Biblio Index

Export 54 results:
Author [ Title(Asc)] Type Year
Filters: First Letter Of Last Name is D  [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
M
Cavoretto, R., & De Rossi, A.. (2018). Multivariate Approximation: Theory, Algorithms & Applications (MATAA17). Dolomites Research Notes on Approximation, 11(2), 1-2. presented at the 01/2018. doi:10.14658/pupj-drna-2018-2-1
PDF icon MATAA17_DRNA2018.pdf (464.92 KB)
Caliari, M., De Marchi, S., Levenberg, N., & Vianello, M.. (2014). Multivariate Approximation 2013. Dolomites Research Notes on Approximation, 7(Special_Issue), I-II. presented at the 09/2014. doi:10.14658/pupj-drna-2014-Special_Issue-1
PDF icon PrefaceMA13.pdf (811.97 KB)
Beberok, T., Białas-Cież, L., De Marchi, S., Kowalska, A., & Levenberg, N.. (2021). Mirosław Baran. Dolomites Research Notes on Approximation, 14(3), I-II. presented at the 12/2021. Retrieved from https://drna.padovauniversitypress.it/2021/3/0
PDF icon MiroslawBaran_MB_2021.pdf (443.1 KB)
De Rossi, A., Perracchione, E., & Venturino, E.. (2018). Meshless partition of unity method for attraction basins of periodic orbits: Fast detection of separatrix points. Dolomites Research Notes on Approximation, 11(2), 15-22. presented at the 01/2018. doi:10.14658/pupj-drna-2018-2-3
PDF icon DeRossiPerracchioneVenturino_DRNA2018.pdf (166.64 KB)
Bulai, I. Martina, De Bonis, M. C., Laurita, C., & Sagaria, V.. (2022). MatLab Toolbox for the numerical solution of linear Volterra integral equations arising in metastatic tumor growth models. Dolomites Research Notes on Approximation, 15(2), 13-24. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-2
PDF icon 02_DRNA_SA2022.pdf (558.4 KB)
Bos, L., De Marchi, S., & Sommariva, A.. (2021). On "marcov" inequalities. Dolomites Research Notes on Approximation, 14(1), 92-100. presented at the 10-2021. doi:10.14658/pupj-drna-2021-1-8
PDF icon birthdayMarco60.pdf (1.24 MB)
L
Bandiziol, C., & De Marchi, S.. (2019). On the Lebesgue constant of the trigonometric Floater-Hormann rational interpolant at equally spaced nodes. Dolomites Research Notes on Approximation, 12(1), 51-67. presented at the 06/2019. doi:10.14658/pupj-drna-2019-1-6
PDF icon BandiziolDeMarchi_2019_LCT.pdf (580.6 KB)
K
Cavoretto, R., & De Rossi, A.. (2016). Kernel-based Methods and Function Approximation 2016. Dolomites Research Notes on Approximation, 9(Special_Issue), 1-2. presented at the 09/2016. Retrieved from http://drna.padovauniversitypress.it/2016/specialissue/1
PDF icon CavorettoDeRossi_KMFA2016.pdf (629.87 KB)
De Marchi, S., Iske, A., & Sironi, A.. (2016). Kernel-based Image Reconstruction from Scattered Radon Data. Dolomites Research Notes on Approximation, 9(Special_Issue), 19-31. presented at the 09/2016. doi:10.14658/pupj-drna-2016-Special_Issue-4
PDF icon DeMarchiIskeSironi_KMFA2016.pdf (1.48 MB)
Buhmann, M. D., De Marchi, S., & Plonka-Hoch, G.. (2011). Kernel Functions and Meshless Methods. Dolomites Research Notes on Approximation, 4(Special_Issue), 1-63. presented at the 09/2011. doi:10.14658/pupj-drna-2011-Special_Issue-1
PDF icon SpecialIssue-2011-KFA.pdf (8.79 MB)
I
Dencker, P., & Erb, W.. (2017). Introduction to Lissajous curves and d-dimensional polynomial interpolation. Dolomites Research Notes on Approximation, 10(Special_Issue).
PDF icon DRNA2017_Erb_ILC.pdf (1.58 MB)
Deng, C., Meng, H., & Xu, H.. (2017). Interpolating given tangent vectors or curvatures by preprocessed incenter subdivision scheme. Dolomites Research Notes on Approximation, 10(1), 51-57. presented at the 10/2017. doi:10.14658/pupj-drna-2017-1-7
PDF icon DengMengXu_2017_IGT.pdf (489.81 KB)
G
Demaret, L., & Iske, A.. (2010). Geometrical Methods for Adaptive Approximation of Image and Video Data. Dolomites Research Notes on Approximation, 3(1). presented at the 09/2010.
