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Abstract

We study the Lelong classes £(V), L1 (V) of psh functions on an affine variety V. We compute the
Monge-Ampere mass of these functions, which we use to define the degree of a polynomial on V in
terms of pluripotential theory (the Lelong degree). We compute the Lelong degree explicitly in a specific
example. Finally, we derive an affine version of Bézout’s theorem.

1 Introduction

Although they are algebraic objects, complex polynomials can also be studied as entire holomorphic functions that satisfy certain
growth restrictions. The tools of complex analysis (such as the Cauchy integral formula) can be used to study their deeper
properties. An example of this in one variable is the standard complex analytic proof of the fundamental theorem of algebra. In
turn, the analysis of holomorphic functions involves the use of plurisubharmonic (psh) functions. In one dimension, these are the
classical subharmonic functions of potential theory in the plane; in higher dimensions psh functions satisfy pluripotential theory,
a nonlinear generalization based on the complex Monge-Ampere operator. The prototypical example of a psh function is log |F]|,
where F is a holomorphic mapping.
Back in one complex variable, z = x + iy, a polynomial

p(x)=a;z +a;_ 127+ + a2z +ag

is classified by its degree deg(p) := d. This gives the order of growth of p at infinity, as well as its number of zeros, counting
multiplicity, by the fundamental theorem of algebra. The degree can also be given in terms of the subharmonic function u := log |p|
in a couple of ways:

deg(p) = sup{c >0: ‘llirn %u(z)—log lz| = O(l),} (D)

J ddu. (2)

For a function ¢ of class C%, dd°yp = (Ap)dx Ady where A = 82/9x?+ 02/0y? is the Laplacian, and the operator dd*
extends to subharmonic functions as a positive measure. Equation (1) simply reformulates the notion of growth, while (2) follows
from the fundamental theorem of algebra, writing p(z) = ¢ [ [,(z — a;) and using the fact that dd‘log|z —a;| = 218 o> Where &,
denotes the discrete probability measure on {a}.

The situation is more complicated in several variables. Instead of a single polynomial, one considers a system of polynomial
equations p;(z) = --- = px(2) =0, z € C". An underdetermined system has infinitely many solutions that form an algebraic set
V =V(py,...,pr)- Consider adding another polynomial p,.,,; then finding a solution to p; = - -+ = p; = pi4; = 0 is equivalent to
finding a solution to

2 deg(p)

Pen(2)=0, z€V.

Polynomials on V can be studied algebraically as elements of a ring C[V], or as holomorphic functions on V, or more generally,
in terms of pluripotential theoretic objects: psh functions and closed positive currents. Pluripotential theory on holomorphic
varieties in CN was studied by Sadullaev [12] and Zeriahi ([16], [17]). We should also mention that a general pluripotential
theory on complex manifolds has been developed (by Demailly, Guedj/Zeriahi and others) that has numerous applications in
complex and algebraic geometry; see [6] for a survey.
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In this paper, we study the Lelong classes £(V), £7(V) of psh functions on an affine variety* V c CV. These are functions of
(at most) logarithmic growth as |z| — oo on V. We obtain the formula

f (ddu)y™ =d(2m)™ forallue £T(V), 3)
14

where m = dim(V), d = deg(V), and (dd)™ is the m-th exterior power of dd°, or complex Monge-Ampére operator. Here, we use
the complex analytic definition of degree and dimension (as in e.g. [8] or [13]) in terms of a branched covering projection.

In Section 2 we construct the projection explicitly for an affine variety; this is a standard construction in commutative algebra,
and provides good coordinates for computation (a Noether presentation). In Section 3 we introduce the Lelong classes £(V), £ (V)
of psh functions, and in Section 4, we derive formula (3). To carry out our computations, we adapt some standard convergence
and comparison theorems for the complex Monge-Ampére operator in CV.

In Section 5 we introduce the Lelong degree of a polynomial p € C[V] as a generalization of (2). It can also be interpreted
as a Lelong number for the current dd°p. We use the quantity d(27)™ derived in the previous section to normalize the degree.
In Section 6 we compute the Lelong degree explicitly on an algebraic curve V = V(P) C C2. Although we only carry out the
computation for the specific polynomial q(x, y) = y in this paper, we hope to expand this to a method for computing deg,(q)
for any g € C[V], using a Newton polygon associated to V. Our computation shows that deg,,,(q) is a rational number that
gives the average growth of q along the branches of V as |z| — co. The next step would be to generalize such a method to
higher-dimensional varieties.

In the last section, we prove an affine version of Bézout’s theorem. We relate it to the classical Bézout theorem in projective
space via an example in C2.

1.1 Notation

We recall some standard notation in computational algebraic geometry and several complex variables.
Write (f},..., f,) for the ideal generated by elements f; of a polynomial ring C[z] = C[2,,...,2y], and for S € C[z], write (S)
for the ideal generated by S. Also, define the algebraic sets

V(fi,....f;)) = {z2€C":fi(x)=---=f(2)=0}, V(S) := {z€C" : f(z)=0forall f €S}.
For V c CV, define the ideal
I(V):={f €C[z]:f(z)=0forallz e V}.
For z = (2y,...,2y), 2; = X; +iy;, we have d = 0 +0,d = i(?—a), and dd° = 2i89, where

9()=».8/0z,(-)Adz; and 3(") = »3/3z,(-) AdZ.

j=1 j=1

For a psh function u, dd“u is a positive (1, 1)-current, i.e., a linear functional on smooth, compactly supported (N —1,N —1)-
forms such that {(dd‘u, p) = 0 if  is a strongly positive form.” Here we write {-,-) to denote the pairing of a current and a test
form.

2 Noether Presentation

In this section we construct good coordinates for computation on an affine variety in CV. First, we recall the grevlex’ monomial
ordering on polynomials in C[z] = C[zy,...,2y].

Definition 2.1. The grevlex monomial ordering is the ordering < in which z* < 2 if
1. either |a| < |B]; or
2. |a| =B and there exists j € {1,...,N} such that a; < 3; and a; = 3 for all k < j.
Here, we are using standard multi-index notation, a = (@, ...,ay) and |a| = a; + - -+ + ay; and similarly for 3.
Denote by LT(p) the leading term of a polynomial p with respect to the grevlex ordering. Recall that a Grébner basis {f, ..., fy}

of an ideal I ¢ C[z] is a collection of polynomials satisfying I = (fi, ..., fy) and (LT(I)) = (LT(f;),...,LT(fy)); here (LT(I)) is the
ideal generated by the monomials L.T(I) = {LT(p) : p € I}.

Definition 2.2. The (greviex) normal form of a polynomial p (with respect to I) is the unique polynomial r(z) = . r,z* for
which the following properties hold:

1. p= 2221 q;f; +r where {f;,..., f;} is a Grobner basis of I; and
2. z* ¢ (L1(I)) whenever r,z* is a nonzero term of r.

The existence and uniqueness of r follows from the generalized division algorithm for multivariable polynomials and the fact
that the divisors are a Grébner basis. It provides a standard polynomial representative of elements of C[z]/I, which may be used
to give a well-defined notion of degree.

*i.e., an irreducible algebraic subset of CN.
TAn example of such a form is ¢ = f "1, where f is a non-negative test function and § = Zj dx; Ady;. See e.g. [9], chapter 3.
*graded reverse lexicographic
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Definition 2.3. Let V c CV be an affine variety and p € C[z]. Then we define the degree of p on V by deg,(p) := deg(r), where
r is the normal form of p with respect to I(V).

Note that the condition |a| = || in the definition of grevlex easily implies deg, (p) < deg(p).
Given an invertible complex linear map L: CN¥ — C¥, let L*: C[2] — C[z] be defined by p(z) — p(L(z)). We seek a change

of coordinates such that the grevlex normal form becomes particularly simple. The following is a standard result in commutative
algebra (Noether normalization).

Theorem 2.1. Let V C CV be an (irreducible) affine variety and I = I(V). Then there is a non-negative integer m < N such that for
a generic complex linear change of coordinates z — L(z) we have the following.

1. Write 2 = (X1,.., X, Y1» - > Ynem) =: (x,¥) and J := L*(I). Then the canonical map C[x] — C[x, y]/J induced by the
inclusion C[x] € C[x, y] is injective and finite (i.e., exhibits C[x, y]/J as a finite extension of C[x].)

