstract blow-up square, i.e., a cartesian diagramhainges such that :
X' — X is proper; : Z — X is a closed embedding aadinduces an isomorphism
(X/ N Z/)red — (X N Z)red.

PROPOSITIONS.1. Given an abstract blow-up square and an abelian glo@ssume
thatr is finite or A is torsion. Then there is a natural exact sequence

0— Heot(Xv A) — Heot(leA) D Heot(Zv A) — Heot(Z/vA)

S HMX,A) —» HY (X', A) @ H-(Z, A) — H-(Z', A).

Proof. We call an abstract blow-up square trivial,iifs surjective (i.e.s.eq IS @n
isomorphism) or ifr.eq : X/ 4 — Xiea has a section. Every abstract blow-up square
with X a connected regular curve is trivial.

Now let an arbitrary abstract blow-up square be giver i torsion, the proper base
change theorem implies (cf. [GeZ2], 3.2 and 3.6) that we hdua@exact sequence

T Hezt(XvA) - Heit(X/vA)@Heit(Z5A) - Heit(Z/vA) - Hez:‘j_l(XaA) —

If 7 is finite, the same is true for arbitradysincer, is exact. If the blow-up square is
trivial, this long exact sequence splits into short exaqueaces) — H¢ (X, A) —
HL (X' A)® H.(Z,A) — HL(Z', A) — 0 for all 4.

Next we show the exact sequence of the proposition. We oraitctiefficientsA
and putH?(X) = HY(X). We first show, that the image of the boundary ndap
HS(Z') — HL(X) has image inH} (X), thus showing the existence &’ (Z') —
H}(X) and, at the same time, the exactness of the sequerd€f(af). LetC — X
be the normalization of a curve if. The base change

of our abstract blow-up square @ is a trivial abstract blow-up square. Therefore,
foranya € HJ(Z'), the pull-back ofx to H, (Z7) lies in the image offg, (X) &

HE(Z&) — H(Z%) and has therefore trivial image under ¢, (Z7) — He, (C).
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Therefore§(a) € HL(X) has trivial image inHelt(é) for every curveC C X, in
particular, it lies inH} (X).

It remains to show exactnesshf (X’) & H} (Z). Leta be in this group with trivial
image inH}(Z’). Then there exist§ € H),(X) mapping tox and it remains to show
that3 lies in the subgroug?;! (X). But this is clear, because for every cutvec X

we haver} (C) = ker(H} (XL) & H}(Zg) — HH(Z5)). O

PROPOSITIONS.2. Given an abstract blow-up square

7z — X'

|

Z =X
and an abelian group, there is a natural exact sequence of Suslin homology groups
HY(Z',A) — HY (X', A) @ Hy (Z,A) — HP (X, A)

S HS(Z,A) - HS (X', A) & HS (2, A) — HS (X, A) — 0.

Proof. Consider the exact sequences
Co(Z',A) = Co(X',A) D Co(Z, A) = Co(X,A) » K2

and
Co(Z') = Co(X') ® Co(Z) = Co(X) — Ko,

where K2 and K, are defined to make the sequences exact. Since the complexes
C.(—) consist of free abelian groups, in order the show the stateofeéhe proposi-

tion, it suffices to show thal?;(K,) = 0 for ¢ < 2. LetSm/k be the full subcategory

of Sch/k consisting of smooth schemes. Fore Sch/k we consider the presheaf
¢(Y) onSm/k given byc(Y)(U) = Cor(U,Y). Then, by[[SV2], Thm.5.2, 4.7 and

its proof, the sequence

(ﬂ;-,i*)

0—=c(Z') = (XD c(Z) c(X)

is exactand” := coker (7., i.) has the property that, for aiiy € Sm/k of dimension

< 2 and anyz € F(U), there exists a proper birational morphigm: V. — U
with V' smooth such thap* () = 0. Let F, be the complex of presheaves given by
F,(U) = F(U x A™) with the obvious differentials and 1éF, )nis be the associated
complex of sheaves a$m/k)nis. Then by [SS], Thm. 2.4, the Nisnevich sheaves

Hi((Fo)nis)

vanish fori < 2. Evaluating al/' = Spec(k) yields the result. O
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Now assume that is algebraically closed. Let
reci x : HY (X, Z/mZ) — H} (X, Z/mZ)*
be the reciprocity map constructed in Secfibn 2 and let
reco.x : Hy (X, Z/mZ) — HO(X,Z/mZ)*
be the homomorphism induced by the pairing
() HJ(X,Z/mZ) x HY(X,Z/mZ) — 7./mZ

defined as follows: Givem ¢ H{(X,Z/mZ) andb € HY(X,Z/mZ), we
representa by a correspondence € Cor(A% X) and put{a,b) = a*(b) €
HS(AY,Z/mZ) = Z/mZ. This is well-defined since the homomorphistis1* :
HS(AY,Z/mZ) — HS (A, Z/mZ) agree.

LEMMA 5.3. For anym, recy, x iS an isomorphism.

Proof. For connected(, we have the commutative diagram

HE(X,Z/mZ) =% HY(X,Z/mZ)*

ldeg }

TeCO, k

HE (k,Z.)mZ) —==%5 HO,(k,Z./mZ)*.

Hence, for connected, it suffices by functoriality to consider the meddegree map.
In particular,recg, x is surjective for arbitraryX’ and is an isomorphism ifim X = 0.

If X is a smooth connected curve, thH (X, Z) = Pic(X, X \ X), whereX is the
smooth compactification oX (cf. [SVI], Thm. 3.1). The subgrouic’ (X, X \ X)
of degree zero elements is the grouptefational points of the Albanese df, and
hence divisible. Thereforegc, x is an isomorphism for connected, and hence for
all smooth curves. Considering the normalization morphidran arbitrary scheme
of dimensionl and the exact sequences of Propositlonk 5.1 add 5.2, thiefivea
shows thatreco, x is a isomorphism fodim X < 1.

