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We characterise ideal threshold schemes from different approaches. Since the characteristic properties are indepen-
dent to particular descriptions of threshold schemes, all ideal threshold schemes can be examined by new points of
view and new results on ideal threshold schemes can be discovered.
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1 Introduction
Since 1979 when threshold schemes were introduced by Blakley (Bla79) and Shamir (Sha79), many
papers in this area have been published. These papers are mostly about particular designs and applications
of threshold schemes.

In this work, we are interested in characterisations of ideal threshold schemes rather than particular
constructions. Of course, these characteristic properties do not depend on any form of any ideal threshold
scheme. This enables us to look at any ideal threshold scheme from new points of view, and further find
new results on ideal threshold schemes.

This work is structured as follows. The basic concepts of threshold schemes, and more generally, secret
sharing schemes are introduced in Section 2.

In Section 3, we describe (weakly and strongly) perfect secret sharing schemes using defining matrices.
By the original definition (BS92), an ideal threshold scheme is a strongly perfect threshold scheme for
which the set of secrets and the set of shares have the same cardinality.

In Sections 4 and 5, we derive a series of properties of weakly perfect threshold schemes that are helpful
for us to characterise ideal threshold schemes in Section 6 from different points of view. Consequently
“strongly perfect” in the original definition of ideal threshold schemes can be replaced by “weakly per-
fect”.

We further obtain more results on ideal threshold schemes in Section 7 including an application in
cheating prevention.
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In Section 8, we work on the threshold schemes whose set of secrets and set of shares are identical, and
derive more characteristic properties of ideal threshold schemes. In Section 9, we find some bounds on
the parameters of ideal threshold schemes.

In Section 10, we compare this work with other results. Conclusions close the work.

2 Access Structures
Secret sharing is a method to share a secret among a set of participantsP= {P1, . . . ,Pn}. Let K denote the
set ofsecretsandS denote the set ofshares. The secret sharing includes two algorithms: the distribution
algorithm (dealer) and the recovery algorithm (combiner).

The dealer assigns sharess1, . . . ,sn, where the vector(s1, . . . ,sn) is called ashare vector, to all the
participantsP1, . . . ,Pn, respectively.

Assume that the currently active participants arePj1, . . . ,Pj` and that they submit their shares to the
combiner in order to recover the secret. Their sharessj1, . . . ,sj` can determine a secretK ∈ K if and only
if {Pj1, . . . ,Pj`} is a qualified subset ofP, i.e., the set of currently active participants belongs to theaccess
structureΓ.

Any access structure should bemonotone, or more precisely, ifA ∈ Γ andA ⊆ B ⊆ P thenB ∈ Γ.
As shown in (BD91) and (BS92), we can describe secret sharing with the access structureΓ by an

m× (n+ 1) matrix M∗ in which no two rows are identical. The matrixM∗ hasn+ 1 columns indexed
by 0,1. . . . ,n. The numberm of rows of M∗ depends on a particular scheme. We index them rows by
1, . . . ,m. For a row ofM∗, the entry in the 0th position holds a secret and the entry in theith position
(i = 1, . . . ,n) contains the corresponding share ofPi . Denote the entry on theith row and thejth column
of M∗ by M∗(i, j).

The matrixM∗ is called adefining matrixof secret sharing with the access schemeΓ. The matrixM
obtained fromM∗ by removing the 0th column is called theassociated matrixof the scheme.

The dealer works in two stages. In the first stage, it creates the defining matrixM∗ for secret sharing
with the access structureΓ. The matrix is made public. In the second stage, the dealer randomly chooses
a row of the matrixM∗. Let the row chosen be indexed by the integeri (1 ≤ i ≤ m). The secret is
K = M∗(i,0) and shares aresj = M∗(i, j), j = 1, . . . ,n. The shares are distributed to the corresponding
participants via secure channels.

Note that a defining matrix uniquely determines a secret sharing scheme but a secret sharing scheme
has more defining matrices.

Permuting the rows of a defining matrix of secret sharing does not give a new scheme.
Permuting the columns of defining matrices of secret sharing is equivalent to changing the indices of

participants.
It should be pointed out once again that a defining matrix of a secret sharing scheme is public.
The dealer chooses at random a single row of the matrix.
The shares are communicated to the corresponding participants via secure channels so the sharesi is

known to the participantPi only (i = 1, . . . ,n).
An access structureΓ = {A | #A ≥ t} is called a(t,n)-threshold access structure, where #X denotes the

cardinality of the setX (i.e. the number of elements in the setX) and the integert is called thethreshold
of secret sharing, wheret ≤ n.

