Biblio Index

Export 40 results:
Author [ Title(Desc)] Type Year
Filters: First Letter Of Last Name is P  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
A
Plonka, G. (2014). Adaptive Wavelet Methods for the Efficient Approximation of Images. Dolomites Research Notes on Approximation, 7(Special_Issue). presented at the 09/2014.
PDF icon Dolomites14-2.pdf (1.55 MB)
Calvi, J. - P., & Phung, V. M.. (2015). On the approximation of multivariate entire functions by Lagrange interpolation polynomials. Dolomites Research Notes on Approximation, 8(Special_Issue), 11-16. presented at the 11/2015. doi:10.14658/pupj-drna-2015-Special_Issue-2
PDF icon CalviManh_10YPDPTS.pdf (212.61 KB)
Panarese, P. (2022). Approximation Techniques with MATLAB®. Dolomites Research Notes on Approximation, 15(2), 109-140. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-10
PDF icon 10_DRNA_SA2022.pdf (3.64 MB)
Perlo, A., & Venturin, E.. (2022). Approximation tools for detecting unforeseen sudden events. Dolomites Research Notes on Approximation, 15(3), 117-124. presented at the 10/2022. doi:10.14658/pupj-drna-2022-3-11
PDF icon 11_perlo.pdf (1.25 MB)
B
Bloom, T., Levenberg, N., Piazzon, F., & Wielonsky, F.. (2015). Bernstein-Markov: a survey. Dolomites Research Notes on Approximation, 8(Special_Issue), 75-91. presented at the 12/2015. doi:10.14658/pupj-drna-2015-Special_Issue-8
PDF icon Bloom_etal_10YPDPTS.pdf (308.97 KB)
Porcu, E., P.Zastavnyi, V., & Bevilacqua, M.. (2017). Buhmann Covariance Functions, their Compact Supports, and their Smoothness. Dolomites Research Notes on Approximation, 10(1), 33-42. presented at the 09/2017. doi:10.14658/pupj-drna-2017-1-5
PDF icon PorcuZastavnyiBevilacqua_2017_BCF.pdf (1007.65 KB)
Porcu, E., P.Zastavnyi, V., & Bevilacqua, M.. (2017). Buhmann Covariance Functions, their Compact Supports, and their Smoothness. Dolomites Research Notes on Approximation, 10(1), 33-42. presented at the 09/2017. doi:10.14658/pupj-drna-2017-1-5
PDF icon PorcuZastavnyiBevilacqua_2017_BCF.pdf (1007.65 KB)
C
Piazzon, F., Sommariva, A., & Vianello, M.. (2017). Caratheodory-Tchakaloff Subsampling. Dolomites Research Notes on Approximation, 10(1), 5-14. presented at the 04/2017. doi:10.14658/pupj-drna-2017-1-2
PDF icon PiazzonSommarivaVianello_2017_CTS.pdf (1.02 MB)
Piazzon, F., & Vianello, M.. (2014). Constructing optimal polynomial meshes on planar starlike domains. Dolomites Research Notes on Approximation, 7(Special_Issue), 22-25. presented at the 09/2014. doi:10.14658/pupj-drna-2014-Special_Issue-5
PDF icon PiazzonVianello-2014-COP.pdf (225.16 KB)
E
Francomano, E., Hilker, F. M., Paliaga, M., & Venturino, E.. (2017). An efficient method to reconstruct invariant manifolds of saddle points. Dolomites Research Notes on Approximation, 10(Special_Issue), 25-30. presented at the 05/2017. doi:10.14658/pupj-drna-2017-Special_Issue-5
PDF icon FrancomanoHilkerPaliagaVenturino_DRNA2017.pdf (352.25 KB)
Bos, L., & Polato, F.. (2017). An Explicit Example of Leave-One-Out Cross-Validation Parameter Estimation for a Univariate Radial Basis Function. Dolomites Research Notes on Approximation, 10(1), 43-50. presented at the 09/2017. doi:10.14658/pupj-drna-2017-1-6
PDF icon BosPolato_2017_EEL.pdf (207.39 KB)
Piazzon, F. (2018). The extremal plurisubharmonic function of the torus. Dolomites Research Notes on Approximation, 11(4), 62-72. presented at the 11/2018. doi:10.14658/pupj-drna-2018-4-6