2. Foreach j=1,...,N —mthereis a d; € N and an irreducible polynomial g; € J of total degree d; of the form

dj-1
d.
gil,y) =y’ —Zgjk(x,yl,...,yjfl)yf @
k=0

ie., deg(gj)+k <d; foreach k=0,...,d;— 1.

J

Proof. The proof is by induction on N; we follow the argument in [10]. The case N = 1 is almost trivial: I = (p) for some monic
polynomial p(z) = 2z¢ + (lower terms), and C[z]/I is a finite extension of C.}

For general N, let f € I be a polynomial of degree deg(f) := d > 1, with f its leading homogeneous part. Then for
L(z)=(c; %,...,cy - 2) an invertible linear map, where c; -z :=c;;2; + - +c;y2y, we have

fA(L(z)) = fA(cN)z]‘i + (lower terms in zy).
As long as the generic condition f(cN) # 0 holds, we may define

g(2) = fey) ' f(L(2)),

and g has the property (4). The natural map C[z’] — C[2’,2y5]/(g) is injective and finite, because g is a monic polynomial in 2y
with coefficients in C[2’]. It is also easy to see that elements of J = L*(I) map to elements of J. Hence after quotienting out by J,
the map C[z']/J, — C[z]/J is also injective and finite (where J, = C[2’]NJ). If J, = (0) then we are done with m =N —1 and
&1 =8

Otherwise, applying induction to the affine variety V, = V(J,) € C¥~!, we obtain an integer m < N such that for a generic
linear map L, : C¥~! — CM7!, the conclusion of the theorem holds, say, with polynomials g, ..., gy_1_m-

The theorem then holds for N with the linear change of coordinates (2, zy) — L(L,(2"), 2y) and the polynomials g;, ..., &y_1—-m
and gy_n(2) := §(Lo(2),2y).

Since V is irreducible, I is prime. If a g; constructed above is reducible, it must contain an irreducible factor in I. We replace
g; by this irreducible factor. O

Definition 2.4. Given an affine variety V, coordinates (x, y) that satisfy Theorem 2.1 will be called a Noether presentation for V.

A Noether presentation has a geometric interpretation. First, recall the following definition (cf., [8]).

Definition 2.5. Let X; and X, be analytic varieties. Then a surjective holomorphic map ¢ : X; — X, exhibits X, as a branched
covering of X, if there is a dense open subset Q of the regular part of X, such that for each x € Q there is some neighborhood U
of x for which ¢~1(U) is a union of disjoint open subsets of the regular part of X;. The branched covering is locally d-sheeted
(resp. finite) if the number of these sets is d (resp. finite). We set deg, (¢) := d to be the degree of the covering map ¢ at x. The
set X, \ Q is called the branch locus.

Now x — deg, () is a locally constant function in x (e.g. by elementary complex analysis). Hence when X, is connected, it
is a global constant so we may write deg(y) (independent of x).

Proposition 2.2. Let (x, y) be a Noether presentation for an irreducible affine variety V. CV.

1. There exists a constant A > 0 such that
lyll <A +Ix]), forall (x,y)€V. (5)

2. IfP:C"xCN"™ > (x,y)— x € C™ is the projection, then P(V) = C™ and the restriction P|v exhibits V as a finite branched
covering over C™. (Hence V is a complex manifold of dimension m away from the branch locus.)

Proof. We use induction on N —m, i.e., the number of polynomials g;, ..., gy_, given by Theorem 2.1 that define V. (Note that
the argument does not depend on N, the dimension of the ambient space.)
Step 1: Base case (N —m =1).

81n this case, z is the ‘y’ variable and there is no ‘x’ variable.
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1. We have (x,y) = (xy,...,xy_1,¥), and V =V(g;) by hypothesis, where as in (4),

di—1

gi(x,y) = ¥y = gu(x)y* =0 forall (x,y) €V. ©)

k=0
We claim that the above equation implies the inequality

ly| <2 max |g1j(x)|1/(d1_j) for all (x,y)eV. ()]
0<j<d;—1

For if not,

|gl(x:.)’)}’_d1 | 1+ gl(dl—l)(x).y_l +eeet glo(x)y_dl |
1= (181, ()Y 4+ +1810(x)y™41)

1-27 - +279)>0

[\

[\

which is a contradiction. Hence (7) holds.

Fixing j, there exists a constant C; such that |g;;(x)| < C;(1 + lx|N%~7 for all x € C", since g1;(x) is a polynomial of

C.l/(dlfj)
j

degree at most d; — j. Putting this into the right-hand side of (7) and letting A = max; , we obtain (5).

2. To show that P maps V onto CV™!, fix x € CV™!. Then (6) is a nonzero polynomial equation of degree d, in y; hence by
the fundamental theorem of algebra, has d; solutions (counting multiplicity); write

d
g106y) =] Jor —a;00). ®)

j=1

This gives at least one point (x,y) € V that maps to x under P; so P(V) = CV~!. The holomorphic implicit function
theorem says that locally, P has a local holomorphic inverse on V at all points away from the subvariety V N {;—yg1 =0}.
In fact, the local inverses are given by a;(x) in (8), and at such points x the values of a;(x) are distinct for each j. Hence
V is a holomorphic branched cover over C¥N™!, with d; sheets.

Step 2: Induction. Write P as the composition P, o P; given by

(,3) = (6, Y, Yuom) €C¥ =5 (x,y") € CV 1225 x eV,

Then P,(V) =: V, is contained in the variety V(g,,...,gy_m_1) € CV7!. Here we are using the fact that the polynomials

815> &n—m—1 Of (4) are independent of the last coordinate yy_,,.
On the other hand, if (x, y") € V(gy, .-, y_m_1) then the fundamental theorem of algebra applied to s — gy_n.(x,y’,s) gives
the existence of (x, y’, yy_n) € V, so that we have the reverse containment V(g;,...,gy_m_1) € V4. Hence V; =V(gy, ..., Ey—m-1)>

which shows that V; is an affine variety in C¥~! and (x, y’) is a Noether presentation for V;. To prove each part of the theorem
we apply induction to V; and W := V(gy_,,) € CV.

1. Let (x,y’, Yn_m) €V CW. Then (x, y") € V; and there exist constants A;,A, > 0 such that
yn-mll <A1 (1 +I(x, )OI and [ly']| < Ap(1 + lIxID.
Hence
< A GG yIID +A T+ IxD
< A+l + Y1) + A1 + [1x1D
< (A(T+A) +A)(L A+ lx[]) =: AL + [Ix]).

Y1 < 1yn-ml + 1]

2. We have P(V) = P,(V;) = C™. By induction applied to V;, the projection P, is locally biholomorphic away from a proper
subvariety V, C V;. Also, by the implicit function theorem, P;: W — CN~! is a local biholomorphism at each point of
W\ W,, where W, = V(ﬁgl\,_m). Hence P, : V — Vj is a local biholomorphism away from P;'(V,) UW,. So P =P, o P,
is a local biholomorphism at each point of V \ (P;(V,) UW,) which gives V as a branched covering over C™. Clearly, the
covering is finite, of degree deg(P;) - deg(P,).

O

Remark 1. Clearly, V; is irreducible if V is, and this enters into the proof of the second part. Irreducibility of V is not necessary
for Theorem 2.1; but if V were reducible, some of the g;s will be reducible polynomials. The conclusion of the second part of the
proposition may fail because:

e A component of V covers C™** rather than C™. When this occurs, there are nontrivial algebraic relations among certain
factors of the g;s. Hence there is a component of V for which one can cut down (to N —m—k, say) the number of defining
polynomials.

e A component of V is completely contained in W;. Then there are nontrivial algebraic relations involving factors of the g;s

a
and g5, = &v-m-
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Now (LT(I)) 2 (yfl, ... ,yfﬁ;f). Hence a normal form has the structure
plx,y)= Z Pa(x)y*® )
aENy

where p, € C[x] for each a, and «a is taken over the finite set
N, ={a=(a,...,ay_n) € ZN™ a; < d; for each j}. (10)

Since C™ is connected, the projection P has a well-defined global degree, deg(P). A similar connectedness argument can be
used to show the following.

Lemma 2.3. For any two Noether presentations with projections B, P, we have deg(P) = deg(P).