It remains to show thatecy x is injective for arbitraryX. We may assume to be
connected. Let € ker(recg x) and leta € Zy(X) be a representing-cycle. Since
supp(«) is finite, we can find a connectdddimensional closed subschefeC X
containingsupp(a) (use, e.g.[IMU], Il §6 Lemma). Sincecy, 7 is injective andu is
in the image ofHi(Z, Z/mZ) — H§ (X, Z,/mZ.), we conclude that = 0. a

COROLLARY 5.4. Letk be an algebraically closed field and kétc Sch/k be con-
nected. Then the kernel of the degree map

deg: Hy (X,Z) — HS (k,Z) = Z.
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is divisible.

PROPOSITIONS.5. Letk be algebraically closed and let

be an abstract blow-up square. Then for any integer 1 the diagram

HS(X,Z/mZ) —— HS(Z',Z/mZ)

lrecl,x JTECOYX

HNX, Z/mZ)* —— HO\(Z, Z)mZ)",

commutes. Heré is the boundary map of Propositibn15.2 afidis the dual of the
boundary map of Proposition’.1.

Proof. We have to show that the diagram

HY (X,Z/mZ)  x H}(X,Z/mZ)LZ/mZ

| I |

HE(Z',7/mZ)  x Hgt(z’,Z/mZ)LZ/mZ

commutes. Givea € Hy (X, Z/mZ) andb € HS(Z',Z/mZ), we choose a repre-
senting correspondencec C; (X, Z/mZ) = Cor(A', X) ® Z/mZ in such a way
that it has a pre-image € C1 (X', Z/mZ) & C1(Z,7Z/mZ) (see the proof of Propo-
sition[5.2). By definitionga € HS (Z',7,/mZ) is represented by a correspondence
v € Co(Z',Z/mZ) such that the diagram

A0 2T A

| |3

7 "L X1z
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of correspondences commutes modulo Next choose an injective resolution
Z/mZ — I* of Z/mZ in the category of sheaves @f/mZ-modules on(Sch/k)y,

in order to compute the pairings (cf. the end of secfibn 3)n<iter the following
diagram

(X" & 19(2) =5 1027

y |

X)) e 1'(2) 2= 1z

(W*si*)

I9(AY) — (A IMAY) —4 5 12(AY)
lo*—l* lo*—l* 0*—1* lo*—l*
I9(A%) —— [1(A?) IMAY) —4 5 12(A)

By the argument of [MVW] Lemma 12.7, the sequence
0 F(X)—>FX)oF(Z)— F(Z)

is exact for everyh-sheafF'. Therefore the second line in the diagram is exact. The
proper base change theorem implies (cf. [Ge?2], 3.2 and Ba) t

I(X) — I*(X) @ I*(Z) — 1*(2") 1
is an exact triangle i (Ab). For the exact sequence of complexes

0= I°(X) = INX")YI*(Z) = I*(Z") — coker® — 0,

this implies that the complexoker® is exact. Thereforg, € ker(1°(Z') — I1*(Z"))
has a pre-imagg € I°(X’) @ I°(Z). Then

dB € ker(I'(X) o I'(Z) — I'(2")),

and there exists a uniques I'(X) with (7*,i*)(¢) = dj3 representingb € H}(X).
We see thafi* (df5) = a*(e). It follows that

d(@*(B)) = a*(dB) = a*(e) € ker(I'(A1) L2155 11(A)).
By definition of (, ), we obtain
(a,8(b)) = (0" — 1%)@* B € ker(I°(A%) — I'(A%)) = Z/mZ.
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On the other handga, b) = v*(b) € HS (A) is represented by*3 € 1°(A°) and
the commutative diagram of correspondences above implies

This finishes the proof. O

PROPOSITIONS.6. Let X be a normal, generically smooth, connected scheme of
finite type over a field: and letM C H. (X,7Z/mZ) be a finite subgroup. Then
there exists a regular curve overk and a finite morphism : C — X such thatVl

has trivial intersection with the kernel ¢f : H.(X,Z/mZ) — HX(C,Z/mZ).

Proof. For any normal schemg& and dense open subschewie C Z, the induced
mapHL (Z,7/mZ) — HL(Z',7/mZ) is injective. Hence we may replacé by an
open subscheme and assume fids smooth. Lefy” — X be the finite abelian étale
covering corresponding to the kernelef*(X) — M*. We have to find a regular
curveC and a finite morphism’ — X such thatC' x x Y is connected.

Choose a separating transcendence basis.,t; of k(X) overk. This yields a
rational mapX — P¢. Lett be another indeterminate and )t (resp.Y;) be the base
change ofX (resp.Y’) to the rational function field:(¢). Consider the composition
o:Y; - Xy — IPZ(t)‘ Sincek(t) is Hilbertian [FJ], Thm. 12.10, we can find a

rational pointP € ]Pg(t) over which¢ is defined and such tha@ has exactly one
pre-imagey; in Y;. The imager; € X, of y, has exactly one pre-image 1. Letz
be the image of; in X. If trdeg,k(x) = 1 putz’ = z, if trdeg, k(z) = 0 (i.e.,x is
a closed pointinX) choose any’ € X with trdeg; k(z’) = 1 such that: is a regular
point of the closure of’. In both cases the normalizatiéhof the closure oft’ in X
is a regular curve with the desired property. O

6 PROOF OF THE MAIN THEOREM

In this section we prove our main result. We say that “resatudf singularities holds
for schemes of dimension d overk” if the following two conditions are satisfied.