Secret sharing schemes with the(t,n)-threshold access structure are called(t,n)-threshold schemes.
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Threshold schemes were first introduced by Blakley (Bla79) and Shamir (Sha79). Itoet al (ISN87)
generalised threshold schemes for arbitrary access structure.

3 Perfect Secret Sharing And Ideal Secret Sharing
We say that secret sharing with the access structureΓ is perfect if the following two conditions are satis-
fied:

(1) If A ∈ Γ then the participants inA can uniquely determine the secret by pooling their shares together.

(2) If A 6∈ Γ then the participants fromA can determine nothing about the secret (in an information
theoretic sense).

As mentioned in (BS92), Conditions (1) and (2) can be translated into conditions that need to be satisfied
in the context of the defining matrix. We list the translations as follows.

(a) LetA ∈ Γ. If M∗(i, j) = M∗(i′, j) for everyPj ∈ A thenM∗(i,0) = M∗(i′,0).

(b) LetA 6∈ Γ. For any 1≤ i0 ≤mand anyK ∈ K , there exists somei with 1≤ i ≤msuch thatM∗(i, j) =
M∗(i0, j) for all Pj ∈ A andM∗(i,0) = K.

(b’) Let A = {Pj1, . . . ,Pj`} 6∈ Γ. For anysj1, . . . ,sj` ∈ S and anyK ∈ K ,

#{i | M∗(i, ju) = sju for all Pju ∈ A andM∗(i,0) = K}

is independent to the choice ofK.

Condition (1) is corresponding to Condition a. Condition (2) has two translations: Condition (b) and
Condition (b’). It is easy to verify that (b’) implies (b).

For the case of a(t,n)-threshold scheme, Conditions (a), (b), and (b’) can be rewritten as follows:

(c) Let #A ≥ t. If M∗(i, j) = M∗(i′, j) for everyPj ∈ A thenM∗(i,0) = M∗(i′,0).

(d) Let #A < t. For any 1≤ i0 ≤ m and anyK ∈ K , there exists somei with 1 ≤ i ≤ m such that
M∗(i, j) = M∗(i0, j) for all Pj ∈ A andM∗(i,0) = K.

(d’) Let A = {Pj1, . . . ,Pj`} with ` < t. For anysj1, . . . ,sj` ∈ Sand anyK ∈ K ,

#{i | M∗(i, ju) = sju for all Pju ∈ A andM∗(i,0) = K}

is independent to the choice ofK.

Similarly, (d’) implies (d).
The following definition is due to (BS92).

Definition 1 A secret sharing scheme satisfying (a) and (b) is calledweakly perfect. Alternatively, a
(t,n)-threshold scheme satisfying (c) and (d) is calledweakly perfect.

In (BS92) the following definition is given.
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Definition 2 A secret sharing scheme satisfying (a) and (b’) is calledstrongly perfect, or more briefly
perfectif no confusion occurs. Alternatively, a(t,n)-threshold scheme satisfying (c) and (d’) is called
strongly perfect, or more brieflyperfectif no confusion occurs.

As mentioned in (BS92), for any strongly perfect secret sharing scheme, we have #K ≤#S. In particular,
if #K = #S holds for a strongly secret sharing scheme, from (BS92), we have the following definition.

Definition 3 An ideal secret sharing scheme is a strongly perfect secret sharing scheme satisfying#K =
#S. Alternatively, an ideal threshold scheme is a strongly perfect threshold scheme satisfying#K = #S.

In this work we pay our attention to ideal threshold schemes. New results on weakly perfect threshold
schemes in this work are helpful for characterising ideal threshold schemes.

4 Properties of Weakly Perfect Threshold Schemes (I)
It should be noted that the inequality #K ≤ #S also holds for any weakly perfect secret sharing scheme.
The proof can be found from (PZ02). Then we state as follows.

Lemma 1 #K ≤ #S holds for any weakly perfect secret sharing scheme.

Lemma 2 Let a (t,n)-threshold scheme be weakly perfect. If#K = #S then its defining matrix M∗ has
the following property. For any given t− 1 integers,1 ≤ j1 < · · · < jt−1 ≤ n, if M∗(i0,0) = M∗(i′,0),
M∗(i0, j1) = M∗(i′, j1), . . ., M∗(i0, jt−1) = M∗(i′, jt−1) then M∗(i0, j) = M∗(i′, j), j = 0,1, . . . ,n.