Proof. A complex linear perturbation of CV (i.e. a linear map L, =I + €T where ¢ << ||T||) takes a Noether presentation (x,y)
to a Noether presentation (x., y.), as long as € is sufficiently small: we have (x,,y.) = (x,y)+ €T (x,y). The local inverses
P71, P! of the projections P(x,y) := x and P.(x,,y.) := x, are holomorphic, and &, := P, o L. o P™" is a local biholomorphic
map that goes to the identity as € — 0. Given a local inverse P~!, the composition L o P! o <I>E_1 is a nearby local inverse for P..
Vice versa, given a local inverse P, a nearby local inverse of P is given by L™ o P! o . Hence the number of local inverses is
the same for P and P, so deg(P) = deg(P,).

Now, fix some reference coordinate system and let L be a linear map that transforms these coordinates to a Noether presentation
with projection P; . If we identify the collection of all such linear maps L (equivalently, N x N matrices) with CV 2, the maps that

give Noether presentations form a connected open subset of CN 2 By the previous paragraph, L — deg(P,) is a locally constant
function on this set. Hence deg(P,) is a constant independent of L. O

Definition 2.6. Define the degree of V by deg(V) := deg(P), where P : V. — C™ is the projection in a Noether presentation of V.
The dimension of V is dim(V) := m.
We give some examples of Noether presentations.

Example 2.1. Let V C C? be given by the equation 2,2, = 1. Then (x, y) = (2,,2,) is not a Noether presentation. Similar to the
proof of Theorem 2.1, write

Zp = x+b1y, zZ=ax+byy,
then the equation for V transforms into b; b,y? + (a; b, + a,b;)xy + a;a,x? = 1, and (x, y) is a Noether presentation if b; b, # 0.

Example 2.2. Let V C C? be given by the equation zf = zg Then (x,y) = (2;,2,) is a Noether presentation, while (x, y) = (2,,21)
is not. Clearly, (5) fails for the latter because |z, | = |z,|*/2.

Remark 2. The existence of coordinates for which (5) holds at all points on an affine variety was already known by Zeriahi ([15];
see also Remark 4). An estimate of this form also characterizes algebraicity. Suppose W is an analytic subvariety of CV, and
suppose there exist constants A, B > 0 such that

lyll <A+ ||x]])® forall (x,y) € W.

Rudin has shown [11] that W must therefore be algebraic.

3 The Lelong Class

Let V be an affine variety in C¥. Then a function u: V — [—00, 00) is plurisubharmonic (psh) on V if in a neighborhood of each
point, u is locally the restriction of a psh function in a local embedding into CV.

Remark 3. The above notion is sufficient for this paper but a weaker notion is needed to get a class with good compactness
properties ([12], [15], [7]). A function is weakly psh on a complex space X if it is upper semicontinuous on X and psh in local
coordinates about every regular point of X. Both of these notions coincide when X is smooth.

The Lelong class £L(V) is the class of psh functions on V of at most logarithmic growth:
L(V) := {upshon V: 3C € R such that u(z) < log" ||z|| + C,Vz € V}.

We also define the class
L7(V) := {ue £(V): 3c €R such that u(z) > log" ||z|| + ¢, Vz € V}.

It is easy to see that these classes are invariant under complex linear changes of coordinates. Also, for a real constant ¢ > 0, write
cLV) :={cu:ueL(V)}, cLY(V):={cu:uet(V)}.
Proposition 3.1. Suppose that z = (x, y) is a Noether presentation for an affine algebraic variety V. C CN. Then
1. log" x|l € £*(V).

2. For any polynomial p with deg,(p) = 1, we have log|p| € L(V).

1
deg,(p)

. 2.
THere we use the fact that the complement of a proper analytic subset of C¥~ is connected.
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Proof. We need to show that the quantity log™ ||x|| —log® ||z|| is uniformly bounded from both sides. The inequality log™ ||x|| <
log™ ||z|| is obvious, which gives an upper bound of zero. For the lower bound, we use the property ||y|| < A(1 + ||x]||) for some
A> 0 to estimate

log™ (|l Il + A1 + lIxI1))

log" (55 + Ilx|)) +log"(A+ 1) <log" |Ix|| + C,

log” [lz]l =1og™ [|Cxx, )II < log™ (llxll + IlyI)

INIA

where we choose C > 0 sufficiently large (depending on A) so that the last inequality holds for all x € CM. This gives a lower
bound of —C.

To prove the second item, let d := degy (p). Reduce p to its normal form of degree d, which we will also denote by p, and let
D denote the leading homogeneous part. We have (recall (10) for the definition of \,,)

P, ) =B, y) +r(x,y) = D he(x)y? +r(x,y)
<d
pex,
with hg(x) homogeneous of degree d — || for each 8 and degr(x,y) < d. We calculate that

18]

IA

K] kg lls(2C)FT (for [lx|| > 1)

g (x)y*| PLTIC] (M)""

= < |h i‘-c‘ﬁl‘p,L
[l ERERANTET ‘ﬁ(uxu)

=: Cﬁ’

where in the second inequality || - ||; denotes the sup norm on B, the closed unit ball in C™.
If (o, B) € N™ x NV™™ are multi-indices with |a| + || < d, then

Ix@y P < [l "™y 1" < [l ™1 + [l !

so that
lx*yP|
[l (|

Hence |r(x, y)|/|lx||¢ — 0 as ||x|| — oo. Putting the above calculations together,

< Il |41 — 0 as [lx]| — oo.

Ip(x, )l

Ix]? < C for sufficiently large ||x|| > 1
x

where € =1+ Zﬁ Cg. Thus %10g Ip(x, ¥)| < log|lx|| + €/d for sufficiently large ||x||. It follows easily that %log Ip(x,y)| €
L(V). O

The integer deg, (p) is not the smallest value of d permitting an inequality of the form %log Ip(2)] <log" ||z|| +A for some
A € R. The optimal bound may be a rational number; we will see this later, when studying the notion of Lelong degree.
Remark 4. In [15] a complex space X of dimension m is said to be parabolic if it admits a continuous psh exhaustion function
g : X — [—00,00) for which (dd°g)™ = 0 off some compact subset of X. The function g is called a parabolic potential. The
Lelong class £(X, g) is defined by

L(X,g) = {u weakly psh on X : 3C such that u(z) < g*(2) + C,Vz € V},

where g*(z) = max{g(z),0}, and the notion of weakly psh is as in Remark 3. We define £*(X, g) similarly with the added
condition u(z) > g*(z) +c.

Proposition 3.1 shows that any affine variety V is a parabolic space with parabolic potential log ||x||, where the coordinates
(x,y) are a Noether presentation for V. This case was already mentioned in [15]. Our classes £(V), £*(V) correspond to
L(V,log||x|D), £*(V,log]|x]]) in that paper.

4 Comparison theorems and Monge-Ampére mass

We will establish some comparison theorems for the complex Monge-Ampére operator on an affine variety. The locally bounded
theory of Bedford and Taylor [2] in C¥ is sufficient for this section. In particular, we use the fact that any locally bounded psh
function in CN can be approximated by a decreasing sequence of smooth psh functions; and if T is a positive closed (N —k, N —k)-
current, uy,...,u; are psh functions, and for each j we have a monotone convergent sequence of psh functions, ug.") /" u; (or
uS.") N\ u;), then
dduP A+ Add U’ AT - dduy A Adduy AT weak-" as j — co.

Theorem 4.1. Let Q C C¥ and let u,v be locally bounded psh functions on . Let T be a closed positive current of bidegree
(N —j,N —j) on Q for some positive integer j < N. If the set A:= {u < v} Nsupp(T) is a relatively compact subset of §2 then

f (ddcv)f/\Tsf (dd°uy AT.
{u<v}

{u<v}
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Proof. We will verify the theorem for u,v continuous, adapting an argument of Cegrell (see [3] or [9], Section 3.7). The
hypotheses can be weakened to u,v locally bounded by a standard argument using decreasing sequences of continuous psh
approximants to u, v on an open neighborhood of the closure of A.