(1) For any integral separated scheme of finite typ@f dimension< d overk,
there exists a projective birational morphidm— X with Y smooth ovelk
which is an isomorphism over the regular locusXof

(2) For any integral smooth schemeof dimension< d overk and any birational
proper morphisnY” — X there exists a tower of morphisn§, — X,,_; —
.-+ —= Xy = X, such thatX,, — X,,_; is a blow-up with a smooth center for
i =1,...,n, and such that the composite morphidin — X factors through
Y —- X.
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THEOREM 6.1 (=THEOREMI[L.]). Let k be an algebraically closed field of charac-
teristicp > 0, X a separated scheme of finite type okeandm a natural number.
Then

recx : HY (X, Z/mZ) —s 7 (X)/m

is surjective. It is an isomorphism of finite abelian groupgr,p) = 1, and for
generain if resolution of singularities holds for schemes of dimensi. dim X + 1
overk.

The proof will occupy the rest of this section. Following thatation of Sectiohl5, we
write HY = HY, and consider the maps

rec; x HiS(X, Z./mZ) — HZ(X, Z./mZ)*

fori=0,1(i.e.,recx = reci x). Given a morphisnX’ — X, we have a commuta-
tive diagram of pairings defininggec; fori = 0, 1.

HY (X', Z/mZ)  x H}(X’,Z/mZ)L»Z/mZ

] |+ |

HY(X,Z/mZ)  x Hg(X,Z/mZ)LZ/mZ.

Step 1 recy, x is surjective for arbitraryX .

We may assume thaf is reduced and proceed by induction®gs: dim X. The case
dim X = 0 is trivial. Consider the normalization morphisiff — X, which is an
isomorphism outside a closed subschethe X of dimension< d — 1. Using the
exact sequences of Propositionsg 5.1[anél 5.2, which are diiggay Propositioi 5]5
and the fact thatecy x is an isomorphism by Lemnia®.3, a diagram chase shows that
it suffices to show surjectivity ofec; x for normal schemes.

Let X be normal. Sincél}!(X,Z/mZ) is finite, it suffices to show that the pairing
definingrec; x has a trivial right kernel. We may assume thats connected. Let
b € H} (X, 7/mZ) be arbitrary but non-zero. By Proposition]5.6, we find a mimph
¢ : C — X with C a smooth curve such that (b) € HL (C,Z/mZ) is non-zero.
Since the pairing fo€' is perfect by Theorefm 4.1, the pairing f&r has a trivial right
kernel.

Step 2 Theoreni 611 holds ifm, p) = 1.

If (m,p) = 1, HY(X,Z/mZ) and H. (X, Z/mZ)* are isomorphic finite abelian
groups by[[SVL]. In particular, they have the same order.dddhe surjective homo-
morphismrec; x is an isomorphism.

Step 3 Theoreni 6.11 holds for arbitrary if m = p” and resolution of singularities
holds for schemes of dimensighdim X + 1 overk.
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We may assume thaX is reduced. Using resolution of singularities and Chow’s
Lemma, we obtain a morphisii’ — X with X’ smooth and quasi-projective, which
is an isomorphism over a dense open subschem¥€.ofJsing the exact sequences
of Proposition§ 5]1 and 8.2, LemmalsS&ep 1 induction on the dimension and the
five-lemma, it suffices to show the result for smooth, quasjgetive schemes.

Let X be smooth, quasi-projective and létbe a smooth, projective variety containing
X as a dense open subscheme. Then,_by|[Ge3, §5], we have arrji$isno

HL(X,Z/p"Z)* = CHy(X,1,Z/p"Z).

Furthermore, byl [SS, Thm. 2.7] (which makes the assumptlion< 2 but does not
use it in its proof), we have an isomorphism

CHo(X,1,Z/p"Z) = H (X, Z/p" 7).
By Propositiod 6.2 below, the natural homomorphism
HY (X, Z/p"Z) — HY (X, Z/p"Z)

is an isomorphism of finite abelian groups and by Proposfidi), we have an iso-
morphism
Helt(Xv Z/pTZ) :> Htl (Xa Z/pTZ)

Hence the finite abelian groupt' (X, Z/p"Z)* andH? (X, Z/p" Z) are isomorphic,
in particular, they have the same order. Sinag_x is surjective, it is an isomorphism.

In order to conclude the proof of Theor€ml6.1 it remains tarsho

PROPOSITIONG.2. Let k be a perfect fieldX € Sch/k smooth,U C X a dense
open subscheme amd> 0 an integer. Assume that resolution of singularities holds
for schemes of dimension dim X + n overk. Then for any > 1 the natural map

H(U,Z/p"Z) — H (X,Z/p"7)

is an isomorphism of finite abelian groups fo£ 0, . . ., n.

REMARK 6.3. A proof of Propositioh 6]2 fon = 1 andk algebraically closed inde-
pendent of the assumption on resolution of singularitiealdioelax the condition in
Theoreni 61 to:

There exists a smooth, projective scheiftec Sch/k, dense open subscheni&sc
X' ¢ X', U c X, and a surjective, proper morphiski — X which induces an
isomorphisnU/_; — Uyeq -

In particular, Theorerh 611 would hold falim X < 3 without any assumption on
resolution of singularities [CV].
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Proof of Propositio 6 2. We setR = Z/p"Z. By [MVW], Lecture 14, we have

HP (X, R) = Hom (R[i], M(X, R)).