Proof Set

M∗(i0,0) = M∗(i′,0) = K, M∗(i0, j1) = M∗(i′, j1) = sj1, . . . ,

M∗(i0, jt−1) = M∗(i′, jt−1) = sjt−1 (1)

Let #K = #S= b. WriteK = {K1, . . . ,Kb} andS= {ε1, . . . ,εb}. LetM∗ contain preciselym rows. Thus
M∗ be anm× (n+1) matrix. We index the rows ofM∗ by 1, . . . ,m, and index the columns by 0,1, . . . ,n.
Consider them× t matrixM0, consisting of thet columns ofM∗ indexed by 0,j1, . . . , jt−1.

Let jt be an integer satisfying 1≤ jt ≤ n and jt 6∈ { j1, . . . , jt−1}. Without loss of generality, we assume
that jt > jt−1. Let M1 denote am× (t + 1) matrix consisting of thet + 1 columns ofM∗ indexed by 0,
j1, . . . , jt−1, jt .

Let ℜi , i = 1, . . . ,b, denote the subset ofS such thatε ∈ ℜi if and only if (Ki ,sj1, . . . ,sjt−1,ε) is a row
of M1.

Since(K,sj1, . . . ,sjt−1) is a row ofM0, due to Condition (d), we know that(Ki ,sj1, . . . ,sjt−1) is a row
of M0, i = 1, . . . ,b, and thus #ℜi > 0, i = 1, . . . ,b. Due to Condition (c), we haveℜi ∩ℜ j = /0, if j 6= i
where/0 denotes the empty set. Thus we have #(ℜ1∪·· ·∪ℜb) = #ℜ1+ · · ·+#ℜb ≥ b. On the other hand
ℜ1∪·· ·∪ℜb ⊆Sand then #(ℜ1∪·· ·∪ℜb)≤ #S= b. Therefore we know thatb= #S= #ℜ1+ · · ·+#ℜb.
Recall that #ℜi > 0, i = 1, . . . ,b. Then we have

#ℜi = 1, i = 1, . . . ,b (2)

From (2) and (1), we know thatM∗(i0, jt) = M∗(i′, jt). Since jt is an arbitrary integer with 1≤ jt ≤ n
and jt 6∈ {0, j1, . . . , jt−1}, we have proved thatM∗(i0, j) = M∗(i′, j), j = 0,1, . . . ,n. 2
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Lemma 3 Let a (t,n)-threshold scheme be weakly perfect. If#K = #S then its defining matrix M∗ has
the following property. For any given t integers1 ≤ j1 < · · · < jt ≤ n, if M∗(i0, j1) = M∗(i′, j1), . . .,
M∗(i0, jt) = M∗(i′, jt) then M∗(i0, j) = M∗(i′, j), j = 0,1, . . . ,n.

Proof Due to the equalities in the lemma, by using Condition (c), we know thatM∗(i0,0) = M∗(i′,0). Ac-
cording to Lemma 2, the equalities in the lemma andM∗(i0,0) = M∗(i′,0) together imply thatM∗(i0, j) =
M∗(i′, j), j = 0,1, . . . ,n. 2

Summarising Lemmas 2 and 3, we conclude as follows.

Corollary 1 Let a(t,n)-threshold scheme be weakly perfect. If#K = #S then its defining matrix M∗ has
the following property. For any t given integers,0≤ j1 < · · ·< jt ≤ n, the submatrix M′ of M∗, consisting
of t columns indexed by j1, . . . , jt , does not contain two identical rows.

Proof We prove the corollary by contradiction. Assume thatM′ contains two identical rows then there
exist integersi0 andi′ such thati0 6= i′ andM∗(i0, j1) = M∗(i′, j1), . . . ,M∗(i0, jt) = M∗(i′, jt). According
to Lemmas 2 and 3,M∗(i0, j) = M∗(i′, j), j = 0,1, . . . ,n. On the other hand,M∗, as a defining matrix of
a secret sharing, does not contain two identical rows. The contradiction proves that all the rows ofM′ are
mutually distinct. 2

5 Properties of Weakly Perfect Threshold Schemes (II)
Weakly perfect threshold schemes have further properties.

Lemma 4 Let a(t,n)-threshold scheme be weakly perfect. If#K = #S then its defining matrix M∗ has the
following property. For any t given integers,1≤ j1 < · · ·< jt ≤ n, the submatrix M′ of M∗, consisting of
t columns indexed by j1, . . . , jt , contains any given row vector(sj1, . . . ,sjt ) where each sj ∈ S.

Proof Let #K = #S= b. Write K = {K1, . . . ,Kb} andS= {ε1, . . . ,εb}. Let M∗ contain preciselym rows.
ThusM∗ be anm× (n+ 1) matrix. We index the rows ofM∗ by 1, . . . ,m, and index the columns by
0,1, . . . ,n.