Let 2, := QN {u < v}, and let T be a positive closed (N —1,N — 1)-current. For € > 0, define v, := max{v —€,u}. By
continuity, u = v on 9, Nsupp(T), and by hypothesis, the closure of this set is in Q. Thus {u < v —e} Nsupp(T) is a relatively

compact subset of ;. We claim that
f ddcve/\Tzf dd‘uAT. an
o o

Given € > 0, let ¢ be a smooth, compactly supported non-negative function in Q; such that ¢ =1 in a neighborhood of the
closure of the set {v, > u} Nsupp(T). Then ddp = 0 on this set, so that (supp(dd‘¢) Nsupp(T)) € {v, = u}, and

f Lpddcve/\Tzf veddctp/\Tzf udd®@ AT.
o o o

Consequently (11) holds since ¢ was arbitrary.
Now take a smooth, compactly supported ¢ on Q;, with 0 <) < 1. Then v, /v on Q, so that

J wddcv/\Tzlintl)J wdd‘vE/\TSIin(l)f ddcve/\T:f dduAT,
o e— e—

2 0 2

using (11). Since 1) was arbitrary, the theorem follows when j = 1.
An easy induction gives the theorem for higher powers of j. O

Recall that if M ¢ CV is a manifold of dimension k, then [M ] denotes its current of integration, i.e., the (2N — k)-current that

acts on a test k-form ¢ by
((M], ¢) :=J 2
M

A theorem of Lelong says that the current of integration [V ] over an analytic variety V € CV of pure dimension m is a closed
positive current of bidegree (N —m, N —m). As a consequence, we have the following.

Corollary 4.2. Let V C CN be an affine variety of dimension m and let j € {1,...,m}. Suppose u, v are locally bounded psh functions
on V and S is a closed positive current of bidegree (m— j,m—j). If A:=V Nn{u < v} Nsupp(S) is a bounded subset of V, then

J(ddcv)j AS < J(ddcu)j AS.
A A
Proof. Note that by definition, u, v are restrictions to V of locally bounded psh functions on an open set 2 C CV (cf. Remark 3).

For these extended functions, {u < v} NV is relatively compact in 2, so we may apply the previous theorem with T =[V]AS. O

Theorem 4.3. Suppose that V C CN is an affine variety of dimension m, and u, v are locally bounded psh functions on V. Suppose
u, v are bounded from below outside a bounded subset of V and v(z) = u(z) + o(u(z)) as ||z|| = oo. Let j € {1,...,m}. Then for any
closed positive (m — j, m — j)-current S with unbounded support,

f (ddv) AS < f (ddu)’ AS.
v v

Proof. By adding a positive constant, we may assume without loss of generality that u,v > 0 outside a bounded subset of V. Let
€,¢ > 0. Then (1 + e)u(z) —c > u(z) + o(u(z)) as ||z|| > oo, which implies that (1 + €)u(z) —c > v(2) as ||z|| = oco. Thus the set
A..:={(1+€e)u—c <v}nV is bounded and we may use Corollary 4.2 to obtain the inequality

f (ddvY AS<(1+ e)jJ. (dd°u)’ AS.
AE,C v
Letting ¢ — +00,
J (ddvY AS<(1+ e)jf (dd°u) AS.
|4 14

Finally, let € — 0. O

We will also need the following corollary.

Corollary 4.4. Suppose u—v is O(1) and S is a positive closed (m — 1,m — 1)-current with the property that fv dd‘w A S is finite

for some w € L*(V). Then
J dd°unS = J ddv AS.
% %
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Proof. Take w € £*(V) as hypothesised, and let €, ¢ > 0. Define u, . := u+ ew—c. Then the set A, . := {u,., < v} is bounded, so

that
J. ddcv/\SSJddcue,c/\S=fddcu/\S+eJdde/\S.
Ue,c 14 v v

As before, let ¢ —» +00 and € — 0 to obtain fv ddvAS < fv dd‘uAS.
The reverse inequality is obtained by the same argument with the roles of u and v swapped. O

Corollary 4.5. Let u,v be psh on V, bounded from below, u—v = O(1), and both functions go to infinity as |z| — oo. Let S be a
positive closed (m — j, m — j)-current with unbounded support. Then

f (dd°u) AS = J (dd°v) AS. (12)
v 14

In particular,

f (ddu)™ = f (ddacv)m. (13)

If the value of (13) is a nonzero constant, it is equal to
J(ddcu)j A(ddev)™ )]

for each j € {0,...,m}. In particular, this is true for u,v € L*(V).

Proof. Since u,v go to infinity as |z| — 0o, u—v is both o(u(z)) and o(v(z)). We need only show >’ in (12), (13), and (13); the
opposite inequality follows by reversing the roles of u and v.

The inequality for (12) follows from Theorem 4.3, and that for (13) follows as a corollary upon taking S = 1. For j €
{1,...,m—1} we also obtain the inequality for (14) by taking S = (dd°v)™/, as long as the support of this current is unbounded;
we verify this next.

Suppose on the contrary that the support is bounded, i.e.,

(ddv)™ ' =0 on V\{|z|| <R} for someR > 0. (15)

By hypothesis, we may choose such an R sufficiently large for which fVR (dd°u)™ # 0, where Vy ={z € V : ||z]| <R}. Let ¢ >0 be

a smooth, compactly supported function that is identically 1 on a neighborhood of V;. Then supp(dd®y) C V \ V4, so integration
by parts yields

0 # J (ddv)™ < j p(ddv)™ = J vdd o A(dd V)™ = J vdd o A(ddv)™! = 0,
Vr v v VA\VR

using (15). This is a contradiction. O

As we shall see, fv(ddcv)m is a positive constant for v € £L*(V). The common value of the integrals (13), (14) will be
called the (Monge-Ampére) mass of L*(V). Its exact value is obtained by choosing a convenient function in the class that can be
integrated explicitly.

In Chapter 5 of [9], Klimek computes f(ddc(log(l +|1z]1)))Y in polar coordinates to get the mass of £LT(CV). We give an
alternative computation using a ‘max’ formula.

Proposition 4.6. Let 0 < k < m and suppose the functions u,, .. .,u,, are plurtharmonic (i.e. ddu; = 0 for all j) on a domain
Q€ C™. Let u(z) := max; u;(z). Then

(ddu) =[SIAd (uy —up) Ad (uy —ug) A=+ Ad (g — gyy), (16)
where S = {z € C™ 1 u;(2) = uy(2) =+ = up1(2)}, as long as S is a smooth (2m — k)-dimensional manifold. O

The formula is a direct corollary of the main theorem in [1] (i.e. without the ‘dd®’ terms, which vanish in this case). The
pairing of [STA d(uy —uy) A+ Ad(uy — Uyyq) with a smooth (N —k, N —k)-current w is given by

([SIAd (u; —u) A--- Ad (U —uy + 1), w) zf d(u; —uy) A Ad(uy — ) A o,
s

which means S must be oriented so that the integral is non-negative for w > 0.
Example 4.1. For z = x +iy € C, we have log" || = max{log|z|,0}, with S = {|z| = 1}, so dd°log™ |z| = [{|z]| = 1}] A d°log|z|.
We compute
dloglz| =d° (3 log(x*+y?)) = ﬁ(xdy —ydx)
= (r’cos®0(d6)+r?sin*0d6 = db,

where z = re'®. Hence dd®log" |z| = [{|z| = 1}] A d6, angular measure on the unit circle.
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More generally, consider the function in £*(CV) given by

u(z) = max{log|z,|,...,log|zy|, 0}.
Then S is the torus {|z;| =+ = |zy| = 1}, and we have
(ddu)V = [SIAd log|z;| A---Adloglzy] = [SIAdO,A---AdBy, an

where z; = r;e'% for each j. Then f(ddcu)N = fs do; A---AdOy = (2m)N, showing that
the mass of £Y(CV) is (2m)V. 18)

Using (18) together with a Noether presentation, we can prove the following theorem.

Theorem 4.7. For an affine variety V of dimension m, the mass of L*(V) is (degV)(2m)™.

Proof. By Corollary 4.5 it suffices to compute the Monge-Ampére mass of any function in £*(V). By Proposition 3.1(1), we may
take u € £7(V) to be the function u(x, y) = log”" ||x||, where (x, y) is a Noether presentation; and being independent of y, it
is naturally identified as a function in £*(C™). Let B be the closed unit ball in C™. We will first prove the theorem under the
condition that

(*) The projection (x,y) s x is a local biholomorphism from a neighborhood of P™1(B) NV to a neighborhood of B, and P~'(B)
is a union of d disjoint sets.

