Biblio Index

Export 48 results:
Author Title [ Type(Asc)] Year
Filters: First Letter Of Last Name is B  [Clear All Filters]
Journal Article
Bos, L., De Marchi, S., & Waldron, S.. (2009). On the Vandermonde Determinant of Padua-like Points. Dolomites Research Notes on Approximation, 2(1), 1-15. presented at the 09/2009. doi:10.14658/pupj-drna-2009-1-1
PDF icon Bos-2009-OTV.pdf (259.71 KB)
Campagna, R., Bayona, V., & Cuomo, S.. (2020). Using local PHS+poly approximations for Laplace Transform Inversion by Gaver-Stehfest algorithm. Dolomites Research Notes on Approximation, 13(1), 55-64. presented at the 12/2020. doi:10.14658/PUPJ-DRNA-2020-1-7
PDF icon CampagnaBayonaCuomo_2020_UPA.pdf (288.27 KB)
Boyvalenkov, P. G., Dragnev, P. D., Hardin, D. P., Saff, E. B., & Stoyanova, M. M.. (2015). Universal upper and lower bounds on energy of spherical designs. Dolomites Research Notes on Approximation, 8(Special_Issue), 51-65. presented at the 11/2015. doi:10.14658/pupj-drna-2015-Special_Issue-6
PDF icon Saff_etal_10YPDPTS.pdf (274.54 KB)
Bos, L., & Ware, A.. (2018). On the Uniqueness of an Orthogonality Property of the Legendre Polynomials. Dolomites Research Notes on Approximation, 11(1), 37-42. presented at the 04/2018. doi:10.14658/pupj-drna-2018-1-5
PDF icon BosWare_2018_UOP.pdf (189.53 KB)
Bayraktar, T., Coman, D., Herrmann, H., & Marinescu, G.. (2018). A survey on zeros of random holomorphic sections. Dolomites Research Notes on Approximation, 11(4), 1-19. presented at the 11/2018. doi:10.14658/pupj-drna-2018-4-1
PDF icon Bayraktar_etal_DRNA2018.pdf (481.24 KB)
Baran, M., & Kowalska, A.. (2022). Spectral norms in spaces of polynomials. Dolomites Research Notes on Approximation, 15(4), 1-9. presented at the 12/2022. doi:10.14658/pupj-drna-2022-4-1
PDF icon 01_60thDM.pdf (251.06 KB)
PDF icon 00_60thDM.pdf (2.74 MB)
Bittens, S. (2017). Sparse FFT for Functions with Short Frequency Support. Dolomites Research Notes on Approximation, 10(Special_Issue), 43-55. presented at the 05/2017. doi:10.14658/pupj-drna-2017-Special_Issue-7
PDF icon Bittens_DRNA2017.pdf (315.55 KB)
Baribeau, L., & Ransford, T.. (2018). Some open problems in the theory of analytic multifunctions. Dolomites Research Notes on Approximation, 11(4), 116-121. presented at the 11/2018. doi:10.14658/pupj-drna-2018-4-10
PDF icon Ransford_DRNA2018.pdf (211.51 KB)
Bos, L. (2017). A Simple Recipe for Modelling a d−cube by Lissajous curves. Dolomites Research Notes on Approximation, 10(1), 1-4. presented at the 03/2017. doi:10.14658/pupj-drna-2017-1-1
PDF icon Bos_2017_SRM.pdf (529.92 KB)
Bos, L., & Vianello, M.. (2010). On simple approximations to simple curves. Dolomites Research Notes on Approximation, 3(1), 1-6. presented at the 09/2010. doi:10.14658/pupj-drna-2010-1-1
PDF icon Bos-2010-OSA.pdf (246.32 KB)
Baran, M., Białas-Cież, L., Eggink, R., Kowalska, A., la Nagy, B., & Pierzchała, R.. (2017). Selected open problems in polynomial approximation and potential theory. Dolomites Research Notes on Approximation, 10(Special_Issue), 161-168. presented at the 06/2017. doi:10.14658/pupj-drna-2017-Special_Issue-15
PDF icon BaranCiezEgginkKowalskaNagyPierzchała_DRNA2017.pdf (237.22 KB)
Baran, M., Białas-Cież, L., Eggink, R., Kowalska, A., la Nagy, B., & Pierzchała, R.. (2017). Selected open problems in polynomial approximation and potential theory. Dolomites Research Notes on Approximation, 10(Special_Issue), 161-168. presented at the 06/2017. doi:10.14658/pupj-drna-2017-Special_Issue-15