DM (k,R)
Letd = dim X. Choose a series of open subschefies X; C --- X3 C Xo = X
such thatZ; := X; \ X, is smooth of dimensiopfor j = 0,...,d — 1. Using the
exact Gysin triangles [MVW, 15.15]

. 41
M(Xj+1, R) — M(X;, R) = M(Zj, R)(d — j)[2d — 2j] 4 M (X1, R)[1]
and induction, it suffices to show that

Homp e — ;. gy (Rlil, M(Z;, R)(s)[2s]) = 0
forj=0,...,d—1,i=0,...,n+ 1 ands > 1. Using smooth compactifications of
the Z; and induction again, it suffices to show

Homypyert -, o (RI), M (Z, R)(s)[25]) = 0

for Z connected, smooth, projectivie= 0,...,d — dz + n ands > 1.
By the comparison of higher Chow groups and motivic cohom[¥] and by [GL],
Thm. 8.5, the restriction aR(s) to the small Nisnevich site of a smooth schemeés
isomorphic tové[—s], wherev? is the logarithmic de Rham Witt sheaf of Milne and
lllusie. In particular,R(s)|y is trivial for s > dimY".
For an étalé:-schemeZ we obtain
Homyyygere.— . gy (R, M (Z, R)(s)[2s]) = HY:. ' (Z,R(s)) = 0
for s > 1 and alli > 0. Now assumelim Z > 1. Using resolution of singularities
for schemes of dimension d + n, the same method as in the prooflof [SS], Thm. 2.7
yields isomorphisms
. o~ dz .
HomDML&fif;(kyR)(R[z], M(Z,R)) = CH"#(Z,i, R)
fori =0,...,d—1+n. Applying this toZ x IP* and using the decompositions given
by the projective bundle theorem on both sides implies ispimems

HomDML&fif;*(hR) (R[Z]v M(Za R)(S)[2S]) = CHdZJrS(Zv iv R)

fori=0,...,d — 1+ n. By [V], the latter group is isomorphic to

Hompygett- gy (M(Z, R)[2dz +25 — i), R(dz + ) = HX27(Z, R(dz + ),

Nis

which vanishes fog > 1. This finishes the proof. O

REMARK 6.4. The assertion of Propositibn6.2 remains true for moneth X if U
contains the singular locus &f (seel[Ge4], Prop. 3.3).
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7 COMPARISON WITH THE ISOMORPHISM OFSUSLIN-VOEVODSKY

THEOREM7.1. Letk be an algebraically closed field, € Sch/k andm an integer
prime tochar (k). Then the reciprocity isomorphism

recx : HY (X, Z/mZ) — 72 (X)/m

is the dual of the isomorphism

ax : HY(X,Z/mZ) — HY(X,Z/mZ)
of [SV]1], Cor. 7.8.
The proof will occupy the rest of this section. lietZ/mZ — I° be an injection into
an injective sheaf in the category #&f/mZ-module sheaves ofSch/k)qm and put
J! = coker(i). Then (see the end of sectioh 3) the pairing betwHgri X, Z/mZ.)
and H),(X,Z/mZ) constructed in Propositidn 2112 can be given as follows: For

a € HY (X,7/mZ) choose a representing correspondence Cor(A!, X) and for
be HL(X,Z/mZ) apre-imaged € J'(X). Consider the diagram

°(X) — JH(X)

=

°(AY) — JY(AY) (®)

Jo*fr* Jo*fl*

Z./mZ — I°(A%) — JO(AY).
Thena* () is the image of some elemente I°(Al) and(0* — 1%)(v) € Z/mZ =

ker(I°(AY%) — J1(A?)) equals(a, b).

ForY e Sch/k let Z{™ be the freeqfh-sheaf generated by. We setA =
Z[1/char(k)] andLy = Z‘g‘,fh ® A. For smoothJ the homomorphism

Cor(U, X) ® A — Homgem (Ly, Lx)
is an isomorphism by [SV1], Thm.6.7. We have
HL\(X,Z/mZ) = Hig, (X, Z/mZ) = BExtlg,(Lx, Z/mZ)
= coker(Homgm (Lx, IO) — Homgpm (Lx, JhH).

DOCUMENTA MATHEMATICA 21 (2016) 91-123



TAME CLASS FIELD THEORY FORSINGULAR VARIETIES... 119

The diagran(8) can be rewritten in terms of Hom-groups as follows:

Homgsm (Lx, I°) —— Homgm (Lx, J')
Hqufh(LAl N IO) _— Hqufh(LAl 5 Jl) (9)
0* — 1% Jo* —1x
Z/mZ — Hqufh(LAU,IO) —— Homgsn (Lo, Jh).

We denote the morphisiiy — J* correspondingt@ € J'(X) = Homgm(Lx, J*')
by the same lettes. PuttingEl := I° x 1,,8 Lx, the extension

0—27Z/mZ —E— Lx —0

represents ¢ Ext}lfh(LX, Z/mZ). Consider the diagram

Homqfh(LX, E) E— Homqfh(LX, Lx)

Hqufh(LAl,E) —_— Hqufh(LAl,LX) (10)

JO*—l* JO*—l*

Z/mZ — Homggn (Lo, E) — Homgm(Lao, Lx).

Because diagram (10) maps to diagram (9)&4deandid € Homgsm (L x, Lx) maps
underp, to 8 € Homgm(Lx,J'), we can calculate the pairing using diagram (10)
after replacings by id. Sinceid maps toe € Homgm (L a1, Lx) undera™, we see,
writing the lower part of diagram (10) in the form
Z./mZ — E(A') — Lx(A')
ol o*—1*l z///h JO*—l* (112)

Z./m7Z — E(A%) — Lx(AY),

that
{a,b) = h(e) mod m € ker(E(A%)/m — Lx(A%)/m) = Z/mZ,
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whereh is the unigue homomorphism making diagra) commutative. We con-
sider the complexC,(X) = Cor(A®, X) ® A = Lx(A®) with the obvious differ-
entials. By the above considerations, the homomorphismded by the pairing of
Propositio 2,12