(In other words, B avoids the branch locus of the projection.) Then on C™ \ B, the function log" ||x|| satisfies (dd®log" ||x||)™ = 0;
hence u satisfies
(dd‘u)™ = 0 in a neighborhood of each (x,y) € P~(C™"\ B) \ E (19)

where E is the algebraic set given by the union of the singular points of V and the branch points of P. Thus the (N, N)-current
T :=[V]A(ddu)™ is zero on the set (CV \ (P7}(B)) \ E. We claim that it must therefore be zero on E as well. For if not, then for

any test function o,
0 <J T = f eT =J p(ddu)™ = lim J p(ddu)m, (20)
CN\P-1(B) E E koo i

where {u,} is a decreasing sequence of smooth psh functions, u; \, u. Since each u, is smooth, for each k we may interpret
fE p(ddu,)™ classically as the integral of a smooth (m, m)-form over E, an analytic set of complex dimension < m, which is
always zero. Hence the limit on the right-hand side of (20) is zero, a contradiction.

Thus T is supported on V N P~(B), which means that

degV

J(dd‘u)'” = j (ddu)™ = ZJ(ddﬂog*Hxll)m = deng(dd‘log*HxH)'"
4 vnP—1(B) j=1 JB B

where condition (x) is used to get the second equality. Observe now that as a global function on C™, log" |||l € £F(C™) and is
maximal on C™ \ B, so that

f(ddc log™ [lx[)™ :f (dd*log” [lx[)™ = (2m)™,
B (CIY[

by (18). The conclusion of the theorem follows immediately.
It remains to deal with the condition (). For each x, € C¥, observe that P~!(x,) =: L,, is an affine plane of codimension m
while E is an affine subvariety of dimension at most m — 1. Hence we can find x, such that L, NE =§. Then

L.NE=0

[lx—xoll<&

for &6 > 0 small enough; and in addition, (qu—xou < LX) NV is a union of d disjoint sets. Now translate and rescale coordinates
by the map
1 -
G y) = (55 (x = x0).y) = (&, ¥)-

It is easy to see that (%, y) is a Noether presentation for V for which (x) holds. We now consider the function log" ||%|| and
proceed as above. O
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5 Lelong degree

The complex Monge-Ampere operator may be extended to certain unbounded functions. If u is a psh function on some domain 2,
we define
L(u) := {z € Q: u is not locally bounded in B(z,r) N, Vr > 0}.

The following result (presented without proof) is a consequence of the general theory on complex manifolds developed in [5],
chapter III §4.

Proposition 5.1. Let T be a positive closed (q,q)-current in CN and let u,, ... , U, be psh functions on C" with p +q < n. Suppose
that for each j, L(u;) is contained in an analytic set A;. Given m € {1,...,p}, suppose that for each choice of m functions u;,...,u
the analytic set Aj N---NA; has codimension at least m. Then

1. The (p +q,p +q)-current dd“u; A--- Addu, A T is well defined on C".

Jm

2. If {ug.k)} is a decreasing sequence of locally bounded psh functions on C", with ui.k) N\ u; as k — 00, then we have the weak-*
convergence of currents:
ddu? A+ AdduP AT > dduy A+~ Addu, AT. (21)

O
As an example of the second convergence, we have
dd(max{log|z |, —logn}) = [{|z,| = ;}] A d6

by Proposition 4.6, which converges to [{z; = 0}].
More generally, for an irreducible p € C[V'] we have max{log|p|,—logn} \, log|p| as n — 0o, and we have the convergence

ddmax{log|p(z)l,—logn} AT =[{|p(z)| = :}]Ad°log|p| AT — 2n[{p(z) = O}]A T

for any closed positive current T. We can see this convergence near a regular point of {p = 0} by making a local holomorphic
linearization of coordinates (which we denote by H) that transforms log |p| into log |2, |, and calculating as above. We recover the
Lelong-Poincaré formula:

dd®log|p| AT =2n[{p =0}]AT.

Let now v € L*(V). Suppose u € cL(V) for some ¢ > 0, and satisfies:

1. L(u)NV is contained in an analytic set of dimension at most m — 1; and

2. %u is a decreasing limit u; %u of functions u; € L*(V).
Lemma 5.2. Suppose {u; }J‘.’:] and u satisfy the two conditions above. Suppose there is v € L*(V) and a compact K C V such that
the support of dd‘u; A (dd®v)™ ! is contained in K for each j. Then

f dduA(ddv)™ ! = lim cf ddu; A(dd°v)™" = cdeg(V)(2m)™. (22)
% mee Jy
Proof. Let ¢ be a smooth, compactly supported function on V such that ¢|, = 1. Then the first equality is equivalent to
f pdduA(ddv)™! = lim cj @ddu; A(dd V)™,
v Imee Jy

which is true by (21).
The second equality is a consequence of Corollary 4.5 and Theorem 4.7. O

We will apply the above lemma to u = log|p| where p is a polynomial. To construct the u;s, we will need another lemma.
Before stating it, we recall a standard fact: if v € £(C™) is bounded from below and the Robin function

p,(2) :=limsupv(Az) —log|A|

[A]—00
is finite at every point of C™ \ {0}, then u € L*(C™).
Lemma 5.3. Let p € C[x] be a polynomial and p its leading homogeneous part. Suppose the set

{xeC":p(x)=x,=---=x, =0} (23)
consists only of the origin. Let j € N and define

u;(x) = max{delgp log|p(z)l,1og ‘X]—?', ...,log @,—logj}. 24)

Then u; € L*(C™).
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Proof. We have for each x € C™ that log M}L"‘ —log|A| =1log ‘xj—k' and
Jim_ g loglp(Ax)| ~log|2] = lim g5 log[p(x) +0UAI™)| = g loglp(x)l
S0
Py (x) = max { delgp log|p(x)|,log @, ...,log @} .
By (23), p,,(x) is —oo only at the origin, and finite for all other x € C™. Hence u; € L£H(Cm). O

Proposition 5.4. Let V C CN, with dim(V) = m, and let (x,y) be a Noether presentation of V for which (23) holds. Suppose
p € C[x] CC[V]. Then for each v € L*(V),

deg(p) deg(V)(2m)™

J dd‘log® |p| A (ddv)™! (25)
v

j ddlog|p| A (ddv)™ L. (26)
14

Proof. Let the functions u;, j € N, be as in the previous lemma. We compute by Lemma 4.6,

(ddu)" = [S;1nd" (52 log|p(x)|) Ad log Z2 A+ A d° log 2!
= [Sj]/\dc(delgploglp(x)|)/\dclog|x2|/\~~/\dclog|xm|. 27

Let T; ;= {x € C" : |p(x)| < j%2P}. Then §;=T,NS, where
S={lxy| =---=Ix,l =1}
Put v := max{log|x,|,...,log|x,|,0}; then we also have
(ddv)™ ! = [S]Ad log|x,| A+ Ad€log|x,l;

in particular, (dd°v)™ ! is supported on S. Together with (27), Lemma 5.3, and Theorem 4.7, we have

J L‘adc (delgp log |p(X)|) A (ddcv)'"_l
T:

J

f d° (- log p(x)l) A (ddv)™!
S

)

J(dd°uj)’" =(2m)",

where ¢ on the left is a smooth compactly supported function with ¢|x = 1; here we take K := {|p(x)| < 1, |x,| < 1,...,|x,| < 1}
which is a fixed compact set containing S; for all j.

For j = 1 we have |p(z)| < 1 so that log|p(z)| < 0 < v(z) on T;. Hence v|Tj = wlTj, where w = max{v, @log p(2)|} €
L*(C™), and the left-hand side is equal to

j ‘Pdc(delgp loglp(x)l)/\(ddfw)mfl,
-

J

Let {w,}.-o be smooth functions in £*(C™) with w, \y w as ¢ — 0. Then the above integral is equal to

€—0

limf d* (3 logIp(x)|) A (dd w, )™, (28)
Tj
For fixed e, the integral inside the limit may be rewritten as the pairing of a current with smooth compactly supported form:

<[Tj] A dc(de;p log|pl), <pddcw6> = <ddc max{@ log|pl,—logj}, goddcwe>

where we apply Lemma 4.6 with k = 1; hence (28) becomes

lil’I(l)J pdd° max{ delgp log|pl,—logj} A(ddw )™ = J odd° max{ delgp log|p|,—logj} A (ddw)™!,

using convergence of currents (or Proposition 5.1).
Altogether, we have

@™ = J pdd® max{ delgp log|p|,—logj} A (dd“w)™ .