Consider the 1st row ofM∗. Write M∗(1,0) = K, M∗(1, j1) = a j1, . . ., M∗(1, jt−1) = a jt−1. Let M′′ be
the submatrix ofM∗, consisting oft +1 columns indexed by 0, j1, . . . , jt . Let ℜi , i = 1, . . . ,b, denote the
subset ofS such thatε ∈ ℜi if and only if (Ki ,a j1, . . . ,a jt−1,ε) is a row ofM′′.

From the proof of Lemma 2, we know that #ℜi = 1, i = 1, . . . ,b, and then it is easy to find thatℜ1∪
·· ·∪ℜb = S. Thus there exists someit with 1≤ it ≤ b such thatℜit = {sjt}. By the definition ofℜit , we
know that(Kit ,a j1, . . . ,a jt−1,sjt ) is a row ofM′′.

Using the same arguments as above, we can prove that there exists someit−1 with 1≤ it−1 ≤ b such
that(Kit−1,a j1, . . . ,a jt−2,sjt−1,sjt ) is a row ofM′′.

Repeatedly, we can prove that there exists somei1 with 1≤ i1 ≤ b such that(Ki1,sj1, . . . ,sjt−2,sjt−1,sjt )
is a row ofM′′. Therefore we have proved that(sj1, . . . ,sjt ) is a row ofM′. 2

Lemma 5 Let a(t,n)-threshold scheme be weakly perfect. If#K = #S then its defining matrix M∗ has the
following property. For any given t−1 integers,1≤ j2 < · · ·< jt ≤ n, the submatrix M′ of M∗, consisting
of t columns indexed by0, j2, . . . , jt , contains any given row vector(K,sj2, . . . ,sjt ) where K∈ K and each
sj ∈ S.
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Proof Let M1 denote them× (t−1) matrix, consisting of thet−1 columns ofM∗ indexed byj2, . . . , jt .
According to Lemma 4,M1 contains the row(sj2, . . . ,sjt ). Due to Condition (d),M′ contains a row
(K,sj2, . . . ,sjt ). 2

Combining Lemmas 4 and 5, we get the following corollary.

Corollary 2 Let a(t,n)-threshold scheme be weakly perfect. If#K = #S then its defining matrix has the
following property. For any given t integers,0≤ j1 < · · · < jt ≤ n, the submatrix of M∗, consisting of t
columns indexed by j1, . . . , jt , contains any given row vector(sj1, . . . ,sjt ) (when j1 > 0) and any given
row vector(K,sj2, . . . ,sjt ) (when j1 = 0), where each sj ∈ S and K∈ K .

6 Characteristic Properties of Ideal Threshold Schemes
Combing Corollaries 1 and 2, we formulate the following statement.

Theorem 1 Let a(t,n)-threshold scheme be weakly perfect. If#K = #S then its defining matrix M∗ has
the following property. For any given t integers,0≤ j1 < · · ·< jt ≤ n, the submatrix of M∗, consisting of
t columns indexed by j1, . . . , jt , contains any given row vector(sj1, . . . ,sjt ) (when j1 > 0) and any given
row vector(K,sj2, . . . ,sjt ) (when j1 = 0), where each sj ∈ S and K∈ K , precisely once.

We can prove the converse of Theorem 1. However we have a stronger statement as follows.

Theorem 2 Let a defining matrix M∗ of a (t,n)-threshold scheme satisfy the following property. For any
given t integers,0≤ j1 < · · ·< jt ≤ n, the submatrix of M∗, consisting of t columns indexed by j1, . . . , jt ,
contains any given row vector(sj1, . . . ,sjt ) (when j1 > 0) and any given row vector(K,sj2, . . . ,sjt ) (when
j1 = 0), where each sj ∈Sand K∈K , precisely once. Then (i) the scheme is strongly perfect, (ii)#K = #S,
and then the scheme is ideal.

Proof

(i) Let {Pj1, . . . ,Pj`} be the set of currently active participants. We first verify Condition (c). Let`≥ t.
If M∗(i, j1) = M∗(i′, j1), . . . ,M∗(i, j`) = M∗(i′, j`), due to the property ofM∗, it follows that i = i′.
Clearly (c) is satisfied.