HY(X, Z/mZ) = Hiy (X, Z/mZ) —
HY(X,Z/mZ)* = Ext}(Cu(X), Z/mZ) = Homp)(Co(X), Z/mZ]1]),

is given by sending an extension cld®%/mZ — E — Lx] to the morphism
Ce(X) — Z/mZJ1] in the derived category afi-modules represented by the mor-
phism

Co(X) = [0 = E(A%) — Lx(A%) — 0]
which is given byid : Lx (A% — Lx(A%) in degree zero and by : Lx(A') —
E(AY) in degree one.
The same construction works for agth-sheaf ofA-modulesF instead ofL x, i.e.,
settingC, (F) = F(A®) and starting from an element

(Z/mZ — E — F) € Extly,(F, Z/mZ),

we get a mag’, (F') — Z/mZ][1] in the derived category ofi-modules. We thus
constructed a homomorphism

Ext g, (F,Z/mZ) — Ext'(Ce(F), Z/mZ), (12)
which for F' = Lx and under the canonical identifications coincides with tlag m
HL(X,Z/mZ) — H} (X,Z/mZ)*
induced by the pairing constructed in Proposifion2.12.
Now we compare the mafi2) with the map
ax : BExth, (F, Z/mZ) — Exty(Co(F), Z/mZ) (13)
constructed by Suslin-Voevodsky [SV1] (cf. [Ge1l] for theseaf positive characteris-
tic). Let F,” be the complex aofith-sheaves associated with the complex of presheaves
F,(U) = F(U x A*). By [SV]], the inclusionF” — F” induces an isomorphism
Extlg,(Fo, Z/mZ) — Extg,(F, Z/mZ), (14)
and evaluation afpec(k) induces an isomorphism
Extg, (F, Z/mZ) — Exty(Co(F), Z/mZ). (15)

The map(13) of Suslin-Voevodsky is the composite of the inverse of (14h\d5).
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We construct the inverse of (14). Let a clagg/mZ — E —» F| €

Extéfh(F, Z./mZ) be given. As a morphism in the derived category this clasweng

by the homomorphism

) Fy Fy 0
[
0 E F 0

commutative. The construction is a sheafified version of wiedid before. Let
U € Sch/k be arbitrary. Consider the diagram

0— Z/mZ({U) — E(U x A?) — F(U x A?) — 0

Jid J/60761+62 J50751+52

0 — Z/mZ{U) — E(U x Al') — F(U x Al') — 0

JO Jo*fl* Jo*fr‘

0 — Z/mZ(U) E(U) F({U) —— 0

Let sy € F(U x A') be given. By the smooth base change theorem and since
HL(AY,Z/mZ) = 0, we can lifta; to E(U x Al) after replacingy by a suffi-
ciently fine étale cover. Applying* — 1* to this lift, we get an element iB'(U). This
gives the homomorphisift; — E. Now letay € F(U x A?) be arbitrary. After
replacingU by a sufficiently fine étale cover, we can lift, to E(U x A?%). Since

(0% —1%)(8° — 61 + §2) = 0 this shows thats® — 5* + 62) () maps to zero i (U).

This describes the inverse isomorphism to (14). Evaluaing = Spec(k) gives
back our original construction, hen¢&2) and(13) are the same maps. This finishes
the proof.
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ABSTRACT. The aim of this paper is to construct lifts from two ellip-
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1 INTRODUCTION

1.1

Lifts from two elliptic modular forms to Siegel modular form of half-
integral weight of degree two have been conjectured by Ibukiyama and the
author[H-I.05]. In the present article we will give a partial answer for the
conjecture in [H-I.05] and shall generalize these lifts as lifts from two ellip-
tic modular forms to Siegel modular forms of half-integral weight of any even
degree (Theorem B.3]).

The construction of the lift can be regarded as a half-integral weight ver-
sion of the Miyawaki-Ikeda lift. The Miyawaki-Tkeda lift has been shown by
Ikeda [Tk 06]. In the present article we will give a proof to the fact that con-
structed Siegel modular forms of half-integral weight are eigenforms, if it does
not identically vanish. Moreover, we will compute the L-function of the con-
structed Siegel modular forms of half-integral weight. The key ingredient of
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the proof of the lift in the present article is to introduce a generalized Maass
relation for Siegel modular forms of half-integral weight (Theorem [7.6] [R.2)).
Generalized Maass relations are relations among Fourier-Jacobi coefficients of
Siegel modular forms and are regarded as relations among Fourier coefficients.
Theorem is a generalization of the Maass relation for generalized Cohen-
Eisenstein series, which is a Siegel modular form of half-integral weight of
general degree. And Theorem is a generalization of the Maass relation for
Siegel cusp forms of half-integral weight of odd degree.

1.2

We explain our results more precisely.

We denote by M;%(Fg") (4)) the generalized plus-space of weight k — 1 of
degree n, which is a subspace of Siegel modular forms of half-integral weight
and is a generalization of the Kohnen plus-space (see [Ib 92] or §4.3] for the
definition of generalized plus-space). Let F' € M ]:r_ (I‘((J") (4)) be an eigenform

1
3
for any Hecke operators. We put

n

Qrp(z) = [ = pip2)d = pip2),

=0

where complex numbers {pr} are p-parameters of F' introduced in [Zh 84] if
p is an odd prime. If p = 2, then we define {ui} by using the isomorphism
between generalized plus-space and the space of Jacobi forms of index 1. We
denote the modified Zhuravlev L-function by

L(s,F) = [[Qrplp~"™7).

The Zhuravlev L-function is originally introduced in [Zh 84] without the Euler
2-factor, which is a generalization of the L-function of elliptic modular forms
of half-integral weight introduced in [Sh_73].

We denote by Sl'ct% (1™ (4)) the space of Siegel cusp forms in M]i% (T (1)),
The following theorem is the main result of this article.