We may drop ¢ from the above integral, as the support of dd® max{log |p|,—log j} A(dd°w)™ ! is the set KN {|p| = %} C K. Finally,
by Theorem 4.3, we may replace w with any other v € £*(C™) since the support of dd° max{log|p|,—log j} is the (unbounded)
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set {|p| = %}. When j = 1, this proves (25) when V = C™. Proposition 5.1 may be applied to take the limit as j — oo on the
right-hand side to yield

1
@™ = —J pddlog|p| A (ddw)™ !,
degp

which proves (26) when V = C™.
For a general variety V, the same argument as in the proof of Theorem 4.7 gives

degV
Jddcloglpl/\(ddcv)m_1 = ZJ ddlog|p| A (ddv)™!
v = Jonm

if v = log||x|| and the support of the current [V] A dd°log|p| A (dd°v)™! is away from the branch locus of the projection.
Otherwise, as in that proof, we modify v by an affine map so that the support of (dd°v)""! is away from the branch locus, and
the above equation holds. Applying the C™ case to each integral in the right-hand sum yields formula (26). Similarly, we also get
(25). Finally, by Theorem 4.3, these formulas hold for all functions in £*(V). ]

Proposition 5.4 motivates the following definition.
Definition 5.1. Fix v € £L*(V). Given p € C[V], the Lelong degree of p on V is defined by

1
deg on(p) == T f dd‘log|p| A(dd‘v)"".
£V deg(V)(2m)™ ),
Remark 5. 1. The Lelong degree is independent of v by Corollary 4.5, and coincides with the usual degree when p € C[x] C

C[V] by Proposition 5.4.

2. The definition in terms of a Monge-Ampeére formula is similar to that of a Lelong number: deg_(p) may be interpreted
as a Lelong number for the current dd¢log|p|.

3. The Lelong degree is independent of coordinates in C™ since it is defined in terms of the dd¢-operator which is invariant
under biholomorphic maps. In particular, the definition makes sense without reference to a Noether presentation. A
Noether presentation is convenient for computation.

Example 5.1. Let V C C? be the quadratic curve with equation x = y?. Then (x,y) is a Noether presentation. Since
log|y| = 1 log|x|, we have

deg oy (y) = 3 deg(x) =3
by Proposition 5.4.
For a general polynomial p € C[V], its normal form is p,(x) + yp,(x). Using the estimates
max{|p;|,|yp.[} < |py + ypo| < 2max{|p|, [yp,l}
we see that log |p| —max{log|p,|,log|yp,|} = O(1). Thus using Theorem 4.3, we may replace log |p| by u = max{log|p,|,log|yp,|}
in the computation of Lelong degree. If deg(p;) > deg(p,) then for sufficiently large values of x, we have

log |p; (x)| > log [p,(x)| + 3 log x| = log lyp,(x)],

so that u = log |p; (x)|. On the other hand, if deg(p;) < deg(p,) then u = log|yp,(x)| = 1 log|x| + log|p,(x)| for sufficiently
large values of x. It follows that

deg(yy(p) = max{deg(p,), deg(p,) + 3.

It may or may not be possible to replace log|p| by log™ |p| in the computation of Lelong degree. We need an additional
condition.

Proposition 5.5. Suppose z = (x, y) is a Noether presentation of V where x = (xy,...,X,,). Suppose p € C[V] satisfies one of the
following conditions: for each j =1,...,m, either the set

K;:={z€V:|plx,y)I <1, |x| <1 forall k # j}

is compact, or if K; is unbounded, then log|p| is O(1) on K; as [x| — oo.
Then

1
de (p)= —J. dd®log" |p| A(ddv)™ L.
Eev)\P deg(V)2m)" |, g Ip
More generally, we may replace log™ |p| in the integral by max{log |p|,c} for any c €R.

Proof. Let us take the function v := max{log|x,|,...,log|x,,|,0} € L*(V). Suppose the first condition holds. Let K := U;."zl K;.

By Proposition 4.6, the support of the current dd°log* |p| A (dd°v)™ ! is contained in K.
Let ¢ be a smooth, compactly supported function on V such that ¢|; = 1. Then dd°¢|x =0, so that

f log* |p|ddy A (ddSv)™ ! = f log |pldd€ A (ddSv)™ L.
v

\%4
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This is the same as fv pddlog* |p| A (ddv)" ! = fv @pddlog|p| A (dd®v)™!, and the result follows since we may replace ¢ by
1.
If log |p(2)| is O(1) on K, then
liminflog|p| > M +1

2|00
2€K;

for some M € (—oo,—1], so the set
Ky :={z€V:|p(x,y)l <e",|x;| <1 forall k # j}
is compact. Hence e~ p satisfies the previous condition, so
f dd®logle™p| A(dd*v)™ ! = J ddlog* |e™p| A (dd°v)™ 1.
v %
We want to replace e p with p on both sides. We may do this on the left-hand side because
dd¢logle™p| = dd‘(log|p| — M) = dd*log|p|.
On the right-hand side, log* |e™ p| —1log" |p| = O(1), so we may apply Corollary 4.4. O

Example 5.2. Let p(x,y) = x —y on the quadratic curve in C? given by x> — y? = 1. Then p(x, y) — 0 as (x, y) tends to infinity
along the curve in the direction of the asymptote y = x. The set K in the above proof is {|x — y| < 1}, which is unbounded, and
log|p| = —o0 on K as |x| — 00. So neither condition holds for p.

The conclusion of the proposition also fails, by a calculation. Write w = x — y; then

J dd‘log" |p| =J dd‘log" |w| = J d°log|w| = J do =2m.
v C\{0} {lwl=1}

On the other hand, p(x,y) =x—y # 0 for all (x, y) € V. Hence log|p| is harmonic and f ddlog|p| = 0.

\%
We close this section with the following result, used in the last section.

Proposition 5.6. Let V =V(p;,p,, ..., D) be an irreducible affine variety in CN of dimension m = N — k. Define W c CN*! by
W= {(t,2) €C""': pi(2) =t =py(z) =+ = py(2) = 0} = V(p; — £, ps, ..., i),

and define V, :=V(p; — t,ps, .-, Pr) When t is fixed. If t is sufficiently small then V, is irreducible. Moreover, deg(W) = deg(V,) =
deg(V), and
degl(w)(p) = degL(V)(p) = degc(vr)(P)

for any polynomial p that does not depend on t.

Proof. Restricting to a hyperplane (corresponding to fixing ¢ in the original coordinates), we obtain a Noether presentation for V,
(or V if t = 0), and clearly deg(V;) = deg(W). If V is irreducible then so is V, for t sufficiently small.
Consider now, for € > 0, the functions in £*(W) given by

w,(t,2) := max{log|t|,log|x,|,...,log|x,,|,loge},
where x are the independent variables in a Noether presentation of V, and let
v.(2) := max{log|x,|,...,log|x,,|,log€}.
Then a calculation as in (17) yields
(ddw)™ = [{lt|=€e}]AdO(t)A(ddv.)™" = dd‘(max{log|t|,loge}) A(dd“v.)™ .
Considering p € C[V] as a polynomial in C[W ] which is independent of t, and writing 7, = max{log|t|,log e}, we have

(Zn)m”deg(W)degE(W)(p) = f dd®log|p| A(ddw )™ = f dd®log|p| A (ddv,)" P Add°r,. (29)
w

w

By Corollary 4.4, we can replace 7.(z) on the right-hand side of (29) by 75(z) for any 6§ > 0, since 7, — 75 = O(1). Then

(2m)™*' deg(W)deg (p) = J dd®log|p| A(ddv.)™  Add T 27rj ddlog|p| A (ddv, )™}
w 14

= (2m)""'deg(V)deg ) (p)

upon letting 6 — 0 and using Monge-Ampere convergence. We showed above that deg(W) = deg(V), hence deg,)(p) =

deg,((p)
By the same type of argument, deg,(p) = deg,y,)(p) for any fixed t € C. O
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4 3
3 2
2 1 °
1 . y exponent
0 1 2 3 4 5

t exponent
5

0 1 5 3 s Figure 1: Newton polygons of P (above) and P (left) in Example 6.1.