PDF icon Piazzon_DRNA2018.pdf (1.66 MB)
F
De Rossi, A., Perracchione, E., & Venturino, E.. (2016). Fast strategy for PU interpolation: An application for the reconstruction of separatrix manifolds. Dolomites Research Notes on Approximation, 9(Special_Issue), 3-12. presented at the 09/2016. doi:10.14658/pupj-drna-2016-Special_Issue-2
PDF icon DeRossiPerracchioneVenturino_KMFA2016.pdf (347.1 KB)
G
Phung, V. M., Phan, T. T., & Mai, H. A.. (2019). On generalized least square approximation. Dolomites Research Notes on Approximation, 12(1), 101-110. presented at the 11/2019. doi:10.14658/pupj-drna-2019-1-10
PDF icon PhungPhanMai_2019_GLS.pdf (258.99 KB)
Phung, V. M., Phan, T. T., & Mai, H. A.. (2019). On generalized least square approximation. Dolomites Research Notes on Approximation, 12(1), 101-110. presented at the 11/2019. doi:10.14658/pupj-drna-2019-1-10
PDF icon PhungPhanMai_2019_GLS.pdf (258.99 KB)
Plonka, G., & Peter, T.. (2014). A generalized Prony method for sparse approximation. Dolomites Research Notes on Approximation, 7(Special_Issue). presented at the 09/2014.
PDF icon Dolomites14-3.pdf (718.05 KB)
Plonka, G., & Peter, T.. (2014). A generalized Prony method for sparse approximation. Dolomites Research Notes on Approximation, 7(Special_Issue). presented at the 09/2014.
PDF icon Dolomites14-3.pdf (718.05 KB)
H
Bulai, I. Martina, & Pedersen, M. Gram. (2018). Hopf bifurcation analysis of the fast subsystem of a polynomial phantom burster model. Dolomites Research Notes on Approximation, 11(3), 3-10. presented at the 11/2018. doi:10.14658/pupj-drna-2018-3-2
PDF icon BulaiPedersen_DRNA2018.pdf (333.08 KB)
Plonka, G. (2014). How to construct your own directional wavelet frame?. Dolomites Research Notes on Approximation, 7(Special_Issue). presented at the 09/2014.
PDF icon Dolomites14-1.pdf (1.75 MB)
K
Buhmann, M. D., De Marchi, S., & Plonka-Hoch, G.. (2011). Kernel Functions and Meshless Methods. Dolomites Research Notes on Approximation, 4(Special_Issue), 1-63. presented at the 09/2011. doi:10.14658/pupj-drna-2011-Special_Issue-1
PDF icon SpecialIssue-2011-KFA.pdf (8.79 MB)
L
Aminian Shahrokhabadi, M., Neisy, A., Perracchione, E., & Polato, M.. (2019). Learning with subsampled kernel-based methods: Environmental and financial applications. Dolomites Research Notes on Approximation, 12(1), 17-27. presented at the 04/2019. doi:10.14658/pupj-drna-2019-1-3
PDF icon Shahrokhabadietal_2019_LSK.pdf (1.58 MB)
Aminian Shahrokhabadi, M., Neisy, A., Perracchione, E., & Polato, M.. (2019). Learning with subsampled kernel-based methods: Environmental and financial applications. Dolomites Research Notes on Approximation, 12(1), 17-27. presented at the 04/2019. doi:10.14658/pupj-drna-2019-1-3
PDF icon Shahrokhabadietal_2019_LSK.pdf (1.58 MB)
Phung, V. M. (2011). On the limit points of pseudo Leja sequences. Dolomites Research Notes on Approximation, 4(1), 1-7. presented at the 09/2011. doi:10.14658/pupj-drna-2011-1-1
PDF icon Phung-2011-OTL.pdf (165.36 KB)
M
De Rossi, A., Perracchione, E., & Venturino, E.. (2018). Meshless partition of unity method for attraction basins of periodic orbits: Fast detection of separatrix points. Dolomites Research Notes on Approximation, 11(2), 15-22. presented at the 01/2018. doi:10.14658/pupj-drna-2018-2-3
PDF icon DeRossiPerracchioneVenturino_DRNA2018.pdf (166.64 KB)

Pages