THEOREM [B3] Let k be an even integer and n be an integer greater than 1.
Let h € S;;nJr%(Fgl)(Zl)) and g € S]: (F(()l)(él)) be eigenforms for all Hecke

1
2
operators. Then there exists a Fp 4 € S;r_l(l"((fnﬂ)). Under the assumption
2
that Fh,g is not identically zero, then Fy, 4 is an eigenform with the L-function
which satisfies

2n—3

L(s,Fng) = L(s,9) H L(s —i,h).
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By numerical computations of Fourier coefficients of /3, ; we checked that Fj, 4
does not identically vanish for some (n, k). (See §9 for the detail).

Remark that the above theorem was first conjectured by Ibukiyama and the
author [H-1105] in the case of n = 2 not only for even integer k, but also for
odd integer k.

The construction of Fj 4 was suggested by T. lkeda to the author, which is
given by a composition of three maps and an inner product. These three maps
are a Ikeda lift (Duke-Imamoglu-Ibukiyama-Tkeda lift), a map of the Fourier-
Jacobi expansion and an isomorphism between Jacobi forms of index 1 and
Siegel modular forms of half-integral weight. In §8 we will explain the detail of
the construction of Fj, 4.

To prove Theorem B3] we use a generalized Maass relation for generalized
Cohen-Eisenstein series (Theorem [[.6]). Once we obtain Theorem [T.0] it is not
so hard to show Theorem B3l The most part of this article is devoted to show
Theorem [(.6] We now explain the generalized Maass relation for generalized
Cohen-Eisenstein series (Theorem [7.6]).

Let k be an even integer and ’H](CTT) be the generalized Cohen-Eisenstein series
2

of degree n+ 1 of weight k — + (see §&Alfor the definition of generalized Cohen-
Eisenstein series). The form ’Hl(c"f;) is a Siegel modular form of weight k — %
2

of degree n + 1.
(n)

h_1,, the m-th Fourier-Jacobi coefficient of
3

For integer m, we denote by e

(n+1),
HD:

n+1 T Z n T/ —1mw
we(D0) = X Al amaen T

m>0
m=0,3 mod 4

where 7 € £, and w € 1, and where $),, denotes the Siegel upper half space
of degree n. We denote by Jlgi)l ., the space of Jacobi forms of degree n of
3,

weight k — 3 of index m (cf. §2.6) and denote by J]Si)z ., (cf. §4.4) a subspace

(n+1)
k-

n)*

of J;iri); - Then, the above form ™ belongs to ]i_l - Because H

k—%,m
belongs to the generalized plus-space M];t N (F(()"+1)(4)), we can show that the
2
(n)
k—%,m

We denote by My (T,,+2) the space of Siegel modular forms of weight & of degree

form e is identically zero unless m = 0, 3 mod 4.

n + 2 and denote by []15"1“) the space of Jacobi forms of weight k£ of index 1

of degree n + 1. We denote by E,(c") € My(T,,) the Siegel-Eisenstein series of

weight k of degree n (cf. (B2)) in §3) and by E,(Cnl) € J,gfll) the Jacobi-Eisenstein

series of weight k of index 1 of degree n (cf. (BI) in §3). The form ’H](CTT) is
2

)

constructed from E,i"lﬂ . The diagram of the above correspondence is
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B € My(Tso)

|

R p—

(n) (n)=
{ekfé,m}me ® kaé,m'

m=0,3 mod 4

In §2.7 (for any odd prime p) and in §4.7] (for p = 2) we will introduce index-shift
maps Va.no(p?) (@ = 0, ...,n), which are linear maps from J,Si);m to the space
of holomorphic functions on $,, x C»1. If p is odd then V,, ,,_«(p?) is a linear
map from J(n)* to Jlii)l 2 These maps Va,n_a(pQ) are generalizations of
the V;-map in [E 7 85 p.42?;] for half-integral weight of general degrees. For any
XS Jlgi)%,m and for any integer a we define (¢|U,)(7, 2) := ¢(7, az).

The following theorem is a generalization of the Maass relation for the gener-
alized Cohen-Eisenstein series, where we use the symbol

eyl Vo (0), Vit (07), o Vo (07)

= () Vo). e”) L Vi1 (P), ey Vi o(p)).

THEOREM [T.6] Let e(")l be the m-th Fourier-Jacobi coefficient of generalized
3:m
Cohen-FEisenstein series H H) (See (I))). Then we obtain

ey | Vo), Vi1 (p7), s Vo (7))

_ pk(n—l L (n?+5n-5) I(cnlﬂ| |Up, k_)_ 2)
PR
0
_ o — _nt2 1\ .
x [ PP pF Q(T’”) Ag,n-ﬁ-l(pk 2 Z)dzag(l,p1/2,---,p"/2)-
0 1
n+42

Here A;nﬂ (p _T_%) is a 2 x (n + 1) matriz which is introduced in the
beginning of 7 and the both sides of the above identity are vectors of forms
(n)

For any prime p we regard €. 1 m QS Zero, if 5% el 18 mot an integer or .z nZ£0,
T20p2

1
3
3 mod 4. The symbol (%) denotes the Legendre symbol for odd prime p, and

(%) :=0,1,—1 accordingly as a is even, a = £1 mod 8 or a = £3 mod 8.
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Theorem [T.6] gives also a relation among Fourier coefficients of Siegel-Eisenstein
series of integral weight. The Fourier coefficients of Tkeda lifts satisfy similar
relations to the ones of the Fourier coefficients of Siegel-Eisenstein series (see
Theorem for the detail). We call these relations of Fourier coefficients of
Ikeda lifts also the generalized Maass relations. The generalized Maass relation
among Fourier coefficients of the Ikeda lift I5,(h) of h gives a fact that Fj 4
in Theorem [B3] is an eigenform for all Hecke operators, since the form Fj, 4
is constructed from Iy, (h) (and g). Moreover, the eigenvalues of Fj , are
calculated from the generalized Maass relations of Fourier coefficients of Iz, (h).
This is the reason why we need Theorem to show Theorem B3l For the
detail of the proof of Theorem B3 see §8l