PDF icon BaranCiezEgginkKowalskaNagyPierzchała_DRNA2017.pdf (237.22 KB)
Bedford, E., & Frigge, P.. (2018). The Secant Method for Root Finding, Viewed as a Dynamical System. Dolomites Research Notes on Approximation, 11(4), 122-129. presented at the 12/2018. doi:10.14658/pupj-drna-2018-4-11
PDF icon Bedford_DRNA2018.pdf (243.41 KB)
Mudiyanselage, N. D. K., Blazejewski, J., Ong, B., & Piret, C.. (2022). A Radial Basis Function - Finite Difference and Parareal Framework for Solving Time Dependent Partial Differential Equations. Dolomites Research Notes on Approximation, 15(5), 8-23. presented at the 12/2022. doi:10.14658/pupj-drna-2022-5-2
PDF icon MUDIYANSELAGE_et_al.pdf (3.36 MB)
Bos, L., & De Marchi, S.. (2011). On Optimal Points for Interpolation by Univariate Exponential Functions. Dolomites Research Notes on Approximation, 4(1), 8-12. presented at the 09/2011. doi:10.14658/pupj-drna-2011-1-2
PDF icon Bos-2011-OOP.pdf (135.3 KB)
Bos, L. (2022). On Optimal Designs for a d-Cube. Dolomites Research Notes on Approximation, 15(4), 20-34. presented at the 12/2022. doi:10.14658/pupj-drna-2022-4-3
PDF icon 03_60thDM.pdf (449.05 KB)
Beberok, T., Białas-Cież, L., De Marchi, S., Kowalska, A., & Levenberg, N.. (2021). Mirosław Baran. Dolomites Research Notes on Approximation, 14(3), I-II. presented at the 12/2021. Retrieved from https://drna.padovauniversitypress.it/2021/3/0
PDF icon MiroslawBaran_MB_2021.pdf (443.1 KB)
Beberok, T., Białas-Cież, L., De Marchi, S., Kowalska, A., & Levenberg, N.. (2021). Mirosław Baran. Dolomites Research Notes on Approximation, 14(3), I-II. presented at the 12/2021. Retrieved from https://drna.padovauniversitypress.it/2021/3/0
PDF icon MiroslawBaran_MB_2021.pdf (443.1 KB)
Bulai, I. Martina, De Bonis, M. C., Laurita, C., & Sagaria, V.. (2022). MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models. Dolomites Research Notes on Approximation, 15(2), 13-24. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-2
PDF icon 02_DRNA_SA2022.pdf (558.4 KB)
Beberok, T. (2020). Markov’s inequality on some cuspidal domains in the Lp norm. Dolomites Research Notes on Approximation, 13(1), 12-19. presented at the 03/2020. doi:10.14658/PUPJ-DRNA-2020-1-2
PDF icon Beberok_2020_MIS.pdf (222.22 KB)
Bos, L., De Marchi, S., & Sommariva, A.. (2021). On "marcov" inequalities. Dolomites Research Notes on Approximation, 14(1), 92-100. presented at the 10-2021. doi:10.14658/pupj-drna-2021-1-8
PDF icon birthdayMarco60.pdf (1.24 MB)
Beberok, T. (2021). Lp Markov exponent of certain domains with cusps. Dolomites Research Notes on Approximation, 14(3), 7-15. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-2
PDF icon Beberok_MB_2021.pdf (1.59 MB)
Bos, L. (2021). On the Limit of Optimal Polynomial Prediction Measures. Dolomites Research Notes on Approximation, 14(3), 27-39. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-4
PDF icon Bos_MB_2021.pdf.pdf (259.1 KB)
Bandiziol, C., & De Marchi, S.. (2019). On the Lebesgue constant of the trigonometric Floater-Hormann rational interpolant at equally spaced nodes. Dolomites Research Notes on Approximation, 12(1), 51-67. presented at the 06/2019. doi:10.14658/pupj-drna-2019-1-6
PDF icon BandiziolDeMarchi_2019_LCT.pdf (580.6 KB)

Pages