PDF icon Iske-2010-Lecture1.pdf (4.85 MB)
Cavoretto, R., De Rossi, A., & Erb, W.. (2022). GBFPUM - A MATLAB Package for Partition of Unity Based Signal Interpolation and Approximation on Graphs. Dolomites Research Notes on Approximation, 15(2), 25-34. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-3
PDF icon 03_DRNA_SA2022.pdf (5.05 MB)
F
Camargo, A., & De Marchi, S.. (2015). A few remarks on “On certain Vandermonde determinants whose variables separate". Dolomites Research Notes on Approximation, 8(1), 1–11. presented at the 09/2015. doi:10.14658/pupj-drna-2015-1-1
PDF icon CamargoDemarchi-2015-RVD.pdf (285.77 KB)
De Rossi, A., Perracchione, E., & Venturino, E.. (2016). Fast strategy for PU interpolation: An application for the reconstruction of separatrix manifolds. Dolomites Research Notes on Approximation, 9(Special_Issue), 3-12. presented at the 09/2016. doi:10.14658/pupj-drna-2016-Special_Issue-2
PDF icon DeRossiPerracchioneVenturino_KMFA2016.pdf (347.1 KB)
Dykes, L., & Reichel, L.. (2013). A family of range restricted iterative methods for linear discrete ill-posed problems. Dolomites Research Notes on Approximation, 6(Special_Issue), 27-36. presented at the 09/2013. doi:10.14658/pupj-drna-2013-Special_Issue-5
PDF icon DykesReichel-2013-FRR.pdf (299.59 KB)
E
Allasia, G., Besenghi, R., Cavoretto, R., & De Rossi, A.. (2010). Efficient approximation algorithms. Part II: Scattered data interpolation based on strip searching procedures. Dolomites Research Notes on Approximation, 3(1), 39-78. presented at the 09/2010. doi:10.14658/pupj-drna-2010-1-3
PDF icon Allasia-2010-EAA2.pdf (1.14 MB)
Allasia, G., Besenghi, R., Cavoretto, R., & De Rossi, A.. (2010). Efficient approximation algorithms. Part I: approximation of unknown fault lines from scattered data. Dolomites Research Notes on Approximation, 3(1), 7-38. presented at the 09/2010. doi:10.14658/pupj-drna-2010-1-2
PDF icon Allasia-2010-EAA1.pdf (2.13 MB)
Danek, T., Noseworthy, A., & Slawinski, M. A.. (2018). Effects of norms on general Hookean solids for their isotropic counterparts. Dolomites Research Notes on Approximation, 11(1), 15-28. presented at the 03/2018. doi:10.14658/pupj-drna-2018-1-3
PDF icon DanekNoseworthySlawinski_2018_NGH.pdf (6.19 MB)
Danek, T., & Slawinski, M. A.. (2014). On effective transversely isotropic elasticity tensors based on Frobenius and L2 operator norms. Dolomites Research Notes on Approximation, 7(Special_Issue), 1-6. presented at the 09/2014. doi:10.14658/pupj-drna-2014-Special_Issue-2
PDF icon DanekSlawinski-2014-ETI.pdf (225.33 KB)
D
Dell’Accio, F., Di Tommaso, F., Siar, N., & Vianello, M.. (2022). DISC: an adaptive numerical Differentiator by local polynomial Interpolation on multivariate SCattered data. Dolomites Research Notes on Approximation, 15(2), 81-91. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-7
PDF icon 07_DRNA_SA2022.pdf (2.17 MB)
Dell’Accio, F., Di Tommaso, F., Siar, N., & Vianello, M.. (2022). DISC: an adaptive numerical Differentiator by local polynomial Interpolation on multivariate SCattered data. Dolomites Research Notes on Approximation, 15(2), 81-91. presented at the 10/2022. doi:10.14658/pupj-drna-2022-2-7
PDF icon 07_DRNA_SA2022.pdf (2.17 MB)
B
Denkowska, A., & Denkowski, M. P.. (2021). The Bernstein-Walsh-Siciak Theorem for analytic hypersurfaces. Dolomites Research Notes on Approximation, 14(3), 53-58. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-6
PDF icon Denkowska_Denkowski_MB_2021.pdf (250.15 KB)
Denkowska, A., & Denkowski, M. P.. (2021). The Bernstein-Walsh-Siciak Theorem for analytic hypersurfaces. Dolomites Research Notes on Approximation, 14(3), 53-58. presented at the 12/2021. doi:10.14658/pupj-drna-2021-3-6
PDF icon Denkowska_Denkowski_MB_2021.pdf (250.15 KB)

Pages