1.3 ABOUT GENERALIZED COHEN-EISENSTEIN SERIES

We remark that the generalized Cohen-Eisenstein series has been introduced by
Arakawa [Ar 98]. These series are Siegel modular forms of half-integral weight.
The Cohen-Eisenstein series were originally introduced by Cohen [Co 75| as
one variable functions. In the case of degree one, it is known that the Cohen-
Eisenstein series correspond to the Eisenstein series with respect to SL(2,Z) by
the Shimura correspondence. The generalized Cohen-Eisenstein series is defined
from the Jacobi-Eisenstein series of index 1 through the isomorphism between
Jacobi forms of index 1 and Siegel modular forms of half-integral weight.

1.4 ABOUT GENERALIZED MAASS RELATIONS

As for generalizations of the Maass relation, Yamazaki [Yk 86) [Yk 89] obtained
some relations among Fourier-Jacobi coefficients of Siegel-Eisenstein series of
arbitrary degree of integral weight of integer indices. For our purpose we gen-
eralize some results in [Yk 86, [Yk 89] on Fourier-Jacobi coefficients of Siegel-
Eisenstein series of integer indices to indices of half-integral symmetric matrix
of size 2. Here the right-lower part or the left-upper part of these matrices
of the index is 1. We need to introduce index-shift maps on Jacobi forms of
indices of such matrix (cf. §2.7). To calculate the action of index-shift maps on
Fourier-Jacobi coefficients of Siegel-Eisenstein series, we use a relation between
Fourier-Jacobi coefficients of Siegel-Eisenstein series and Jacobi-Eisenstein se-
ries (cf. Proposition B3]). This relation has been shown by Boecherer [Bo 83|
Satz7]. We also need to show a identity relation between Jacobi forms of in-
tegral weight of 2 x 2 matrix index and Jacobi forms of half-integral weight of
integer index (LemmalL2]). Moreover, we need to show a compatibility between
this identity relation and index-shift maps (cf. Proposition [43] 4.

Through these relations we can show that the generalized Maass relation of
generalized Cohen-Eisenstein series (Theorem [T.6]) are equivalent to relations
among Jacobi-Eisenstein series of integral weight of indices of matrix of size 2
(Proposition [4]). Finally, to obtain the generalized Maass relation in Theo-
rem[7.6] we need to calculate the action of index-shift maps on Jacobi-Eisenstein
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series of integral weight of indices of matrix of size 2 (cf. §H]).

Remark 1.1

In his paper [Ko 02] Kohnen gives a generalization of the Maass relation for
Siegel modular forms of even degree 2n. His result is different from our gen-
eralization, since his result is concerned with the Fourier-Jacobi coefficients
with (2n —1) x (2n — 1) matrix index. We remark that some characterizations
of the Tkeda lift by using generalized Maass relation in [Ko 02] are obtained
by Kohnen-Kojima [KK 05] and by Yamana [Yn 10]. The characterization of
the Ikeda lift by using the generalized Maass relation in Theorem is open
problem.

Remark 1.2

In his paper [Ta 86, §5] Tanigawa has obtained the same identity in Theo-
rem for Siegel-Eisenstein series of half-integral weight of degree two with
arbitrary level N which satisfies 4|N. He showed the identity by using the
formula of local densities under the assumption p /N. In our case we treat the
generalized Cohen-FEisenstein series of arbitrary degree, which has essentially
level 1. Hence our result contains the relation also for p = 2. Moreover, our
result is valid for any general degree.

Remark 1.3
To show the generalized Maass relations in Theorem [[.6 B2 we treat the
following four things:

1. Fourier-Jacobi expansion of Jacobi forms (cf. §4.1),

2. Fourier-Jacobi expansion of Siegel modular forms of half-integral weight

(cf. 52,

3. An isomorphism between Jacobi forms of matrix index of integral weight
and Jacobi forms of integer index of half-integral weight (cf. §4.3))

4. Exchange relations between the Siegel ®-operator for Jacobi forms and
the index-shift map for Jacobi forms of matrix index or of half-integral
weight (cf. §6]). This is an analogue of the result shown by Krieg [Kr 80]
in the case of Siegel modular forms of integral weight.

1.5

This paper is organized as follows: in Sect. 2, the necessary notation and defi-
nitions are reviewed. In Sect. 3, the relation among Fourier-Jacobi coeflicients
of the Siegel-Eisenstein series and the Jacobi-Eisenstein series is derived, which
is a modification of the result given by Boecherer [Bo 83| for special cases. In
Sect. 4, a map from a subspace of Jacobi forms of integral weight of matrix
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index to a subspace of Jacobi forms of half-integral weight of integer index is de-
fined. Moreover, the compatibility of this map with index-shift maps is studied.
In Sect. 5, we calculate the action of index-shift maps on the Jacobi-Eisenstein
series. We express these functions as summations of exponential functions with
generalized Gauss sums. In Sect. 6, a commutativity between index-shift maps
on Jacobi forms and Siegel ®-operators is derived. In Sect. 7, a generalized
Maass relation for generalized Cohen-Eisenstein series (Theorem [[.6]) will be
proved, while we will give a generalized Maass relation for Siegel cusp forms of
half-integral weight and the proof of the main result (Theorem B3)) in Sect. 8.
We shall explain some numerical examples of the non-vanishing of the lift in
Sect. 9.
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Professor Tamotsu Ikeda to the author at the Hakuba Autumn Workshop 2001.
The author wishes to express his hearty gratitude to Professor Tkeda for the
suggestion. The author also would like to express his sincere gratitude to Pro-
fessor Tomoyoshi Ibukiyama for continuous encouragement. The author thanks
very much to the referee, whose advice was helpful in improving the original
version of the manuscript. This work was supported by JSPS KAKENHI Grant
Number 23740018 and 80597766.