We next verify Condition (d’). Let̀ < t andM1 denote the submatrix ofM∗, consisting of thè +1
columns ofM∗ indexed by 0,j1, . . ., j`. Let K ∈ K andsj1, . . . ,sj` ∈ S. Since` < t, we know that
1+ `≤ t. There are two cases to be considered: 1+ ` < t and 1+ ` = t

Case 1: 1+ ` < t.
Thent−`≥ 2 and then there aret−`−1(> 0) integers, 1≤ j`+1 < · · ·< jt−1≤ n, such that
{ j`+1, . . . , jt−1}∩{ j1, . . . , j`} = /0. Without loss of generality, we assume thatj` < j`+1 <
· · ·< jt−1. Let M2 denote the submatrix ofM∗, consisting oft columns ofM∗ indexed by 0,
j1, . . ., j`, j`+1, . . ., jt−1. According to the property ofM∗, for any givena j`+1, . . . ,a jt−1 ∈
S, M2 contains(K,sj1, . . . ,sj` ,a j`+1, . . . ,a jt−1) precisely once. Since(a j`+1, . . . ,a jt−1) has
preciselybt−`−1 different choices, we know thatM1, as a submatrix ofM2, contains the row
(K,sj1, . . . ,sj`) preciselybt−`−1 times. Clearly the value ofbt−`−1 is independent to the
choice ofK. We have verified condition (d’) in Case i1.
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Case 2: 1+ ` = t.
According to the property ofM∗, M1 contains the row(K,sj1, . . . ,sj`), where` = t − 1,
precisely once. Thus condition (d’) is satisfied in Case i2.

Summarising cases i1 and i2, we conclude that the scheme is strongly perfect. (i) has been proved.

(ii) Let M′ be the submatrix ofM∗, consisting oft columns indexed by 1,. . . , t, M0 be the submatrix of
M∗, consisting oft columns indexed by 0,1, . . . , t−1, andM′

0 be the submatrix ofM∗, consisting of
t −1 columns indexed by 1, . . . , t −1. We fix a1, . . . ,at−1 ∈ S. Due to the property ofM∗, for each
s∈ S, M′ contains the row(a1, . . . ,at−1,s) precisely once. ThusM′

0 contains the row(a1, . . . ,at−1)
precisely #S times. On the other hand, due to the property ofM∗, for eachK ∈ K , M0 contains the
row (K,a1, . . . ,at−1) precisely once. ThusM′

0 contains the row(a1, . . . ,at−1) precisely #K times. It
follows that #K = #S. We have proved (ii).

By definition, (i) and (ii) together imply that the scheme is ideal. 2

Theorem 3 For a (t,n)-threshold scheme, the following statements are equivalent:

(i) the scheme is ideal,

(ii) the scheme is weakly perfect and#K = #S,

(iii) the scheme is strongly perfect and#K = #S,

(iv) its defining matrix M∗ has the following property. For any given t integers,0≤ j1 < · · · < jt ≤ n,
the submatrix of M∗, consisting of t columns indexed by j1, . . . , jt , contains any given row vector
(sj1, . . . ,sjt ) (when j1 > 0) and any given row vector(K,sj2, . . . ,sjt ) (when j1 = 0), where each
sj ∈ Sand K∈ K , precisely once.

Proof According to Theorem 1, (ii) implies (iv). Due to Theorem 2, (iv) implies (i). By definition, (i)
implies (iii). It is obvious that (iii) implies (ii). The proof is completed. 2

From Lemma 1, #K ≤ #Sholds for any weakly perfect threshold scheme. Thus due to Theorem 3, ideal
threshold schemes are a critical case of weakly perfect threshold schemes when #K = #S. Therefore it is
interesting that “strongly perfect” in Definition 3 can be replaced by “weakly perfect”.

From (iv) of Theorem 3, we formulate the following conclusion:

Corollary 3 A defining matrix of any ideal(t,n)-threshold scheme has the size bt × (n+ 1) where b=
#K = #S. In other words, any ideal(t,n)-threshold scheme has precisely bt possible shares vectors.

7 Other Properties with Applications
From the proof of Theorem 2, we know

Corollary 4 If a (t,n)-threshold scheme is ideal then its defining matrix M∗ has the following property.
For any` (0< `≤ t) integers,0≤ j1 < · · ·< j` ≤ n, the submatrix of M∗, consisting of̀ columns indexed
by j1, . . . , j`, contains all b̀ possible rows each precisely bt−` times, where#K = #S= b. In particular, the
jth ( j = 1, . . . ,n) column of M∗ contains all elements inS each precisely bt−1 times, and the0th column
of M∗ contains all elements inK each precisely bt−1 times.
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Corollary 5 If a (t,n)-threshold scheme is ideal then its defining matrix M∗ has the following property.
Any two row vectors of M∗ are the same in at most t−1 corresponding coordinates, or equivalently, any
two row vectors of M∗ differ in at least n− t +2 corresponding coordinates.