6 Curves in C?
The Lelong degree on an algebraic curve in C? may be computed from Puiseux series. Let
V={(x,y) €C*: P(x,y) =0},

and suppose (x,,Y,) € V. Then by the theory of Puiseux series, there is a neighborhood Q of (x,, ¥,) in C? such that any point
(x,¥) € 2NV is given by a Puiseux series about x;:

oo
y= Zaj(x —x,)"¢, where j,€Z and d €N.
J=Jo
We apply Puiseux series (more precisely, the lowest term) as follows.

Proposition 6.1. Suppose V C C? is an algebraic curve, with Noether presentation (x, y). There exists a y € (—00,1]N Q such that
if R > 0 is sufficiently large, then
y=x"(c+o(|x[") as|x|— oo, (30)

and we take the limit along a continuous path in which (x,y) € V and |x| > R. As a consequence, log|y| = ylog|x| + O(1) along
such a path.
Proof. Let V ={P(x,y)=0}. Under the change of coordinates

(e, ¥) = (1/x,y/x)=: (s, 1),
for each (x, y) with x # 0 we have P(x,y) = 0 if and only if P(s, t) = 0, where P is the polynomial obtained by replacing each
term a;,x) y* with a;,s” t%, where j' = deg(P)— j —k. )
Consider a Puiseux series at the origin that gives t in terms of s when P(s, t) = 0:
t = Zajsj/d = ajosj‘)/d + o(Js]/4) as |s| = O;
J=io
changing back to affine coordinates and multiplying through by x yields
y= ajoxl’jO/d + o(|x|*70/4) as |x| — oo.

For sufficiently large |x/|, this says that |y| > %Ia jollxll_ff’/ 4, Since (x, y) is a Noether presentation, the estimate in (5) must hold,
so 1—j,/d <1. We set y := 1—j,/d. The Puiseux series in s is valid on an open set for which the origin is a limit point. A
continuous path in this open set with s — 0 corresponds to a continuous path in x with |x| — oco. O

The value of y in the above proposition is easy to read off from the Newton polygon associated to P(s, t).| We illustrate with
the following example.

Example 6.1. Let V C C? have defining polynomial
Px,y)=y*+xy®+xy? +x%y + x>+ 1.
The associated polynomial is B(s, t) = t* + t3 +st? + st + 5> +s*.
Write a Puiseux series for ¢ in terms of s as t = Z,:l c,sTk. Then the lowest power ¥, is the negative of a slope of a so-called

lower segment of the boundary of the Newton polygon (i.e. any downward translate of a lower segment gives a line segment that
does not intersect the polygon).

In our case, the polygon N has three lower segments (see Figure 1, left).

ITt is the first step in an iterative algorithm for computing the terms of a Puiseux series. See e.g. [14] for a description.
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Figure 2: The real points of V are given by the two solid curves. The
three dashed curves approximate V;,V1,V;. The next terms in the
2

series for y =0 and y = 1 are o(1), so the dashed lines approximating
Vo, V1 actually converge to these branches. For y = %, the next term
in the Puiseux series for each branch of Vi is O(|x|'/4). In this case,
the branches of W follow V1 but separatezfrom it very slowly. Plotted
with Maple 18. : :

1. Line segment joining (3, 0) and (4, 0), with slope 0. Here y; = 0, and we write the Puiseux series as
t=ci+ti(8)=cy+cys?+---.
Put this into the equation for the curve (write ¢ :=c; for convenience):

0=P(s,c+t,(s) (c+t;6N* + (c+ () +s(c+t,(s))* +52 +5*

= (c*+c®)+ (higher terms in s).

Equating coefficients in the constant term, we obtain 0 = c* + ¢® which is a nonzero coefficient when ¢ = —1. Hence
t =—1+o0(1) as s — 0, which becomes
y=—x+o0(|x|) as]|x|— oco.

2. Line segment joining (3,0) and (1,1). Here y, = %, so that t = ¢s'/2 + t,(s). Equating the lowest nonzero coefficient in
the Puiseux series equation for P(s, t) = 0, we obtain 0 = t*/?(c® 4 ¢) so that ¢ = +i. Hence we obtain two more series:
t =is? 4+ o(|s|'/?), and t = —is/? + o(|s|"/?), giving

y=ix"2 4+ o(|x|V?) or y = —ix'? + o(|x|"/?) as |x| = oo.

3. Line segment joining (1,1) and (0,2). Here y; = 1, so that t = cs + t;(s). Solving for the lowest nonzero coefficient in
P(s,t) =0, we obtain t2(c + 1) = 0, so that ¢ = —1. At the end we obtain

y=-—14+0(1) as|x|— oco.

For this example, (x, y) is a Noether presentation because P(x,y) is of the form (4), and deg(V) = 4 since generically there
are 4 solutions in y for fixed x. The four branches of V over C correspond to the four Puiseux series. Write this as

V=V UV%’1 UV%’ZUVO,

where the (first) subscript corresponds to the exponent y in (30).

For points x where |x| > R and R is sufficiently large, the branches associated to Puiseux series with different values of y are
disjoint, because the corresponding y values are of a different order of magnitude. In particular, V; and Vj, are isolated branches
for large |x|. The two branches V%,l, V%,z have y values of the same order of magnitude for large |x|. Write V% = V%,l u V%,z§
then for large |x|, V) is approximated up to o(|x|"/?) by the curve y? + x = 0, obtained by discarding the lower order terms in
both series. We will denote this curve by W1. See Figure 2.

Let V(R) := V N {|x| > R}, and similarly for other sets. We evaluate log|y| on these three pieces of V(R):

log|—x +o(x)] on V;(R)
logly|=1{ logl—1+0(1)] on Vy(R)
log|y| onVi(R)

log|x|+0(1) on C(R)
0(1) onC(R)
log|y|+0(1) on W% (R)

Here, ¥ is just given by the closest value on the approximating curve: if (x,y) € V% then (x,¥) € W% .
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We now compute the Lelong degree of y. Clearly V \ V(R) is compact, by (5). Set C > sup{|y|: (x,y) € V \ V(R)}, so that
dd°max{log|y|,log C} is supported on the set {|y| = C} c V(R). Then

f dd°max{log|y|,C} J dd®max{log|y|,C}
% V(R)

J ddcmax{loglyl,c}+J ddcmax{loglyl,c}+J dd®max{log|y|,C}
V1(R) Vo(R) V% R

J dd® max{log|x| +O(1),10gC}+f ddclogC—i-J dd°max{log|y|+0(1),logC}
C(R)

c®) Wy
where we use the fact that log | 7| = %10g|X| on W%. Hence deg,,(y) = % — %
7'c
Remark 6. 1. The end result of the computation is to take the average growth of log|y| over all four branches:
degg(v)()’)=%(1+%+%+0):%. o

2. The additional condition of Proposition 5.5 was needed to simplify the computation of the integral, replacing log|y| by
max{log|y|,C} and projecting to C. The condition is easily seen to hold if all Puiseux series exponents are nonnegative. If
one of the exponents is negative then the Monge-Ampere computation fails; however, the averaging formula (31) should
still hold with the appropriate sign. For example, y®> —x?y +x + 1 = 0 is a degree 3 curve with the 3 series

Yy=X+-, y=—x+---, y:x_1+...’
and we should have deg,,(y) =3(1+1—1) = 3.

3. Clearly, the minimum nonnegative constant d permitting the inequality %log Ip(2)| < log® |2| + A for some A € R and all
z € V is given by the maximum value of y. (For Example 6.1, d = 1.)

6.1 Lelong degree formula for y
Let V = V(P) C C?, where P is an irreducible polynomial of the form

P(x,y) = y*" +q(x,y). (32)

This condition ensures that (x, y) is a Noether presentation. Also, since p is irreducible, q contains a nonzero term in x*, for
some 0 < k < deg(P). Let d be the maximum such value. Then

d

o) (33)

degc(V)(J’ )=

1
E .

Let us describe how formula (33) arises, using Example 6.1 as an illustration. First, the Newton polygon N of P(s, t) has 3
lower segments, the negative of whose slopes are y; =0, v, = %, and y; = 1. The corresponding growths of y in terms of x as
|x| — oo are then calculated to be

In Example 6.1, the highest power of P in x alone is x2. Hence by the above formula, deg,wy(¥) = % =

ci=1=-y;=1, ¢ :=1—y2=%, c3:=1—y3=0.