2 NOTATION AND DEFINITIONS

R* : the set of all positive real numbers

R(»™) . the set of n X m matrices with entries in a commutative ring R
Sym}, : the set of all half-integral symmetric matrices of size n

Sym; : all positive definite matrices in Sym?

!B : the transpose of a matrix B

A[B] := *BAB for two matrices A € R™™ and B € R(™™)

1y, (resp. 0,) : identity matrix (resp. zero matrix) of size n

tr(S) : the trace of a square matrix S

e(S) := e2V=1(S) for a square matrix S

rank, () : the rank of matrix z € Z(™™) over the finite field Z/pZ

ai
diag(ay, ...,an) : the diagonal matrix ( ) for square matrices a1, ...,
n, o
(%) : the Legendre symbol for odd prime p
%) := 0,1, —1 accordingly as a is even, a = £1 mod 8 or ¢ = £3 mod 8
M1 (Fén)(él)) : the space of Siegel modular forms of weight k — 3 of degree n
M (D5 (4)) : the plus-space of M,_1 ()" (4)) (ct. [[6.92).

2

Nt 2the Siegel upper half space of degree n
0(S) :=1 or 0 accordingly as the statement S is true or false.
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For any function F' and operators 11, 13, ... , T, we put

F|(T1,T2,...,Tn) = (F|T1,F|T2,,F|Tn)

2.1 JACOBI GROUP

For a positive integer n we define the following groups:

GSpy (R):={g € RO g (9 5l) g = n(g) (3 1)

for some n(g) € RT},

Sp,(R) = {g€GSp;(R)|n(g) =1},
I, = Sp,(R)NzE"),
A B
() . _
riMa) = {(é g) €r,|C=0 mod 4}.

For a matrix g € GSp,’ (R), the number n(g) in the above definition of GSp,’ (R)
is called the similitude of the matrix g.
For positive integers n and r, we define a subgroup G, ,. C GSp;f,,(R) by

A B 1n I
U LD N I\ + K
J .7 r M H +
¢l, = {le " ) p T e asetL®)
1% 1,

. A B + U o0 +
where the matrices runs over (C D) € GSp, (R), (0 V) € GSp, (R),

A€ R™7™) and k = tk € RO,

A B 171’ t ot o
We will abbreviate such an element (C v, ) Alr - ’\f;\“‘ as
V n

(& 5)< (5 v)wmn).

We remark that two matrices (4 5) and (§ ) in the above notation have the
same similitude. We will often write

(2 5) 1wnn)

instead of writing ((4 B) x 1a,, [(A, p), &]) for simplicity. We remark that the
element ((& B),[(\, p), x]) belongs to Sp,,,.(R). Similarly, an element

1, Iz A B
X1y tu tAHJ"K U
1, =X C D
1 \4

T
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Lo ¥))

)) for the case U =V =1,

will be abbreviated as

(10w, (2 D)

and we will abbreviate it as ([()\ u) k), (&
We set a subgroup Fi,r of G;{ﬁ

X

. = {00 )R] € G,

7m0 4o e Z(nr)} _

mnH

2.2 Groups GSP,(R) aAND G}

We denote by GSp;" (R) the group which consists of pairs (M, (7)), where M

is a matrix M = (4 B) € GSp;! (R), and where ¢ is any holomorphic function

on $), such that |o(7)[> = det(M)~2|det(CT + D)|. The group operation on

GSpj; (R) is given by (M, o(1))(M', /(1)) := (MM', o(M'7)¢' (1)).

We embed Fg") (4) into the group GSp;' (R) via M — (M, 0 (M) 0™ (1)~1),

where (") (1) := Z e(7[p]) is the theta constant. We denote by T’ (n)( 4)*
peZ(™:1)

the image of T’ (4) in GSp; (R) by this embedding.
We define a Heisenberg group

Hua®) = {2, [\ ). #]) € Sppia (R) [ A p € ROV, € R}

If there is no confusion, we will write [(A, 1), k] for the element (1o, [(\, 1), ])
for simplicity.
We define a group

Gl = GSp/(R)x Hyi(R)

= {L 100D | 3T € GSOI R, [0 4] € Hoa(®)].

Here the group operation on G;{,l is given by
(M1, [(A1, 1), 1)) - (Mo, [(A2, p2), k2]) = (My Mo, [(N, 1), K])

for (M, [(As, i), ) € G, (i = 1,2), and where [(X, ), #] € Hy 1 (R) is the
matrix determined through the identity

(M > (MG 0) 1O ) ma]) (M2 x ("2 D)L (A, ), 2])
_ (]\41JM2 % (n(M1)On(M2) ?) , [()\/,,LL/), fi/])

in Gg,l' Here n(M;) is the similitude of M;.
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2.3 ACTION OF THE JACOBI GROUP

The group G . acts on §,, x C»") by

n,r

ve(rz) = ((é g)-T,t(CT—I—D)_l(Z-f—T)\—i—M)tU)

forany v = ((A B) x (Y %), [\ pn),k]) € Gi,r and for any (7, z) € $,, x C(»7),

Here <A B> -7 := (AT + B)(C71 + D)~! is the usual transformation.

C D
The group (/JZ; acts on §),, x C™1 through the projection C?Z/l — G;{J. It
means G;{,l acts on §,, x C»1 by