Proof Due to Theorem 3,M∗ is abt × (n+1) matrix, where #K = #S= b. Let i′ andi0 be two integers
with 1≤ i0 < i′ ≤ bt . Then thei0th row vector ofM∗ is (M∗(i0,0),M∗(i0,1), . . . ,M∗(i0,n)), and thei′th
row vector ofM∗ is (M∗(i′,0),M∗(i′,1), . . . ,M∗(i′,n)). According to (iv) of Theorem 3, there exist at
mostt −1 integers, 0≤ j1 < · · · < jt−1 ≤ n, M∗(i0, j1) = M∗(i′, j1), . . . ,M∗(i0, jt−1) = M∗(i′, jt−1). In
other words, thei0th row vector and thei′th row vector differ in at leastn− t +2 coordinates. 2

The next corollary immediately follows Corollary 5.

Corollary 6 Let M∗ be a defining matrix of an ideal(t,n)-threshold scheme,` be any integer with t≤ `≤
n and M1 be any bt × ` submatrix of matrix M∗ where b= #K = #S. Then any two row vectors of M1 are
the same in at most t−1 corresponding coordinates, or equivalently, any two row vectors of M1 differ in
at least`− t +1 corresponding coordinates.

In this section we show an application of Corollary 6. Consider an ideal(t,n)-threshold scheme with
its defining matrixM∗ and associated matrixM. Assume that the dealer chooses thei0th row vector
(s1, . . . ,sn) of M and assignss1, . . . ,sn to participantsP1, . . . ,Pn, respectively. Let{Pj1, . . . ,Pj`} with
t ≤ `≤ n be a subset of active participants. LetM1 be thebt × ` submatrix ofM, consisting of̀ columns
indexed byj1, . . . , j`.

Denote theith row vector ofM1 by Li . Clearly, the rowi0 of M1 is Li0 = (sj1, . . . ,sj`). Let there existu
cheaters, among the active participantsPj1, . . ., Pj` , who submit modified shares to the combiner while the
honest active participants submit correct shares to the combiner. Assume that the combiner receives the
sharess′j1, . . . ,s

′
j`

sent byPj1, . . ., Pj` , wheres′j i = sj i if and only if Pj i is honest. WriteL′ = (s′j1, . . . ,s
′
j`
).

Clearly,dist(L′,Li0) = u, wheredist(X,Y) denotes the number of coordinates in which vectorsX andY
differ. We calldist(X,Y) theHamming distancebetween vectorsX andY.

Let u≤ `−t. Setdm = min{dist(L′,Li) | 1≤ i ≤ bt}. We first prove thatu= 0 if and only ifdm = 0. The
necessity is obvious. We next prove the sufficiency. Letdm = 0. We now prove thatu= 0 by contradiction.
Assume thatu 6= 0. Clearlydm = 0 implies thatL′ must be identical with a row ofM1. ThusL′ = Li1 for
somei1. Sinceu 6= 0, i1 6= i0. According to Corollary 6,dist(L′,Li0) = dist(Li1,Li0) ≥ `− t + 1. This
contradicts the fact thatdist(L′,Li0) = u≤ `−t. The contradiction proves thatu= 0. Therefore, in the case
of u≤ `− t, the combiner (recovery algorithm) calculatesdm, then it can conclude thatL′ = (s′j1, . . . ,s

′
j`
)

is correct or incorrect (i.e.u = 0 oru 6= 0) according todm = 0 ordm 6= 0.
We further indicate that the correct shares can be found and the cheaters can be identified when 1≤

u≤ b1
2(`− t)c, whereb1

2(`− t)c denotes the greatest integer not larger than1
2(`− t). The combiner can

find a rowLi2 of M1 such thatdist(L′,Li2) = dm wheredm has been defined in this section. We now
prove thatLi2 is identical withLi0 = (sj1, . . . ,sj`). Assume otherwise, thenLi2 6= Li0. Since bothLi0
andLi2 are rows ofM1, due to Corollary 6,dist(Li2,Li0) ≥ `− t +1. On the other hand,dist(Li2,Li0) ≤
dist(Li2,L

′)+dist(L′,Li0) ≤ dm+u≤ 2u≤ `− t. This contradicts the fact thatdist(Li2,Li0) ≥ `− t +1.
The contradiction proves thatLi2 = Li0. Thus the correct vectorLi2 = Li0 = (sj1, . . . ,sj`) has been found.
ComparingL′ with Li0 (i.e. Li2), the combiner (recovery algorithm) can determine who are cheaters.

It should be noted that such ability of ideal threshold schemes in cheating prevention is not based on
particular constructions or particular descriptions.
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8 More Characteristic Properties
If we simplify the condition #S= #K by S= K , the properties of ideal threshold schemes will be more
interesting.

Orthogonal arrays were introduced more than fifty years ago as a combinatorial problem (Bus52).