Let us relate this to the Newton polygon of P(x, y), which we denote by N,. The lower segments of N correspond to upper
segments of N, (i.e., that separate from N, when translated up). The values of ¢; for each j are precisely the negatives of the
slopes of the segments in N,. (Compare the two polygons in Figure 1.)

In general, if ¢; = r:—j (in simplest form) as |x| — 0o, we get an approximation to y™ = ax™ (for some a), a curve which has
n; branches over x. By an argument using continuity, the curve ought to be approximating n; such branches of V (in Example
6.1, two branches for ¢, = %). As every branch for c; is associated to a collection of n; branches given by an approximating curve,
the total number of branches must be a integer multiple, say q;n;. Altogether, deg(V) = > q;n;.

In view of Remark 6(1) and the previous paragraph, we obtain

1 Z _qumj

1 m;
d = — n.—<+ = -m. = .
<500 = Gy 2OV = Gy 9™ ™ T

Now »;q;n; = deg(V) = deg(P) is the horizontal length of the Newton polygon, and m;/n; are the negatives of the slopes of
the upper segments (indexed by j), which we can consider as forming the graph of a piecewise linear function on the interval
[0,deg(P)]. Integrating the slopes over this interval gives >.q ;m;, which gives the total decrease in height of the function. Since
the graph starts at (0, d) and ends at (deg(P), 0), we get d.
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7 A Bézout theorem for affine varieties
Let V. c CV be an irreducible affine variety of dimension m > 1 given by N — m polynomials p;, ps, .. ., Py_m € C[2]. Then
V=V, CV, CCVy_ CVy:=C" 349
where V; is given by the polynomials p;,...,py_; for j=m,...,N —1.
Theorem 7.1. Suppose V is irreducible. Then
N
deg(V) = [ [degeqy(p)-
Jj=m

Proof. Trreducibility of V4, .. ., Vyy follows from irreducibility of V by induction: if V;,; =V, 1 UV}, ,, then V; = W; UW,, where
Wy = V(py_;) N Vi1, contradicting the inductive hypothesis that V; is irreducible. We also have dim(V,,;) —dim(V;) € {0,1};
since dim(V,,) = m and dim(Vy) = N, the difference in dimension must be 1 throughout, showing that dim(V;) = j.

Fix j, and write V; = V;,; N'V(py_;). Let v be a smooth function in £*(V,;). Then

1

_——— ddl | A(ddovy
@y deg(V;.) o8lPu-4| A (40}

Vir

degg(vjﬂ)(PN—j)

1 _
= —— | 2n(dd°v)y
(2r)+t deg(Vjsq) J v,

deg(V})
deg(\/j+1) '

Hence

N N deg(V))  deg(V)
j:l—[mdegg(vjﬂ)(PN—j) = l_[deg(VjH) = deg(@) deg(V).

j=m

O

Corollary 7.2 (Affine Bézout theorem). Let p,,...,py € C[z] be polynomials, each of degree = 1. Suppose V :=V(py,...,py) is
finite and V; :=V(p,, ..., py_;) is irreducible. Then the number of points of V is at most

N
l—[ degg(v,\,_j)(pj)‘
j=1

Proof. Let W :=V(p,(z) —t,p,(2),...,pn(2)) C CN*1. Then W is an irreducible curve for generic values of t. By the previous

result,
N—1

N
deg(W) = [ [deg ;) (Pr1y) = deg(p) | [dege,(puos);

j=1 j=1

where we use deg,y,,,,(p1) = deg(p,) (since Wy, = CN*! by our convention), and degﬁ(wjﬂ)(pN,j) = degﬁ(vj)(pN,j) by
Proposition 5.6.

For € > 0, let L, : CN*! — CN* be a linear map close to the identity (||L. —I|| — 0 as e — 0), such that (t,,z,.) = L.(t,2) is
a Noether presentation for W. For any value of t, away from the branch locus of the projection 7 to the first coordinate, we
have local inverses {5, ..., of m, where D = deg(W). Pick one of these (say {;) and define ¢, := 7o Le‘1 0{;. Then ¢, is
holomorphic and locally invertible for e sufficiently small (since ¢! — 1 locally uniformly as € — 0).

For each j=1,...,D, the map LE_1 of;o Lpe_l gives a local inverse for 7 in a neighborhood of t in the original coordinates,

(t,x) > t. For fixed x these local inverses give D points (t, x), for generic values of t, i.e., deg(W) points of V(p; — ¢, ps, ..., Py)-
Letting t — 0, a continuity argument gives deg(W) as an upper bound for the number of points in V(p,, ..., py)- O

Remark 7. 1. To remove the condition that V; is irreducible, we can extend the definition of Lelong degree to unions of
affine varieties of the same dimension. We then treat each component in the above proof separately, and sum over all
components at the end.

2. We can introduce the notion of multiplicity of a point to get a formula with equality. The point b is of multiplicity m if
there is €, > 0 such that for every € € (0, €,) there exists 6 > 0 such that for a generic choice of t = (t1,...,ty) € CN with
||e]] < &, the set

V(p; —t1,...,pox — ty) N{lz] <€}
consists of exactly m points. In the above proof, b is of multiplicity m if there are m distinct points (t, by ,),...,(t, b, ) of
W that coalesce into (0, b) as t — 0 along a generic path.

Example 7.1. We illustrate with a simple example in C?: compute the number of points of V = V(p;, p,), where

P y) =y +xy +xy? +xPy +x7+1, pylx,y) =y -1 (35)
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1. Bézout’s theorem in P?>. Homogenizing in the variable t gives
yr+xy +xyit+xiyt+x%t2+t*=0, y—t=0. (36)

The intersection of a degree 4 curve with a degree 1 curve is 4- 1 = 4 points (counting multiplicity), by Bézout’s theorem. To
get the affine points, we must discard points at infinity: putting t = 0 in (36) gives the equations y*+xy®=0and y =0,
yielding the point [t : x : y]=1[0:1:0]. This is a point of multiplicity 2 as can be seen as follows. First, dehomogenize in
the variable x to get local coordinates at infinity: setting x = 1 in (36) gives

Yy +yit+yt+2+tt=0, y=t.
Substituting the second equation into the first yields
0=2t24+2t3+2t2 =2¢%(t2 +t + 1),

so t =0 is a root of multiplicity 2.
Discarding the double point at infinity leaves 2 affine points of V.

2. Affine Bézout theorem with V, = V(p,). We have deg(p,) = 1. Next, (x, y) is a Noether presentation of V,; plugging
y—1=01into p, gives 2x? + 2x + 2 as its normal form, so deg(v,)(p1) = 2 by Proposition 5.4. We obtain 1-2 = 2 points.

3. Affine Bézout theorem with V, = V(p,). We have deg(p,) = 4. Now deg,(y,)(p,) = deg,(,)(y —1). The change of
coordinates (x,y) — (x,y + 1) takes y — 1 to ¥ and takes P to a polynomial whose highest exponent in x alone is still x2,
so applying (33) in these new coordinates gives the same result. Thus deg,,,(y —1) = %, and we obtain 4 - % = 2 points,
as before.

Example 7.2. We close the paper with an example in C3. We want to compute the number of points in V(p;, p,, p;) where
D1, D2, D3 are given by
p1=2"—x, py=y*—xz, p;=2*—y+1.

First, deg(p,) = 3. Let V, := V(p,); then (x, y) are independent variables in a Noether presentation of V,, and |z| = |x|'/*, so

degy,)(p,) = deg(y*) = 2. Next, x is an independent variable in a Noether presentation of V; := V(py, p,), with |y| = |x|?/3
and |z| = |x|"/3. These are the affine points of the well-known twisted cubic, with parametrization t — (t°,t2,t). We have
deg,v,)(p3) = deg(z*) = 4/3. Finally, the number of points of V(p;,p,,ps) is 3 -2 - (4/3) = 8. (The solutions can be found
numerically.)

Remark 8. The twisted cubic is a standard example of a curve that is not a complete intersection in P*. However, it is a complete
intersection in C*, and (34) holds for V = V(p,, p,).
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