Definition 4 An m× n matrix O with entries from b-setB is called anorthogonal array, denoted by
(m,n,b, t), if any m× t submatrix of O contains all bt possible row vectors each preciselyλ times.

Clearly m = λbt . The parametersm, t and λ are called thesize, the strengthand theindex of the
orthogonal array, respectively, whilen is called the number ofconstraintsandb is called the number of
levels.

Lemma 6 An orthogonal array(m,n,b, t) with an indexλ is an orthogonal array(m,n,b, `) with an index
λbt−` where` is any integer with1≤ `≤ t.

In particular, we can formulate the following corollary.

Corollary 7 Each column of an orthogonal array(m,n,b, t) with entries from a b-setB contains each
element ofB preciselyλbt−1 times, whereλ is the index of the orthogonal array.

Lemma 7 Let O1 be an m×n1 submatrix of an orthogonal array(m,n,b, t) with an indexλ. If n1 ≥ t
then O1 is an orthogonal array(m,n1,b, t) with an indexλ.

In particular, orthogonal arrays with indexλ = 1 are used in this work.

Definition 5 An orthogonal array with indexλ = 1, i.e, an orthogonal array(bt ,n,b, t) is called an
orthogonal array(bt ,n,b, t) of index unity.

Orthogonal arrays(bt ,n,b, t) of index unity have many interesting properties. The following bounds on
the number of constraints for orthogonal arrays(bt ,n,b, t) were proved by Bush (Bus52):

Lemma 8 For an orthogonal array(bt ,n,b, t) of index unity, we have

(i) if t ≤ b and b is even then n≤ b+ t−1,

(ii) if t ≤ b, b is odd and t≥ 3 then n≤ b+ t−2,

(iii) if t ≥ b, then n≤ t +1.

According to (iv) of Theorem 3, a defining matrix of an ideal(t,n)-threshold scheme withK = S, is an
orthogonal array(bt ,n+1,b, t) of index unity.

We next briefly recall the concept of codes. LetB = {ε1, . . . ,εb} be a finite set andBn be the set of
all strings of lengthn overB. Any nonempty subsetℑ of Bn is called ab-ary block code. Each string in
ℑ is called acodeword. The parametern is called thelength. If min{dist(ξ,η) | ξ,η ∈ ℑ,ξ 6= η} = d,
wheredist(ξ,η) denotes the Hamming distance betweenξ andη, and #ℑ = R, then the codeℑ is called
an(n,R,d)b code.

Definition 6 Let Nb(n,d) be the largest number R such that there exists an(n,R,d)b code. An(n,R,d)b

code satisfying R= Nb(n,d) is calledoptimal(Rom92).
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For any(n,R,d)b code, the following inequality holds and it is known as theSingleton bound(MS78),
(PH98), (Rom92),

Nb(n,d)≤ bn−d+1 (3)

Lemma 9 A bt ×n matrix O with entries from b-setB is an orthogonal array(bt ,n,b, t) of index unity if
and only if all the bt row vectors of O form an(n,bt ,n− t +1)b (optimal) code.

Proof We first indicate that an(n,bt ,n−t +1)b codeℑ must be optimal. In fact, #ℑ = bt andd = n−t +1.
Thus #ℑ = bn−d+1. According to (3), we havebn−d+1 = #ℑ ≤ Nb(n,d) ≤ bn−d+1. Thus #ℑ = Nb(n,d)
and thus we have proved that(n,bt ,n− t +1)b code is optimal.

We now prove the necessity of the lemma. Assume thatO is an orthogonal array(bt ,n,b, t) of index
unity. It is easy to verify that any two rows ofO are the same in at mostt−1 corresponding coordinates.
In other words, any two rows ofO differ in at leastn− t + 1 corresponding coordinates. Thus all thebt

row vectors ofO form an(n,bt ,d)b codef whered ≥ n− t + 1. On the other hand, from (3), we have
bt = #f ≤ Nb(n,d) ≤ bn−d+1 and thent ≤ n−d+1. Fromt ≤ n−d+1 andd ≥ n− t +1, we conclude
thatd = n− t + 1. This proves thatf is an(n,bt ,n− t +1)b code. We next prove the sufficiency of the
lemma. Assume that all thebt rows of matrixO form an (n,bt ,n− t + 1)b code. Then the Hamming
distance between any two distinct row vectors is at leastn− t + 1, in other words, any two distinct row
vectors are the same in at mostt−1 coordinates. Therefore, all thebt row vectors of anybt × t submatrix
O1 of O are mutually distinct, in other words,O1 contains allbt possible row vectors each precisely once.
This proves thatO is an orthogonal array(bt ,n,b, t) of index unity. 2

Theorem 12 in Chapter 11 of (MS78) is a special case of Lemma 9 when both orthogonal array and
code are linear. This implies that the entries in both array and code should be certain algebraic elements.
Also the proof is based on coding theory. In contrast, Lemma 9 is more general and its proof does not
require the setB to have any algebraic properties.

There exist many known optimal codes, for instance, cyclic codes of prime length, (some) global
quadratic residue codes, Reed-Solomon codes, and more generally, MDS codes. The detailed descrip-
tion of such codes can be found from (MS78), (PH98), (Rom92). It should be noted that an optimal code
is not necessarily an MDS code, as an MDS code is a special optimal code when all its codewords form a
linear space. This requires the elements in the setB to have certain algebraic properties.

Lemma 10 There exists an ideal(t,n)-threshold scheme if and only if there exists an orthogonal array
(bt ,n+1,b, t) of index unity where b= #K = #S.

Proof Due to (iv) of Theorem 3, the sufficiency is obvious. We only need to prove the necessity. Assume
that there exists an ideal(t,n)-threshold scheme. Since #S= #K , there exists a mappingχ from K to S
such thatχ(K) = S, andχ(k′) 6= χ(k′′) if k′ 6= k′′. Thus we obtain a new ideal threshold scheme from the
given one by changing eachk to χ(k). We note that in the new ideal threshold scheme the set of secrets
is identical with the set of shares. According to (iv) of Theorem 3, any defining matrixM∗ of the new
scheme is an orthogonal array(bt ,n+1,b, t). 2

According to Theorem 3, Lemma 9 and Lemma 10, we can state as follows.

Theorem 4 The following statements are equivalent:

(i) there exists an ideal(t,n)-threshold scheme,
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(ii) there exists a weakly perfect threshold scheme with#K = #S,

(iii) there exists a strongly perfect threshold scheme with#K = #S,

(iv) there exists an orthogonal array(bt ,n+1,b, t) of index unity where b= #K = #S,

(v) there exists an(n+1,bt ,n− t +2)b (optimal) code.

According to Theorem 4, the existence of orthogonal arrays and the existence of optimal codes ensure
the existence of ideal threshold schemes. Theorem 4 is helpful for us to examine ideal threshold schemes
from different points of view.

9 On Parameters of Ideal Threshold Schemes
According to Lemma 8 and Theorem 4, there are some bounds on the parameters of ideal threshold
schemes.

Theorem 5 Ideal (t,n)-threshold schemes exist only when

(i) n ≤ b+ t−2 where#S= #K = b≥ t is even, or

(ii) n ≤ b+ t−3 where b≥ t is odd and t≥ 3, or

(iii) n = t where b≤ t.

Proof Assume that there exists an ideal(t,n)-threshold scheme. From Theorem 4, there exists an orthog-
onal array(bt ,n+ 1,b, t) of index unity whereb = #K = #S. By using Lemma 8, it is easy to verify (i)
and (ii). For the case ofb≤ t, by using Lemma 8, we know thatn+ 1≤ t + 1 i.e. n≤ t. On the other
hand, for a(t,n)-threshold scheme, we always havet ≤ n. Therefore we conclude thatn = t and then (iii)
is true. 2

We note thatn≥ t always holds. However we usually need(t,n)-threshold schemes withn > t. Ac-
cording to Theorem 5, for clarity, we state as follows.

Corollary 8 Ideal (t,n)-threshold schemes with n> t exist only when b> t where#S= #K = b.

10 Remarks
We now compare this work with other previous results.

A characterisation of perfect threshold schemes can be found from (SV88). More precisely, (SV88)
proved that there exists a perfect(t,w)-threshold scheme withv shares andm secrets if and only if there
existmmutuallyt-compatiblew-uniform hypergraphs onv points. It is not hard to verify that the “perfect”
defined in (SV88) is equivalent to the “strongly perfect”, or more briefly the “perfect”, defined in (BS92).
A basic difference between this work and (SV88) is that in this paper we work on characterisations of
ideal threshold schemes.

All the results on ideal threshold schemes discussed in (PZ02) depend on a particular description of
schemes by orthogonal arrays. However this does not automatically mean that these results are available
for all ideal threshold schemes. To do so, it should be proved that the existence of orthogonal arrays is
necessary for the existence of ideal threshold schemes. This needs much more work as done in this paper.



482 Josef Pieprzyk and Xian-Mo Zhang

11 Conclusions
We have found a series of properties of weakly perfect threshold schemes. Based on this, we have derived
a number of necessary and sufficient conditions for ideal threshold schemes from different approaches.
Therefore we have examined ideal threshold schemes from new points of view and obtained new results
on ideal threshold schemes.
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